
Promotion of metabolic syndrome was not seen upon exposure to
sodium sulfite, which is a common food additive but not an emulsifier
(Extended Data Fig. 8l–s). Tlr52/2 mice are prone to developing meta-
bolic syndrome27, which results from poor microbiota management18.
Emulsifiers markedly promoted multiple parameters of metabolic syn-
drome in Tlr52/2 mice (Extended Data Figs 7j–k and 8t–w), including
hyperphagia, increased adiposity and glucose dysregulation, and was
observed upon supplementation of chow or drinking water with as little
as 0.1% P80 (Fig. 3g, h and Extended Data Fig. 8x–o9). A trend towards
the development of metabolic syndrome in emulsifier-treated non-
colitic Il102/2 mice was also observed, which was particularly evident
upon exclusion of colitic mice, which exhibited weight loss (Extended
Data Fig. 9a–f). Emulsifier-induced metabolic syndrome was observed
in mice from multiple vivaria and strains, including Swiss Webster mice,
which, in contrast to C57BL/6 mice, are considered obesity-resistant28

(Fig. 4a–d and Extended Data Fig. 9g–k, x–a9).
Emulsifier-induced low grade inflammation and metabolic syndrome

required the presence of a microbiota in that administration of emul-
sifiers to germ-free mice resulted in neither low-grade inflammation, as
assessed by faecal LCN2, colon length and splenomegaly, nor all mea-
sured parameters of metabolic syndrome including body mass, fat mass,
food intake and fasting glucose levels (Fig. 4e–h and Extended Data

Fig. 9g–p). This result could reflect direct action of CMC and P80 on
gut bacteria composition or metabolism. In accord with both of these
possibilities, emulsifiers altered faecal levels of short-chain fatty acids
(Extended Data Fig. 9q–w), including decreased levels of butyrate,
which is thought to play a key role in dampening inflammation29.
Emulsifiers also altered bile acid levels (Extended Data Fig. 9b9–t9), which
influence microbiota composition24. However, in germ-free mice,
emulsifiers did not alter bile acids, reduce mucus thickness nor alter
penetrance of 0.5 mm beads into the mucus (Extended Data Figs 9b9–t9
and 10a–l), suggesting that these changes are not purely a direct effect
of emulsifiers on mucus structures. Collectively, these data suggest that
alterations in mucus in emulsifier-treated mice might result, at least in
part, from altered gut microbiota composition but do not exclude direct
effects on the host.

Transfer of microbiota from emulsifier-treated mice to germ-free mice
(not exposed to emulsifiers) transferred microbiota encroachment, low-
grade inflammation, increased adiposity and dysglycaemia (Fig. 4i–o
and Extended Data Fig. 10s–y). Microbiota transplant from CMC-treated
mice resulted in a longer-lasting increase in adiposity, paralleling that
adiposity was less rapidly reversible following stoppage of CMC expo-
sure (Extended Data Fig. 8a–k). Such transplanted phenotypes corre-
lated with the acquisition of elevated levels of faecal LPS and flagellin
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Figure 4 | Altered microbiota is necessary and
sufficient for emulsifier-induced metabolic
syndrome. a–h, Conventionally housed (a–d)
and germ-free (e–h) Swiss Webster mice were
exposed to drinking water containing CMC or P80
(1.0%) for 12 weeks. a, e, Body weight over time;
b, f, fat-pad mass; c, g, food intake; and d, h, 15 h
fasting blood glucose concentration. i–o, Germ-
free Swiss Webster mice were conventionalized via
microbiota transplant from mice that received
standard drinking water or drinking water
containing CMC or P80 (1.0%). i–k, Confocal
microscopy analysis of microbiota localization:
MUC2, green; actin, purple; bacteria, red; and
DNA, blue. Scale bar, 20mm. Pictures are
representative of 10 biological replicates.
l, Distances of closest bacteria to intestinal
epithelial cells (IEC) per condition over five
high-powered fields per mouse. m, Body weight
over time; n, fat-pad mass; and o, 15 h fasting blood
glucose concentration. Data are the means 6s.e.m.
(n 5 5 for a–l, n 5 3 for m–o). Points are from
individual mice. Significance was determined using
one-way ANOVA corrected for multiple
comparisons with a Sidak test (*P , 0.05) or
two-way group ANOVA corrected for multiple
comparisons with a Bonferroni test (#P , 0.05)
compared to control group.
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