Supplementary Information

(Anderson et al., Molecular Systems Biology, 2007)
Table of Contents
I. Derivation of the AND-gate transfer function
II. Fit of experimental data to the transfer function model
III. Circuit influence on cell growth
IV. Response of the $P_{B A D}$ promoter
V. Screening data
VI. Plasmid and construct maps

I. Derivation of the AND-gate transfer function

Signal integration occurs in the AND gate via translation control. Several models of mRNA translation have been proposed and our analysis is based on this foundation (Gilchrist, 2006). The total rate r_{x} of production of activator protein can be expressed as a function of the rate of protein synthesis from a single mRNA k_{x} and the concentration of mRNA m,

$$
\begin{equation*}
r_{x}=k_{x} m \tag{1}
\end{equation*}
$$

The single mRNA protein production rate is proportional to the probability σ that a ribosome will successfully synthesize a complete polypeptide. This can be discretized as the product of the probabilities σ_{i} that each amino acid i will be progressively added to a growing peptide of length N.

$$
\begin{equation*}
\sigma=\prod_{i}^{N} \sigma_{i} \tag{2}
\end{equation*}
$$

In response to a TAG codon, either release factor 1 (the concentration of which is held constant) or SupD can enter the A site of the ribosome resulting in termination or nonsense suppression. The nonsense suppression rate r_{i} is given by

$$
\begin{equation*}
r_{i}=k_{s} s \tag{3}
\end{equation*}
$$

where s is the concentration of SupD and k_{s} is a rate constant. The probability of suppression is therefore

$$
\begin{equation*}
\sigma_{i}=\frac{k_{s} s}{r_{0}+k_{s} s} \tag{4}
\end{equation*}
$$

where r_{0} is the rate of termination. All other codons are assumed to not result in premature termination of translation $\left(\sigma_{\mathrm{i}}=1\right)$ (Gilchrist et al, 2006). Because there are two amber stop codons in the open reading frame, the probability that a polypeptide will be synthesized is given by

$$
\begin{equation*}
\sigma=\left(\frac{k_{s} s}{r_{0}+k_{s} s}\right)^{2} \tag{5}
\end{equation*}
$$

Equations (1), (2), and (4) yield the relationship between the total protein production rate and the concentration of SupD,

$$
\begin{equation*}
r_{x}=k_{x} m\left(\frac{k_{s} s}{r_{0}+k_{s} s}\right)^{2} \tag{6}
\end{equation*}
$$

where k_{P} is the maximum rate of protein synthesis under complete suppression.
The production of activator x can be modeled with a differential equation tracking the production and degradation rates

$$
\begin{equation*}
\frac{d x}{d t}=r_{x}-\gamma_{x} x \tag{7}
\end{equation*}
$$

where γ_{x} is the degradation rate of the activator. The production of an output gene y from the promoter acted on by the activator (the T7 promoter) is captured by

$$
\begin{equation*}
\frac{d y}{d t}=k_{y} \frac{x}{K+x}-\gamma_{y} y \tag{8}
\end{equation*}
$$

where k_{y} and γ_{y} are production and degradation rates and K is the dissociation constant for activator binding to the promoter. Solving for the steady-state solution of (7) and (8) and inserting the expression (6) yields

$$
\begin{equation*}
\frac{y}{y_{\max }}=\frac{\frac{k_{x}}{\gamma_{x}}\left(\frac{k_{s} s}{r_{0}+k_{s} s}\right)^{2} m}{K+\frac{k_{x}}{\gamma_{x}}\left(\frac{k_{s} s}{r_{0}+k_{s} s}\right)^{2} m} \tag{9}
\end{equation*}
$$

where $\mathrm{y}_{\text {max }}=\mathrm{k}_{\mathrm{y}} / \gamma_{\mathrm{y}}$. The variables can be rescaled by $\alpha=s k_{s} r_{0}{ }^{-1}, \beta=m K^{-1}$, and $\theta=\gamma_{x} k_{\mathrm{x}}{ }^{-1}$ to produce the dimensionless form,

$$
\begin{equation*}
\frac{y}{y_{\max }}=\frac{\alpha^{2} \beta}{\theta(1+\alpha)^{2}+\alpha^{2} \beta} \tag{10}
\end{equation*}
$$

Equation 10 describes the transfer function of the AND gate with two inputs.
To parameterize this model, both inputs are varied and the output fluorescence is measured. The activity of the input promoters are varied by changing the concentration of the arabinose and salicylate inducers. However, these concentrations are specific to these two inducible systems. Instead of using arabinose and salicylate concentrations as the inputs, the $P_{B A D}$ and $P_{s a l}$ promoters are transcriptionally fused to green fluorescent protein and the fluorescence is measured as the inducer concentration is varied. The fluorescence units from these one-dimensional experiments are combined with the two-dimensional data to parameterize the transfer function. The advantage of this approach is that the fit parameters can be used to predict different promoters can be connected to the AND gate.

To fit to the fluorescence data, it is assumed that there is a linear relationship between the arbitrary units of fluorescence and y, a, and b. Putting $\alpha=z_{1} I_{1}, \beta=z_{2} I_{2}$, and $y=z_{3} g$ into Eq. (10) produces

$$
\begin{equation*}
\frac{G}{G_{\max }}=\frac{I_{1}^{2} I_{2}}{a\left(b+I_{1}\right)^{2}+I_{1}^{2} I_{2}} \tag{11}
\end{equation*}
$$

where $a=\theta z_{l}^{-1} z_{2}^{-1}$ and $b=z_{l}^{-1}$. The one-dimensional $\left(I_{l}\right.$ and $\left.I_{2}\right)$ and two-dimensional $\left(G / G_{\max }\right)$ data is used to determine the parameters a and b. The linear assumption is not strong as any non-linear affects will be consistent for different promoter inputs.

Name	Description	Units ${ }^{1}$
a	empirical fit parameter for 2-AND gate transfer function $=\theta z_{1}{ }^{-1} z_{2}{ }^{-1}$	au^{2}
α	dimensionless supD tRNA concentration $=s k_{s} r_{0}{ }^{-1}$	-
b	empirical fit parameter for 2-AND gate transfer function $=z_{1}^{-1}$	au
β	dimensionless activator mRNA	-
γ_{x}	degradation rate of activator protein	T^{-1}
γ_{y}	degradation rate of output gene product	T^{-1}
G	fluorescence measured for gfp output of AND gate	au
$G_{\text {max }}$	maximum fluorescence	au
I_{1}	fluorescence measured from input promoter 1 in a standard plasmid	au
I_{2}	fluorescence measured from input promoter 2 in a standard plasmid	au
K	dissociation equilibrium constant for activator binding to output promoter	
k_{s}	rate constant for SupD suppression of amber stop codon	$\mathrm{C}^{-1} \mathrm{~T}^{-1}$
k_{x}	rate constant for activator expression	T^{-1}
k_{y}	rate constant for ouput gene product production	CT^{-1}
m	concentration of activator mRNA	C
N	number of codons in activator gene	-
θ	dimensionless parameter $=\gamma_{x} k_{\mathrm{x}}{ }^{-1}$	-
r_{0}	rate of termination due to an amber stop codon	T^{-1}
r_{i}	nonsense suppression rate	T^{-1}
r_{x}	rate of production of activator protein	CT^{-1}
s	concentration of supD tRNA	C
σ	probability that a full activator protein is produced after translation initiation	-
σ_{i}	probability that the ribosome will translate codon i	-
t	time	T
x	concentration of activator protein	C
y	concentration of gene product (output of AND gate)	C
$y_{\text {max }}$	maximum concentration of gene product	C
z_{1}	scaling factor to convert from I_{1} fluorescent units to α	au^{-1}
z_{2}	scaling factor to convert from I_{2} fluorescent units to β	au^{-1}
z_{3}	scaling factor to convert from y and $y_{\max }$ fluorescent units to g and $g_{\max }$	au^{-1}

1. au: arbitrary units of fluorescence, C : concentration, $\mathrm{T}:$ time, -: no dimensions.

II. Fit of experimental data to the transfer function model

The experimental data for the AND gate was fit to the theoretical transfer function model (Equation 11) to obtain the parameters a and b. The normalized two-dimensional fluorimetry data is used as the circuit output $\left(G / G_{\max }\right)$. The inputs are obtained from the one-dimensional fluorimetry data for different concentrations of inducer (Input 1: $P_{\text {sal }}$, Input 2: $P_{B A D}$). This data was fit to the model using the non-linear regression algorithm provided in the XLSTAT statistics software package. Only the data for the circuit variant exhibiting AND gate behavior (B9) was used to fit the parameter (Figure S1). The Pearson correlation coefficient for this fit is 0.971 . The fit to the variant that did not exhibit AND-gate behavior (F11) is also shown (Figure S2). The Pearson correlation coefficient for this fit is 0.642 .

Figure S1: The circuit exhibiting AND gate behavior (B9) is fit to the transfer function model. Each graph shows the induction of the circuit with respect to Input $2\left(P_{B A D}\right)$ at constant Input $1\left(P_{\text {sal }}\right)$. Both of the inputs are shown in arbitrary units of fluorescence from the onedimensional fluorimetry data. The output $G / G_{\max }$ is the normalized fluorescence from the two-dimensional fluorimetry data. The error is shown as the standard deviation from four experiments on different days.

Figure S2: Data for the circuit not exhibiting AND gate behavior (F11) is shown. The model was parameterized using the B9 data (Figure S1).

III. Circuit influence on cell growth

The impact of the circuit on cell growth was determined. Experiments were performed both when the circuit is in the OFF (neither inducer is present) and the ON (both inducers are present) states. In the ON state, the circuit is expressing both the T7 RNA polymerase and the SupD suppressor tRNA. The maximum expression of these components does not significantly affect the growth rate (Figure S 3) or the morphology of the cells (Figure S4).

Figure S3: The effect of the AND gate on cell growth is minimal. The growth curves are shown for wild-type MC1061 (top, black), and cells containing the circuit in the OFF state (middle, green), and the circuit in the ON state (bottom, red). The circuit is turned on by the addition of the maximum amount of arabinose and salicylate. Data is shown for four replicates. Overnight starter cultures of MC1061 and pAC-SalSer914/pBACr-AraT7940 B9/MC1061 were used to inoculate flasks of 100 mL 2 YT media supplemented with nothing, Kan/Cm (25ug/mL each), or Kan/Cm and Sal/Ara ($100 \mathrm{ug} / \mathrm{mL}$ each). 2 mL of MC1061 culture was added to the first flask. The other two flasks received 2 mL of pAC-
SalSer914/pBACr-AraT7940. The flasks were grown at $37^{\circ} \mathrm{C}$ with shaking. The error bars represent the standard deviation from five growth experiments.

Figure S4: The AND gate does not significantly alter the forward and side scatter of the cytometry data. Cytometry data is shown for: (A) MC1061 alone, (B) cells harboring the AND gate in the off state, and (C) cells harboring the AND gate in the ON state. The experiments were performed as detailed in Figure S 1 . At $\mathrm{OD}=1.0$, aliquots of each culture were subjected to cytometry on a Partec instrument. For each data point, 30000 counts were collected, but only 2000 are shown.

IV. Response of the P ${ }_{\text {BAD }}$ promoter

The $P_{B A D}$ promoter exhibits both all-or-none and graded behavior in E. coli MC1061 on the BAC backbone. The all-or-none response only occurs at the transition point. Before and after the transition, the cells are induced in a graded manner. This is consistent with previous experiments of $P_{B A D}$ in MC1061. (Siegele et al, 1997) The population heterogeneity at the transition point does not affect the fit to the transfer function model (Figure S1).

Figure S6: The population behavior is shown for the $P_{B A D}$ promoter in the BAC backbone in E. coli MC1061. The fluorimentry data is shown (corresponding to Figure 3B) on the left and the cytometry data for each point is shown at the right. Each distribution contains 3000 gated cells.

VI. Screening Data

Figure S7: Screening data is shown for 48 ribosome binding site clones. Each clone was grown in four conditions and measured in the fluorimeter (black bar: no inducer, red bar: salicylate only, blue bar: arabinose only, purple bar: both salicylate and arabinose). The F11 and B9 clones were chosen for further analysis.

V. Plasmid and Construct Maps

Figure S8: The plasmids and constructs used in this study are shown. Each input and the output are maintained on separate plasmids (top). The plasmids used for the one-dimensional transfer functions are were constructed based on pBACr. Three ribosome binding site variants of the PBAD promoter were constructed (pBAC872s contains the wt rbs, pBAC987 contains the B9 rbs, and pBAC978 contains the F11 rbs). The inputs were swapped by modifying pAC-SalSer914 to pSupDLuxR and pBAC-AraT7940 to $\mathrm{pBACr}-\mathrm{Mgr} 940$. The output was swapped by modifying pBACr-AraT7940 to contain both the mgrB input promoter and the invasion output. The Restriction sites for NotI, BamHI, PstI, and EcoRI are indicated as N, B, P, and E respectively.

Table S2: Plasmids used in this study

Plasmid	Origin	Resistance	Features
pAC581	p15A	CmR	$\mathrm{P}_{\text {tet }}$ Promoter
pAC-SalSer914	p15A	CmR	$\mathrm{P}_{\text {sal }}$ Promoter, $\sup D$
pSupDLuxR	p15A	CmR	$l u x R$, $\mathrm{P}_{\text {luxI }}$ Promoter, supD
pBAC874t	BAC, R6K, colE1	KnR, Amp	$\mathrm{P}_{\text {tet }}$ Promoter, GFPmut 3
pBAC872s	BAC, R6K, colE1	KnR, Amp	$\mathrm{P}_{\text {BAD }}$ promoter, GFPmut 3
pBAC978	BAC, R6K, colE1	KnR, Amp	$\mathrm{P}_{B A D}$ promoter, GFPmut 3
pBAC987	BAC, R6K, colE1	KnR, Amp	$\mathrm{P}_{\text {BAD }}$ promoter, GFPmut 3
pBACr-Mgr901	BAC, R6K, colE1	KnR, Amp	$\mathrm{P}_{\text {mgrB }}$ Promoter, GFPmut3
pBACr-AraT7940	BAC,R6K	KnR	$\mathrm{P}_{\text {BAD }}$ promoter, T7ptag
pBACr-Mgr940	BAC,R6K	KnR	$\mathrm{P}_{\text {mgrB }}$ Promoter, T7ptag
pBACr-Mgr951	BAC,R6K	KnR	$\mathrm{P}_{\text {mgr } B}$ Promoter, T7ptag, $\mathrm{P}_{\mathrm{T} 7}$ Promoter, GFPmut3_LAA, inv
pBACr-AraGFP	BAC,R6K	KnR	$\mathrm{P}_{\text {BAD }}$ Promoter, GFPmut 3
pBR939B	colE1	Amp	$\mathrm{P}_{\mathrm{T} 7}$ Promoter, GFPmut $3 _$LAA

Table S3: Oligonucleotides used in this study

ca279	GCATTACGCTGACTTGACGGG
ca564R	CTAGCGGATCCTTCCTGCTCGCCTAACAGC
ca606R	GTCGACGGCGCTATTCAGATCCTC
ca721R	CACTGGAATTCGTAATGACAGATAATTTTACTC
ca742F	CAGTCGGATCCTTAATTTTTAAAGTATGGGCAATC
ca747R	CACTGAGATCTGCGTTTATTCGACTATAACAAAC
ca752F	GGTCAAGATCTGTATTGTCTATGCCTATTAATG
ca899F	GTGAAGCGGCCGCTGCGATCCCGCGAAGAACC
ca899R	GCAAAGGATCCTCTATGGTACTCGTGATGGC
ca901F	GTGAAGCGGCCGCGATGAGAGTAAGAACCTGTC
ca901R	GCAAAGGATCCTGCGCCCAAAGCAGCAAGC
ca914F	CACTAGGATCCAATTCGGAGAGATGCCGGAG
ca914R	GCTCTGAATTCAGCTTAAAAAAAATCCTTAG
ca940F	CAGGTGGATCCNNNGGAATTAACCRTGACCATGATTACCGTGCAC
ca951R	GTGAAGCGGCCGCGTTCACCGACAAACAACAG
ca978F	CTTGAGGATCCCTAGGAATTAACCGTGAGTAAAGGAGAAGAACTTTTC
ca987F	CTTGAGGATCCAAAGGAATTAACCGTGAGTAAAGGAGAAGAACTTTTC

