SUPPLEMENTARY MATERIALS

The genome of woodland strawberry (*Fragaria vesca*)

Vladimir Shulaev¹, Daniel J. Sargent², Ross N. Crowhurst³, Todd C. Mockler^{4,5}, Otto Folkerts⁶, Arthur L. Delcher⁷, Pankaj Jaiswal⁴, Keithanne Mockaitis⁸, Aaron Liston⁴, Shrinivasrao P. Mane⁹, Paul Burns¹⁰, Thomas M. Davis¹¹, Janet P. Slovin¹², Nahla Bassil¹³, Roger P. Hellens³, Clive Evans⁹, Tim Harkins¹⁴, Chinnappa Kodira¹⁴, Brian Desany¹⁴, Oswald R. Crasta⁶, Roderick V. Jensen¹⁵, Andrew C. Allan¹⁶, Todd P. Michael¹⁷, Joao Carlos Setubal^{9,18}, Jean-Marc Celton¹⁹, D. Jasper G. Rees¹⁹, Kelly P. Williams⁹, Sarah H. Holt^{20,21}, Juan Jairo Ruiz Rojas²⁰, Mithu Chatterjee^{22,23}, Bo Liu¹¹, Herman Silva²⁴, Lee Meisel²⁵, Avital Adato²⁶, Sergei Filichkin^{4,5}, Michela Troggio²⁷, Roberto Viola²⁷, Tia-Lynn Ashman²⁸, Hao Wang²⁹, Palitha Dharmawardhana⁴, Justin Elser⁴, Rajani Raja⁴, Henry D. Priest^{4,5}, Douglas W. Bryant Jr.^{4,5}, Samuel E. Fox^{4,5}, Scott A. Givan^{4,5}, Larry J. Wilhelm^{4,5}, Sushma Naithani³⁰, Alan Christoffels³¹, David Y. Salama²², Jade Carter⁸, Elena Lopez Girona², Anna Zdepski¹⁷, Wenqin Wang¹⁷, Randall A. Kerstetter¹⁷, Wilfried Schwab³², Schuyler S. Korban³³, Jahn Davik³⁴, Amparo Monfort^{35,36}, Beatrice Denoyes-Rothan³⁷, Pere Arus^{35,36}, Ron Mittler¹, Barry Flinn²¹, Asaph Aharoni²⁵, Jeffrey L. Bennetzen²⁹, Steven L. Salzberg⁷, Allan W. Dickerman⁹, Riccardo Velasco²⁷, Mark Borodovsky^{10,38}, Richard E. Veilleux²⁰, Kevin M. Folta^{22,23*}

¹Department of Biological Sciences, University of North Texas, Denton, Texas, USA; ²East Malling Research, Kent, UK; ³The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert Research Centre, Auckland, New Zealand; ⁴Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA; ⁵Center for Genome Research and Biocomputing (CGRB), Oregon State University, Corvallis, Oregon, USA; ⁶Chromatin Inc., Champaign, Illinois, USA; ⁷Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA; 8 The Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA; ⁹Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia USA; ¹⁰Joint Georgia Tech and Emory Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA USA; ¹¹Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA; ¹²USDA/ARS Henry Wallace Beltsville Agricultural Research Center, Beltsville, Maryland, USA; Hampshire, USA; ¹²USDA/ARS Henry Wallace Beltsville Agricultural Research Center, Beltsville, Maryland, USA; ¹³United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Clonal Germplasm Repository, Corvallis, Oregon, USA; ¹⁴Roche Diagnostics, Roche Applied Science, Indianapolis, Indiana, USA¹⁵Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia USA; ¹⁶School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; ¹⁷Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, New Jersey, USA; ¹⁸Department of Computer Science, Virginia Tech, Blacksburg, Virginia USA ¹⁹Department of Biotechnology, University of the Western Cape, Bellville, South Africa; ²⁰Department of Horticulture, Virginia Polytechnic Institute and State University. Blacksburg, Virginia USA; ²¹Institute for State University of Researche Deventer Science, Darwilke, Maryland, USA; ²⁰Department Sustainable and Renewable Resources, Institute for Advanced Learning and Research, Danville, VA USA; ²²Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA; ²³The Graduate Program for Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida, USA; ²⁴Millennium Nucleus in Plant Cell Biotechnology and Centro de Biotecnología y Bioingeniería (CEBBUSS), Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Santiago, Chile; 25 Millennium Nucleus in Plant Cell Biotechnology and Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile; ²⁶Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel; ²⁷Istituto Agrario San Michele all'Adige (IASMA), Research and Innovation Centre, Foundation Edmund Mach, San Michele all'Adige, Trento, Italy; ²⁸Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ²⁹Department of Genetics, University of Georgia, Athens, GA USA; ³⁰Department of Horticulture, Oregon State University, Corvallis, Oregon, USA; ³¹South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; ³²Biotechnology of Natural Products, Technical University München, Germany; ³³Department of Natural Resources & Environmental Sciences, University of Illinois, Urbana, Illinois, USA; ³⁴Norwegian Institute for Agricultural and Environmental Research, Genetics and Biotechnology, Kvithamar, Stjordal, Norway; ³⁵Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cabrils, Barcelona, Spain; ³⁶Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB), Cabrils, Barcelona, Spain; ³⁷Institut National de la Recherche Agronomique (INRA)-Unité de Recherche des Espèces Fruitières (UREF), Villenave d'Ornon, France; ³⁸School of Computational Science and Engineering, Georgia Tech, Atlanta, GA USA;

*corresponding author

SUPPLEMENTARY MATERIALS

1. Supplementary Note – Additional methods (Pages 3-9) and supplemental discussion of the findings relevant to fruit quality, flavor, flowering and defense. Pages 9-12

2. Supplementary Tables - Supporting materials noted in text. Pages 13-38

3. Supplementary Figures - Pages 39-51

4. References to Supplementary Materials- Pages 52-53

SUPPLEMENTARY NOTE

Gene Prediction

The GeneMark-ES^{+ 1} software tool was designed for annotation of genomes using transcriptome sequence. This program was used to generate a set of *ab initio* gene predictions for the F. vesca genome. GeneMark-ES+ down-selects transcriptome evidence having the highest confidence (in terms of sequencing and DNA mapping errors) from all available raw read or assembled transcriptome data, and combines it with ab initio gene predictions to produce a modified maximum likelihood parse. The modified likelihood is determined by applying a fixed user-specified log-likelihood gain on those gene features well supported by the transcriptome evidence. This is distinct from methods that use the mapped transcript sequence to directly estimate HMM parameters. The transcriptome data is down-selected using a DNA sequence mapping and clustering pipeline which uses the BLAT² for mapping EST to DNA sequence and TGI clustering tools (TGICL)³ for clustering the mapped data. Due to the possibility of errors in sequencing and mapping, the mapped and clustered EST sequence are scrutinized to select intron boundaries for which multiple conditions hold, including: 1) more than one EST mapping to a boundary; and 2) canonical intron boundary nucleotides (GT..AG). A library of transposable elements was used in a pipeline developed for detecting and masking repeats. While parameters of the *ab initio* gene finder were estimated by selftraining on the unmasked genomic sequence, the hybrid gene predictions were produced on a sequence masked for transposable elements; at this step the algorithm integrated introns mapped from the EST data into the *ab initio* gene models (Supplementary Fig. 4).

Gene Homology Analysis

The Inparanoid algorithm⁴ was used to identify orthologous and paralogous genes that arose through duplication events. Clusters were determined using a two-way best pairwise match, and then an algorithm for adding in-paralogs was applied. The peptide sequences used were from twenty-one species, including Arabidopsis thaliana, Brachypodium distachyon, C. elegans, Chlamydomonas reinhardtii, Danio rerio, E. coli, Fragaria vesca, Glycine max, Homo sapiens sapiens, Zea mays (maize), Mus musculus, Neurospora crassa, Oryza sativa (rice), Physcomitrella patens, Populus trichocarpa (poplar), Saccharomyces cerevisiae and pombe, Selaginella moellendorffii, Sorghum bicolor (sorghum), Synechosystis, and Vitis vinifera. The peptide sequences were downloaded from Phytozome.net for grape, Selaginella, *Physcomitrella*, Chlamydomonas, Glycine, and Populus, Gramene for rice, sorghum, maize and Arabidopsis. The remaining sequences were downloaded from Ensembl.

Transcriptome Analysis

Custom normalized libraries for Roche/454 sequencing were prepared and sequenced for fruit and root RNA⁵. Read lengths averaged 401.4 (fruit pool) and 376.4 (root pool). Library adapter sequences were removed from the reads using estclean (https://sourceforge.net/projects/estclean/).

Over-represented gene ontology categories in fruit and root expressed genes were determined using the EST data derived from the fruit and root pools. A Perl script was used to shred the Roche454 ESTs into simulated 36mer Illumina RNA-seq "reads." These

simulated reads were randomly sampled to generate three simulated replicates for each tissue pool. Perfect match 36-mer reads were mapped to the *F. vesca* cDNA models using HashMatch, and matches were converted to RPKM values. The RPKM values were analyzed using a modified version of BRAT⁶ to identify differentially expressed transcripts between the fruit and root samples using a fold change > 2 and a Benjamini and Hochberg FDR-adjusted significance level⁷ < 0.01 as cutoffs. Functional enrichment analysis using GO category over-representation was carried out using the network visualization program Cytoscape with GO plugins⁸. For determination of over representation, the Benjamini and Hochberg FDR-adjusted significance level⁷ cutoff was 0.05. The color intensity depicted on circles are based on over-representation significance level (yellow = FDR below 0.05) while the radius of each circle indicated the number of genes in each category.

Multiple Genome Alignment

When an anchor genome region matches more than one region in the other genome, only the first match was used to build the table. This means that the table does not represent situations where the other genome has duplications with respect to the anchor genome. This method is reminiscent of the *star alignment* method⁹ once used to build multiple alignments of protein sequences. It was necessary to use this method because no software exists that can compare multiple genomes of this size at the same time on computers available to the International Strawberry Genome Consortium. The machine used to compute this alignment was a Sunfire Enterprise 15000 with 72 processors and 288 GB of shared memory. **Genome Sources:** *A. thaliana*: <u>ftp://ftp.arabidopsis.org</u> on 2/9/2010;

5

G. max: <u>ftp://ftp.jgi-psf.org</u> on 2/9/2010; *L. japonicum*: <u>ftp://ftp.kazusa.or.jp</u> on 10/27/2009; *M. truncatula*: <u>http://www.medicago.org</u> on 10/27/2009; *C. papaya*: <u>ftp://ftp.jgi-psf.org</u> on 2/9/2010; *P. trichocarpa*: <u>ftp://ftp.jgi-psf.org</u> on 2/4/2010; *V. vinifera*: <u>ftp://ftp.jgi-psf.org</u> on 2/9/2010

Analysis of Large Duplications in the Fragaria vesca genome

The strawberry genome was compared against itself to identify large repeat regions using MUMmer¹⁰. The minimum MUM length was set at 30 bp. The MUMmer output was analyzed to obtain a figure for the amount of repetitive sequence present in the assembly regardless of length (but based on the miminum MUM length of 30 bp). We adopted two approaches. In the first, we simply measured the lengths of regions matched by MUMmer excluding whole contig self-matches. The result was 79,886,071 bp. This represents 37.3% of the 214,219,504 bp in assembled contigs.

In the second we used the program Bowtie¹¹ to map all the Illumina reads to the contigs and counted how many had unique hits and how many had multiple hits. Assuming the Illumina reads are randomly sampled from the genome, the fraction with multiple hits is a good estimate of the repeat content of the genome. Even if a repeat has most of its copies missing from the assembly, the reads from the repeat will still have multiple matches. The only case missed would be repeats with exactly one copy in the assembly, and all other copies missing. We used only the first 40 bp of each read to avoid quality/trimming issues and to get finer granularity. We allowed up to two errors in each match, so match identity was \geq 95%. There were 36,020,373 total reads, and 27,431,874 had a match to contigs. 18,443,988 (67.2%) had unique matches; 8,987,886 (32.8%) had multiple matches. This indicates that the genome is at least 33% repetitive at the 95%

identity level. This estimate is in good agreement with the estimate obtained by the first method (37.3%), which included matches below the 95% identity level (minimum identity of a match was 45.3%).

Gene Ontology (GO) Annotation

InterPro¹² provided the domain annotations for about 21,000 genes. SignalP¹³ provided predicted localization to the mitochondrial or plastid or secretion pathway, besides providing signal peptide cleavage sites. Predotar¹⁴ provided predicted localization to either or both the mitochondrion or plastid. TMHMM¹⁵ provided annotation for the predicted transmembrane domains in the protein sequences. After collecting these annotations, standardized protocols for assigning the GO annotations were adopted. Mapping files provided by the GO consortium were employed to annotate the genes with the three GO categories, namely the Molecular Function, Biological Process and the Cellular Component. The majority of these annotations were inferred by electronic annotation (IEA) evidence codes except the cases where the predicted scores for SignalP and Predotar were reviewed after computational analysis (RCA). Besides these, the GO annotations from A. thaliana and Oryza sativa (rice) genes as provided by TAIR and Gramene databases were respectively imported to enrich the strawberry annotations by way of gene based orthology suggested by the gene family clustering methods described earlier.

Angiosperm Phylogeny Based on 154 Protein-Coding Genes

A screen for phylogenetic coherence was developed that measured the conflict in sets of taxa sharing an amino-acid at an alignment position, comparing the sets from each gene to the across-genes pool of sets, and then repeating with shuffled versions of the within-gene sets (conflict among randomized sets should be high). The genes were sorted by conflict score ratio (real over randomized) and while nearly half had ratios near one, 240 had ratios below 0.9 and were saved for further work. Newer versions of the original eight genomes plus lotus and soybean were searched by BLAST for members of the 240 low-conflict gene families, saving multiple hits down to 0.8 of the top score. This introduced instances of apparent duplications due to a recent whole-genome duplication^{16,17}. Paralogs were identified and eliminated by visually inspecting phylogenies built on each of the 240 gene families. When genes trees exhibited complex patterns obscuring orthology relations, the entire gene family was rejected, leaving 154 orthologous gene families missing members from at most two genomes.

The following sections provide further detail to subject areas of the main text.

Flavor-related biosynthetic pathways

The popularity of strawberry can be attributed to its bright red color, along with its flavors and aromas. These sensory triggers arise from perception of volatile compounds mainly produced by the fatty acid, terpenoid, and phenylpropanoid metabolic pathways. Strawberry flavor in particular consists of diverse volatile compounds comprising more than 300 substances^{18,19}, with the relative abundance of individual volatiles variable among cultivars and species. Several gene families have been implicated in the production of these volatile components, including the acyltransferases, the terpene synthases, the small molecule O-methyltransferases. Most strawberry flavor compounds are volatile esters, which serve both as attractants of animals and as protectants against pathogens. By linking alcohols to acyl moieties, acyltransferases (AATs) catalyze the last step in the biosynthesis of these volatile esters. Aat(F. vesca)(AF193790, gene34011) has been shown to be expressed during the final stages of fruit ripening and utilizes a variety of acyl acceptors, from methanol up to 1-decanol²⁰. Genomic analysis revealed it to be one of five similar acyltransferases clustered within less than 45 kb on one genomic scaffold (513008, Supplementary Table 11). All five members of this cluster exhibit strong similarity (87%-94%) to the previously described cultivated strawberry genes $Aat1(F. \times ananassa)$ and $FcAat^{20,21}$. However, the F. vesca ortholog of these last two is a sixth acyltransferase (gene33976) located on scaffold 0512999 (Supplementary Table 11; Supplementary Fig. 8a). The terpenoid volatile profile of cultivated strawberry is dominated by the monoterpene linalool and the sesquiterpene nerolidol, whereas fruit of wild strawberry species emit mainly olefinic monoterpenes and myrteny acetate, which are not found in the cultivated species. *F*. × *ananassa* nerolidol synthases, *FaNES1* and *FaNES2*, have been shown to participate in the biosynthesis of the major terpenoids produced during ripening²². Genomic analysis revealed four *F. vesca* genes that are 85%-96% similar to *Nes* (*F.* × *ananassa*). Of these, one gene, *Nes3* (*F. vesca*) (gene30669), is located apart on scaffold 513104 and the three others (genes24674, 24676, and 24672) are clustered within 26 kb on scaffold 513012 (Supplementary Table 11). *Pins* (*F. vesca*) (gene15663), a genuine monoterpene synthase expressed in fruit of wild strawberry species, forms multiple monoterpenes, such as the major products a-pinene, b-phellandrene, and b-myrcene from GPP²². Our analysis revealed that this gene has three paralogs (genes02063, 22207, 03282) located on scaffolds 512959, 513061 and 513157, respectively (Supplementary Table 11).

An uncommon group of aroma compounds with a 2,5-dimethyl-3(H)-furanone structure dominates the flavor of strawberry fruit. *F.* × *ananassa* quinone oxidoreductase $(Qr ; F. \times ananassa)$ is involved in the biosynthesis of this key aroma compound 4hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF; Furaneol)^{23,24}. Genomic analysis revealed three *F. vesca* gene orthologs, two located within 4 kb in scaffold 513124, (genes28406 and 28407) (Supplementary Table 11; Supplementary Fig. 8c). A fruit ripening induced O-methyltransferase encoded by *Omt* (*F.* × *ananassa*) is responsible for the methylation of HDMF to DMMF and is involved in the biosynthesis of vanillin^{25,26}. The methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone DMMF was also identified as a common strawberry aroma component, and is known to occur as race mate with HDMF in various fruit. Genomic analysis revealed that the *Omt* (*F. vesca*) is located on scaffold0513190 and has two close paralogs, genes01858 and 018606, on scaffolds 512956 and 513170, respectively. One of these paralogs, gene018606 (scf513170_3), is a member in a cluster of three O-methyltransferases (Supplementary Table 11; Supplementary Fig. 8d).

Flowering control

The timing of flowering in strawberry is critical to commerce as well as evolution. The control of flowering is regulated by the confluence between environmental and endogenous signals. In strawberry the progression from vegetative to reproductive development is likely gated by the same suite of proteins found in model organisms^{27,28}. Examination of the strawberry genome reveals the presence of an intact flowering molecular circuit encompassing genes from the sensing of light (cryptochromes and phytochromes) through the circadian oscillator and recognized output mechanisms that translate the environmental signal into a biological response. Supplementary Table 12 depicts the inventory of strawberry photoperiodic flowering-associated genes and their sequence orthologs in model systems. The results show that the strawberry genome contains a representative set of genes that parallel Arabidopsis. Supplementary Fig. 9 provides a comparison of the intron-exon organization of several genes related to the photoperiod pathway. Strawberry presents an intragenic organization reminiscent of other plant species. The results present a tractable set of nodes to begin to study the flowering response in strawberry, a critical response for the production of a valuable fruit product.

11

Disease resistance genes

Salicylic acid, jasmonic acid and nitric oxide are molecules that are associated with plant defence. Salicylic acid triggers the expression of *PR* genes and cross talks with the jasmonic acid and nitric oxide signal transduction pathways. Supplementary Tables 13-16 show that many of the PR genes, as well as key enzymes that participate in the biosynthesis of salicylic acid, jasmonic acid and nitric oxide, can be found in the *F. vesca* genome. These findings indicate that there is a conservation of the plant defense response signal transduction pathways in different plant species.

SUPPLEMENTARY TABLES

			Original Reads	6		Filtered Rea	ds	
Туре			Number of Reads	Average Length (bp)	Number of Pairs	Number of Reads	Average Length	Number of Pairs
Unpaired standard	d 454	FLX	9,023,000	203.0	0	7,727,993	208.5	0
Unpaireo Titanium	d 454	FLX	8,628,801	364.8	0	7,868,311	367.9	0
3kb Paire	ed FLX Tita	anium	3,589,963	167.9	1,405,560	2,393,795	193.2	591,611
20kb Titanium	Paired	FLX	2,587,041	201.9	840,159	1,579,668	236.4	229,323
Paired Solexa 76bp 36,927			36,927,572	76.0	18,463,786	36,020,373	76.0	1,801,018
Paired 25bp SOLiD			435,077,180	25.0	198,388,200	16,297,230	125.0	648,615

Supplementary Table 1. Summary of the input sequence data for the assembly of strawberry genome

Supplementary Table 2. Strawberry genome assembly statistics

Number of scaffolds	3,263	
Number of single contig scaffolds	2,939	
Number of scaffold contigs	16,487	
Mean contigs per scaffold	5.05	
Number of intrascaffold gaps	13,224	
Mean intrascaffold gap size	922	
Total bases in scaffolds	201,883,090	
Mean bases per scaffold	61,878	
N50 scaffold bases	1,361,426	
Maximum bases in a scaffold	3,924,336	

Supplementary Table 3. Estimated haploid genome size of two *F. vesca* accessions, compared to Arabidopsis and *Brachypodium*.

Accession	Average Size (Mb)	SD
H4x4	240.10	6.08
H4 parental	242.55	0.49
Columbia (Col)	146.90	1.98
Bd21	301.40	1.13
	Accession H4x4 H4 parental Columbia (Col) Bd21	AccessionAverage Size (Mb)H4x4240.10H4 parental242.55Columbia (Col)146.90Bd21301.40

The haploid nuclear DNA content (genome size) of *F. vesca* accessions was estimated by flow cytometry. Nuclei from H4x4 and H4 parental line were isolated from young leaf or root tissue and DNA content was estimated from the 2C peak. *Arabidopsis thaliana* (Col) and *Brachypodium distachyon* (Bd21) were used as internal controls with haploid genome sizes of 147 and 300 megabases, respectively. Data represent two independent measurements (separate days and DNA samples).

Element Type		Number of intact copies		Masking assembly				Masking reads ⁽¹⁾	
				Maximum copy number ⁽²⁾	Total length (bp)	Coverage (%)		Coverage (%)	
Class I	LTR/Copia	173	156	17676	10762743	5.33		4.58	
	LTR/Gypsy	114	104	14979	12895589	6.39		5.99	
	LTR/Other	138	115	14578	8493621	4.21	16.37	3.81	14.66
	SINE	456	5	1736	178067	0.09		0.06	
	LINE	17	9	1543	727292	0.36		0.23	
Class II	DNA/CACTA	29	27	7890	5612315	2.78		2.56	
	DNA/PIF-Harbinger	13	12	1216	549953	0.27		0.25	
	DNA/hAT	29	25	2928	1296712	0.64		0.55	
	DNA/Helitron	78	25	981	173731	0.09	6.44	0.07	5.16
	DNA/TC1-Mariner	1	1	4	6363	0.00		0.00	
	DNA/Mutator	31	22	1073	437384	0.22		0.17	
	DNA/MITE	5169	75	20715	4928797	2.44		1.55	
Other Repeats	-	-	-	50382	2104934	1.04	-	0.92	
Total	-	6248	576	85319	46062567	22.81	-	20.74	-
(1) Reads con(2) Number of elements w	I stituting 1X coverage we homologies to some po vill be separated into mo	l ere randomly rtion of each ore than one	l selected from a element found i assembly (e.g.,	I II of the geomic n the assembly often at the end	l shotgun reads . Actual copy r s of two assem	that were number sh nblies).	e generated ould be low	l. ver becau	se some

Supplementary Table 4 -- Summary of transposable elements in *Fragaria vesca*

Supplementary Table 5. Summary of gene models

	Ab initio gene models, GeneMark- ES	Hybrid gene models, GeneMark-ES+
Predicted genes	33,264	34,809
Average gene length (including introns, nt)	2,793	2,792
Average CDS length (nt)	1,177	1,160
Exons	169,012	174,375
Single exon genes	5,654	5,914
Average single exon gene length (nt)	935	927
Average internal exon length (nt)	170	171
Introns	135,748	139,567
Introns per gene (multi-exon genes only)	4.93	4.83
Average intron length (nt)	396	407

Supplementary Table 6. Number of "hybrid" gene models with homology based on Blast comparison to different comparative databases

Expect	Swissprot		UniRef90 ²	2	RefSeq ³		Arabidops	is ⁴
Threshold ¹	Number	Percentage	Number	Percentage	Number	Percentage	Number	Percentage
10	33853	97.3	33838	97.2	34364	98.7	34464	99.0
1e ⁻¹⁰	17590	50.5	24695	70.9	23483	67.5	22763	65.4
1e ⁻⁵⁰	9730	28.0	17131	49.2	15355	44.1	15089	43.3
1e ⁻¹⁰⁰	5485	15.8	11647	33.5	9751	28.0	9592	27.6
1e ⁻¹⁵⁰	3246	9.3	7754	22.3	5962	17.1	5848	16.8
1e ⁻¹⁸⁰	2315	6.7	5831	16.8	4241	12.2	4208	12.1
Conserved ⁵	4138	11.9	8961	25.7	7224	20.8	7191	20.7

 ¹ Expectation Threshold – BLASTx expectation threshold cut-off used a filter
² UniRef90 Release 15.6
³ ReqSeq Release 36 plant proteins only
⁴ The Arabidopsis Information Resource (TAIR) version 9
⁵ Conserved – number of genes where the highest scoring segment from blast comparison included greater than 90% of length of both the query and subject sequence

Supplementary Table 7. RNA sequences in assembly v8. tRNAs are listed according to their tRNAscan-SE scores, rRNA fragments according to their lengths, and other RNAs according to their Rfam scores. RNAs were conservatively assigned to organellar locations according to the following code: N, non-organellar; M, mitochondrial; P, plastidial; B, both mitochondrial and plastidial; the conservative criteria explain why several known organellar rRNA sequences were not reassigned (see methods). Numbers of sequences in each category are given in parentheses.

Transfer RNAs (569)

Ala tRNA	N(37):70,70,70,70,70,70,70,68,68,68,68,68,68,68,68,68,68,68,68,
	68,68,68,68,66,66,66,65,65,65,64,57,57,53,38,38,36,34,20
Arg tRNA	N(30):83,82,82,82,82,82,75,75,75,75,74,74,74,74,74,74,74,74,73,
	73,73,72,71,71,70,70,70,70,67,66,59
	P(6):63,63,61,61,61,61
Asn tRNA	N(16):85,85,85,85,85,83,83,83,82,82,82,82,81,78,67,42
	M(3):77,77,64
Asp tRNA	N(22):69,69,69,69,69,69,69,69,69,69,69,69,69,6
	M(3):61,61,61
Cys tRNA	N(10):78,78,78,78,78,78,78,77,77,76
	P(1):59
Gln tRNA	N(26):80,77,74,74,74,74,74,74,74,73,72,72,72,72,72,72,71,71,
	70,70,70,69,68,67,65,41
Glu tRNA	N(29):77,77,77,77,77,77,77,77,77,77,77,77,77,
	73,73,73,73,73,73,73,67,64,54
	P(2):50,46
Gly tRNA	N(36):76,76,76,76,76,76,76,76,76,76,72,72,72,72,72,72,72,72,
	72,72,72,72,72,68,68,68,68,68,68,66,66,66,65,64,63,45
	P(2):59,59
	M(1):61
His tRNA	N(12):64,64,64,64,64,64,62,62,62,62,62,48
	M(2):52,52
Ile tRNA	N(11):85,85,85,83,79,62,35,30,29,28,27
	M(14):80,80,80,80,80,80,80,80,78,78,78,78,78,78,71
Leu tRNA	N(38):74,74,74,74,74,71,71,71,71,70,69,69,69,69,69,69,69,69,69,
	69,68,68,68,68,68,68,68,66,66,66,66,66,65,64,61,58,57,57,27
	P(3):54,54,54
Lys tRNA	N(25):88,88,88,88,88,88,88,88,88,88,88,88,84,84
	84,84,83,83,83,83,58
	M(2):77,77
Met tRNA	N(20):69,69,69,69,69,69,69,68,63,63,63,63,63,62,62,62,62,61,60,55,29

	P(2):64 56
	M(3):62 62 56
Phe tRNA	N(13):77.73.73.73.73.73.73.73.73.73.73.68.67
Pro tRNA	N(25):74,74,74,74,74,74,74,74,74,74,74,72,72,72,72,72,72,72, 72,72,72,72,72,71,67,44
	B(1):57
Pseudo tRNA	N(49):43,38,36,31,30,29,28,27,27,27,26,26,26,26,25,25,25,24,
	24,24,23,23,23,23,23,23,23,22,22,22,22,22,22,
	21,21,21,21,21,21,20,20,20,20
Ser tRNA	N(31):84,84,84,84,84,84,84,84,84,84,81,81,81,81,81,81,81,81,81,81,81,81,81,
	81,80,80,78,78,78,78,78,78,77,76,66,55
	P(6):57,56,54,54,53,26
Thr tRNA	N(22):84,82,81,81,81,79,79,79,79,78,78,78,77,77,77,77,77,74,
	63,27,25,24
Trp tRNA	N(13):78,78,78,78,78,76,76,76,76,76,76,76,39
-	B(3):65,65,65
Tyr tRNA	N(12):77,76,75,75,75,75,75,74,74,73,71,49
-	P(3):54,54,54
Undet tRNA	N(5):57,42,28,27,21
	M(1):67
Val tRNA	N(28):86,86,83,83,83,83,82,80,80,80,80,77,77,77,77,77,77,77,77, 77,77,77,77,77
	P(1):52

Bacterial ribosomal RNAs (1)

16S rRNA N(1):945

Cytoplasmic ribosomal RNAs (87)

SSU rRNA	N(22):2391,1754,1380,1107,1101,939,893,889,829,787,670,
	595,485,472,443,410,382,380,379,311,119,90
5_8S rRNA	N(11):165,165,164,164,164,164,163,162,150,107,78
26S rRNA	N(46):1590,1508,1452,1268,1222,1168,1130,1110,1110,
	1101,1093,1083,1081,1070,1069,1069,1065,1060,1047,1043,
	1026,1012,982,946,889,750,700,698,650,562,504,455,455,
	414,214,189,158,150,116,104,69,61,50,49,49,42
5S rRNA	N(8):121,120,120,120,120,120,119,82

Mitochondrial ribosomal RNAs (14)

SSU rRNA N(6):156,102,81,78,70,54 M(1):232 LSU rRNA N(4):1004,222,65,54 M(3):907,204,56

Plastidial ribosomal RNAs (75)

- SSU rRNA N(6):232,207,204,175,60,53
 - P(17):1159,1086,1033,1022,1001,1001,975,879,729,512,481,432,154,107, 85,51,51 B(1):41
- 4.5S rRNA P(7):104,103,103,103,103,67,54
- LSU rRNA N(18):317,299,134,133,130,118,117,113,89,81,68,66,66,61,58, 58,56,45 P(21):2310,1207,1073,1060,1042,1037,1032,1015,1011,586,503,
 - 386,285,189,173,100,77,69,59,43,41
- 5S rRNA P(5):121,121,121,99,66

Miscellaneous RNAs (49)

- Intron_gpI P(3):99,74,72
- Intron_gpII N(7):46,45,44,40,36,35,34

P(25):56,53,53,49,49,49,49,49,49,45,45,45,45,45,45,45,44,44,41,41,41, 41,40,38,35,35

M(4):55,55,49,39

B(3):44,44,37

RNase_MRP N(1):72

SRP_euk_archN(5):184,165,165,164,97

TPP N(1):62

Spliceosomal RNAs (111)

N(19):138,137,133,131,130,128,126,125,124,123,122,117,
112,111,109,103,84,66,56
N(29):173,173,171,170,169,167,166,166,165,165,165,165,165,157,
153,153,151,117,115,111,101,101,101,96,96,84,84,77,72
N(13):91,90,90,89,89,88,88,82,77,75,70,69,63
N(18):83,82,82,82,81,81,81,79,79,79,77,77,77,71,69,65,61,60
N(26):111,111,111,111,109,107,102,101,97,95,93,92,88,
86,82,82,80,78,77,73,70,67,65,64,63
N(4):88,86,83,83
N(1):56
N(1):94

MicroRNAs (76)

mir-156	N(6):66,39,39,39,36,31
mir-160	N(3):65,61,47
mir-166	N(7):80,76,73,73,72,68,52
mir-172	N(4):73,70,68,66
mir-395	N(3):72,62,57
mir-399	N(5):64,50,45,41,39
MIR159	N(4):136,125,111,110
MIR162_2	N(1):85
MIR164	N(4):69,56,50,39
MIR167_1	N(4):72,57,53,50
MIR168	N(1):95
MIR169_2	N(9):58,54,48,48,47,45,36,23,21
MIR169_5	N(6):71,65,64,63,61,54
MIR171_1	N(7):72,68,66,66,65,46,40
MIR390	N(2):81,72
MIR394	N(1):84
MIR396	N(5):77,77,68,55,50
MIR398	N(2):45,41
MIR408	N(1):90
MIR828	N(1):49

Small nucleolar RNAs (168)

U3	N(5):126,124,122,122,73
SNORD14	N(6):90,82,71,70,50,32
SNORD15	N(2):47,33
SNORD24	N(2):56,37
SNORD25	N(4):73,65,59,35
SNORD27	N(1):47
SNORD33	N(4):42,40,39,38
SNORD43	N(3):33,32,29
SNORD46	N(1):62
SNORD96	N(2):68,63
snoJ33	N(3):77,76,46
snoR1	N(1):95
snoR100	N(2):88,81
snoR101	N(2):60,58
snoR103	N(3):84,84,71
snoR104	N(1):95

snoR109	N(1):74
snoR11	N(2):78,76
snoR12	N(2):54,54
snoR14	N(3):72,72,58
snoR16	N(1):47
snoR160	N(1):58
snoR2	N(2):99,97
snoR24	N(3):75,69,64
snoR27	N(2):46,46
snoR28	N(2):82,79
snoR30	N(2):72,69
snoR31	N(1):78
snoR35	N(1):68
snoR41	N(1):67
snoR44_J54	N(2):73,68
snoR60	N(2):67,58
snoR64	N(2):75,75
snoR66	N(1):65
snoR69Y	N(4):76,64,54,52
snoR71	N(21):63,57,55,55,54,53,52,51,51,51,51,51,51,51,51,49,49,49,48,
	48,45,36
	M(2):36,34
snoR74	N(2):76,73
snoR77	N(1):99
snoR77Y	N(1):63
snoR83	N(3):77,63,22
snoR86	N(5):110,107,105,105,100
snoR97	N(3):75,75,69
snoR99	N(1):25
snoU30	N(1):52
snoU31b	N(8):72,71,67,66,64,64,61,60
snoU36a	N(1):91
snoZ101	N(1):81
snoZ103	N(6):65,63,61,59,54,53
snoZ107_R87	N(2):88,68
snoZ112	N(1):69
snoZ152	N(1):71
snoZ155	N(1):43
snoZ157	N(2):64,61
snoZ159	N(8):64,61,61,59,56,55,53,52

snoZ161_228	N(1):64
snoZ196	N(3):65,58,43
snoZ199	N(1):41
snoZ223	N(2):63,62
snoZ266	N(8):74,73,65,64,61,47,34,31
snoZ267	N(1):49
snoZ279	N(1):78
snoZ43	N(3):78,75,62

rRNA	Length ntd	Sequence Segments	CharsPerPosition min max median			Chars Agreemen	
5.8S	164	11	8	11	10	1642	0.973
26S	3351	37	4	16	10	33552	0.987
18S	1802	23	6	14	10	17962	0.975
5S	120	7	6	7	7	802	0.971

Supplementary Table 8. Assembly of cytoplasmic ribosomal RNA sequences.

* fraction of characters used in assembly that agreed with consensus.

Supplementary Table 9. Summary of the result of protein multiple sequence alignment across plant species. Percentages are based on the total number of rows (49,856) in the master table found at <u>http://staff.vbi.vt.edu/setubal/mapG.html</u>.

Plant genome	number of table cells	percentage (%)
Vitis vinifera	34243	68.7
Populus trichocarpa	34009	68.2
Glycine max	32450	65.1
Carica papaya	29167	58.5
Lotus japonicum	24505	49.2
Arabidopsis thaliana	23324	46.8
Medicago truncatula	22297	44.7

Supplementary Table 10. Functionally characterized genes in *Fragaria* and their homologs in the *F. vesca* genome

Gene	Protein BLAST 04-Dec-2009	Gene BLAST 04-Dec-2009	Protein	Function
structura	I genes in Fragaria			
FaEG1	gene06191 496_aa 1013 0.0	gene06191 1491_nt 2710 0.0	endo-β-(1,4)-glucanase	softening, cellulose degradation
FaEG3	gene32087 724_aa 1263 0.0	gene32087 2175_nt 3646 0.0	endo-β-(1,4)-glucanase	0
Facel1	gene06191 496_aa 993 0.0	gene06191 1491_nt 2656 0.0	endo-β-(1,4)-glucanase	
Facel2	gene32087 724_aa 1260 0.0	gene32087 2175_nt 3598 0.0	endo-β-(1,4)-glucanase	
FaBG2-1	gene04618 335_aa 667 0.0	gene04618 1008_nt 1959 0.0	β-1,3-glucanase	pathogenesis-related
FaBG2-2	gene14817 334_aa 627 e-180	gene14817 1005_nt 1683 0.0	β-1,3-glucanase	
FaBG2-3	gene14817 334_aa 657 0.0	gene14817 1005_nt 1786 0.0	β-1,3-glucanase	
FaXyl	gene05164 893_aa 1519 0.0	gene05164 2682_nt 3136 0.0	β-xylosidase	softening, hemicellulose
FaAra1	gene17951 765_aa 1133 0.0	gene17951 2298_nt 1780 0.0	α -L-arabinofuranosidase	degradation softening, hemicellulose degradation
FaAra2	gene17951 765_aa 1165 0.0	gene17951 2298_nt 1867 0.0	α -L-arabinofuranosidase	
FaPE1	gene12966 514_aa 1049 0.0	gene12966 1545_nt 3023 0.0	pectin methyl esterase	softening, pectin
FaPLA	gene17555 447_aa 828 0.0	gene17555 1344_nt 2190 0.0	pectate lyase	degradation softening, pectin degradation
FaPLB	gene17555 447_aa 834 0.0	gene17555 1344_nt 2270 0.0	pectate lyase	0
FcPL1	gene17555 447_aa 837 0.0	gene17555 1344_nt 2258 0.0	pectate lyase	
FcPG1	gene21638 405_aa 814 0.0	gene21638 1218_nt 2327 0.0	polygalacturonase	softening, pectin degradation
FaPG1	gene21638 405_aa 819 0.0	gene21638 1218_nt 2335 0.0	polygalacturonase	
FaPG2	gene21638 405_aa 816 0.0	gene21638 1218_nt 2319 0.0	polygalacturonase	
FaChi2-1	gene29267 504_aa 499 e-142	gene29267 1515_nt 1344 0.0	chitinase	pathogenesis-related
FaChi2-2	gene13071 222_aa 409 e-115	gene13071 669_nt 1302 0.0	chitinase	
FaßGal1	gene23065 890_aa 1763 0.0	gene23065 2673_nt 4742 0.0	β-galactosidase	softening
FaßGal2	gene04817 846_aa 1678 0.0	gene04817 2541_nt 2462 0.0	β-galactosidase	
FaßGal3	gene12626 718_aa 1493 0.0	gene12626 2157_nt 2655 0.0	β-galactosidase	
FaCCR	gene15845 339_aa 678 0.0	gene15845 1020_nt 1998 0.0	cinnamoyl CoA reductase	firmness
FaCAD1	gene20700 361_aa 724 0.0	gene20700 1086_nt 2109 0.0	cinnamyl alcohol dehydrogenase	firmness
FaCAD2	gene20700 361_aa 702 0.0	gene20700 1086_nt 1974 0.0	cinnamyl alcohol dehvdrogenase	
FaGalUR	gene00616 336_aa 624 e-179	gene00616 1011_nt 1752 0.0	D-galacturonic acid reductase	L-ascorbate biosynthesis
FaGLDH	gene21902 582_aa 1142 0.0	gene21902 1749_nt 3237 0.0	L-galactono-1,4-lactone	L-ascorbate
SAAT	gene33976 455_aa 839 0.0	gene33976 1368_nt 2198 0.0	alcohol acyl-CoA transferase	aroma, fruit ester formation
FcAAT	gene33976 455_aa 822 0.0	gene33976 1368_nt 2137 0.0	alcohol acyl-CoA transferase	
FvAAT	gene34011 455_aa 919 0.0	gene34011 1368_nt 2696 0.0	alcohol acyl-CoA transferase	
FaPINS	gene15663 556_aa 1108 0.0	gene15663 1671_nt 3297 0.0	pinene synthase	aroma, monoterpene
FaNES2	gene30669 537_aa 964 0.0	gene30669 1614_nt 2541 0.0	S-nerolidol/S-linalool synthase	formation aroma, mono- and sesquiterpene formation
FaPINH	gene22676 520_aa 1030 0.0	gene22676 1563_nt 3067 0.0	pinene hydroxylase	aroma, monoterpene formation
Fapdc	gene13476 628_aa 1199 0.0	gene13476 1887_nt 2346 0.0	pyruvate decarboxylase	aroma
Fapdc1	gene13476 628_aa 1194 0.0	gene13476 1887_nt 2448 0.0	pyruvate decarboxylase	

Continued on next page...

Supplementary Table 10. (continued)

Gene	Protein BLAST 04-Dec-2009	Gene BLAST 04-Dec-2009	Pr	otein	Function
FaADH	gene30069 380_aa 747 0.0	gene30069 1143_nt 2060	0.0 alco	hol dehydrogenase	aroma
FaOMT	gene12447 365_aa 723 0.0	gene12447 1098_nt 2010	0.0 O-m	nethyltransferase	aroma, furanone formation
aQR	gene28406 545_aa 609 e-17	5 gene28406 1638_nt 1739	0.0 quir oxic	none (enone) loreductase	aroma, furanone formation
aSDH	gene13340 361_aa 712 0.0	gene13340 1086_nt 1955	0.0 sort	pitol dehydrogenase	sugar metabolism
agpL1	gene25195 668_aa 949 0.0	gene25195 2007_nt 1897	0.0 ADF pyro	P-glucose ophosphorylase, large	starch biosynthesis
agpS	gene24265 524_aa 996 0.0	gene24265 1575_nt 2581	0.0 ADF pyre sub	o-glucose ophosphorylase, small unit	starch biosynthesis
aCHS	gene26825 389_aa 771 0.0	gene26825 1170_nt 2089	0.0 cha	lcone synthase	pigment formation
aCHS2	gene26825 389_aa 775 0.0	gene26825 1170_nt 2129	0.0 cha	lcone synthase	
aCHS3	gene26825 389_aa 775 0.0	gene26825 1170_nt 2034	0.0 cha	lcone synthase	
aCHS4	gene26826 389_aa 777 0.0	gene26826 1170_nt 2042	0.0 cha	lcone synthase	
aDFR	gene15174 333_aa 665 0.0	gene15174 1002_nt 1853	0.0 dihy	/droflavonol 4-reductase	pigment formation
aDFR1	gene15174 333_aa 664 0.0	gene15174 1002_nt 1855	0.0 dihy	droflavonol 4-reductase	
aF3H	gene14611 364_aa 737 0.0	gene14611 1095_nt 2139	0.0 flav	anone 3-hydroxylase	pigment formation
aFLS	gene11126 434_aa 372 e-10	3 gene11126 1305_nt 1078	0.0 flav	onol synthase	pigment formation
aANS	gene32347 383_aa 749 0.0	gene32347 1152_nt 2085	0.0 anti	hocyanidin synthase	pigment formation
aLAR	gene03877 350_aa 691 0.0	gene03877 1053_nt 1937	0.0 leuc	coanthocyanidin	pigment formation
aANR	gene24665 341_aa 661 0.0	gene24665 1026_nt 1929	0.0 anti	hocyanidin reductase	pigment formation
aGT1	gene12591 465_aa 900 0.0	gene12591 1398_nt 2512	0.0 anti	hocyanidin	pigment formation
aGT2	gene26265 555_aa 1103 0.0	gene26265 1668_nt 3148	0.0 UDF gluc	osyltransferase 9-glucose:cinnamate :osyltransferase	phenlypropanoid metabolism
FaGT6	gene24227 479_aa 951 0.0	gene24227 1440_nt 2791	0.0 flav	onol	flavonoid
aGT7	gene26344 469_aa 938 0.0	gene26344 1410_nt 2771	0.0 flav	onol onsvitransferases	flavonoid metabolism
aCDPK1	gene25220 549_aa 1050 0.0	gene25220 1650_nt 2121	0.0 calc	ium-dependent protein	fruit development
aACS	gene31839 487_aa 547 e-15	6 gene31839 1464_nt 1691	0.0 1-ar	minocyclopropane-1-	ethylene biosynthesis
FaACO	gene01202 363_aa 624 e-17	9 gene01202 1092_nt 1742	0.0 1-ar	ninocyclopropane-1-	ethylene
VCGS	gene04420 545_aa 1073 0.0	gene04420 1638_nt 3215	0.0 cyst	ooxylic acid oxidase athionine γ-synthase	biosynthesis methionine biosynthesis
apmsr	gene10008 190_aa 358 1e-0	99 gene10008 573_nt 815 0.0	0 met redi	hionine sulfoxide uctase	repair of proteins
aCCD1	gene26820 682_aa 1006 0.0	gene26820 2049_nt 1794	0.0 card	otenoid cleavage	lutein degradation
aAPX	gene25391 676_aa 508 e-14	4 gene25391 2031_nt 1358	0.0 cyct	osolic ascorbate	gluthathione-
acpFBP	gene27415 1203_aa 714 0.0	gene27415 3612_nt 2004	0.0 chlo	oxidase proplastic fructose-1,6-	ascorbate cycle photosynthesis
aPLD	gene15700 854_aa 1630 0.0	gene15700 2565_nt 4460	0.0 pho	spholipase D alpha	membrane
aSTK	gene16583 878_aa 380 e-10	6 gene16583 2637_nt 1003	0.0 seri	ne-threonine kinases	protein modification
other prote	ein coding genes				
aCyf1	gene21476 207_aa 417 e-11	7 gene21476 624_nt 1197 0).0 phy	tocystatin	cystein protease inhibitor, antifunga
aEin1	gene32532 764_aa 1504 0.0	gene32532 2295_nt 4488	0.0 eth	vlene insensitive 2	ethylene receptor
aErs1	gene11090 643_aa 1233 0.0	gene11090 1932_nt 2881	0.0 ethy rest	ylene resistant, ethylene oonse sensor	ethylene receptor
aEtr1	gene21106 741_aa 1441 0.0	gene21106 2226_nt 4136	0.0 ethy	ylene resistant, ethylene oonse sensor	ethylene receptor
FaTCTP	gene06814 168_aa 327 2e-0	90 gene06814 507_nt 900 0.0	0 tran	islationally controlled	fruit ripening
aPGIP	gene00522 332_aa 601 e-17	2 gene00522 999_nt 1709 0).0 poly inhi	/galacturonase- biting protein	defense
FaWRKY1	gene07210 190_aa 386 e-10	8 gene07210 573_nt 1072 0).0 trar	scription factor	regulator of defens

Continued on next page

Supplementary	Table 10. ((continued)
Supprementary	1 4010 101	commuca

Gene	Protein BLAST 04-Dec-2009	Gene BLAST 04-Dec-2009	Protein	Function
FaOLP	gene32422 226_aa 484 e-13	7 gene32422 681_nt 1255 0.0	osmotin-like protein	pathogenesis- related, stress
FaOLP2	gene32421 229_aa 489 e-13	9 gene32421 690_nt 1312 0.0	osmotin-like protein	,
Faltp1	gene13870 117_aa 232 3e-0	62 gene13870 354_nt 694 0.0	non-specfic lipid transfer protein	stress
Faltp2	gene13870 117_aa 215 4e-0	57 gene13870 354_nt551 e-156	non-specfic lipid transfer protein	
Faltp3	gene13870 117_aa 224 6e-0	60 gene13870 354_nt 622 e-178	non-specfic lipid transfer protein	
Faltp	gene13870 117_aa 214 9e-0	57 gene13870 354_nt 543 e-154	non-specfic lipid transfer protein	
FaRP7	gene08914 317_aa 483 e-13	7 gene08914 954_nt 1233 0.0	tonoplast intrinsic protein	resistance
FaCBF1	gene13329 229_nt 310 4e-0	85 gene13280 690_nt 125 4e-028	cold-induced transcription factor	cold acclimation response
STAG1	gene24852 250_aa 461 e-13	30 gene24852 753_nt 1291 0.0	MADS box, AGAMOUS homolog	vegetative, floral, fruit development
FvLFY	gene30750 377_aa336 4e-0	93 gene30750 1134_nt 946 0.0	LEAFY	floral identity, floral integrator
Fanjjs4	gene20883 156_aa 309 5e-0	85 gene20883 471_nt 854 0.0	low molecular weight heat shock protein	seed maturation, fruit ripening
FaExp1	gene02221 259_aa 312 7e-0	86 gene0221 780_nt 222 2e-057	expansin cell wall proteins	softening, cell wall disassembly
FaExp2	gene21343 253_aa 541 e-15	4 gene21343 762_nt 1495 0.0	expansin cell wall proteins	
FaExp3	gene04435 270_aa 336 4e-0	93 gene04435 813_nt 852 0.0	expansin cell wall proteins	
FaExp4	gene04724 249_aa 531 e-15	1 gene04724 750_nt 1471 0.0	expansin cell wall proteins	
FaExp5	gene26030 250_aa 356 4e-0	99 gene26030 753_nt 898 0.0	expansin cell wall proteins	
FaABP1	gene27729 193_aa 384 e-10	7 gene27729 582_nt 1045 0.0	auxin-binding protein	auxin perception
FaPIP1	gene20927 290_aa 402 e-11	3 gene20927 873_nt 1181 0.0	plasma membrane intrinsic protein	aquaporin, water channel
Fahyprp	gene09178 166_aa 315 7e-0	87 gene09178 501_nt 678 0.0	, hybrid proline-rich protein	polyphenol anchoring
FaMYB1	gene09407 188_aa 369 e-10	3 gene09407 567_nt 993 0.0	transcription factor	regulation of pigment biosynthesis
Fraa1A	gene07080 270_aa 330 2e-0	91 gene07080 813_nt 942 0.0	pathogenesis-related protein, allergen	flavonoid biosynthesis
Fraa2	gene07065 160_aa 319 5e-0	88 gene07065 483_nt 878 0.0	pathogenesis-related protein, allergen	
Fraa3	gene07082 159_aa 319 5e-0	88 gene07082 480_nt 944 0.0	pathogenesis-related protein, allergen	
FaMet	gene13037 1569_aa 3057 0.	0 gene13037 4710_nt 8592 0.0	DNA methyltransferases	methylation of cytosine residues in DNA
FaZIP	gene24223 353_aa 670 0.0	gene24223 1062_nt 1804 0.0	Zn- and Fe-regulated transporter	mineral uptake
FaGAST	gene08518 106_aa 193 2e-0	50 gene08518 321_nt 581 e-165	small protein with 12 cysteine residues	arresting cell elongation

Gene	GenBank accession	Scaffold	Hybrid Gene Model ID	Ab Initio Gene Model ID	Note
Acvitrans	ferases				
Aat1	AF193790	scf0513008	gene34011	not available	
Aat2		scf0513008	gene34010	not available	Adjacent to 34011
Aat3		scf0513008	gene23453	not available	Adjacent to 34011
Aat4		scf0513008	gene34009	not available	Adjacent to 34011
FvAat5T		scf0513008	gene34008	not available	Adjacent to 34011
FvAat6		scf0512999	gene33976	not available	
Terpene S	Synthases				
Nes3		scf0513104	gene30669	gene30580	
Nes1		scf0513012	gene24674	gene24601	
Nes4		scf0513012	gene24676*	gene24603	Adjacent to gene24674 *Lacking the beginning of the gene
Nes5		scf0513012	gene24672	gene24599	Adjacent to gene24674
Pins1	AJ001452	scf0513196	gene15663	gene15637	
Pins2		scf0512959	gene02063	gene2054	
Pins3		scf0513061	gene22207	gene22147	
Pins4		scf0513157	gene03282	gene3266	
Quinine o	xidoreductase	s			
Qr1	AJ001445	scf0513124	gene28406*	gene28335	*merges of two different genes, the second of which (aa209-545) is <i>FvQR</i>
Qr2		scf0513124	gene28407	gene28336	Adjacent to gene28406
Qr3		scf0512933	gene00649	gene00653	
O-methyl	transferases				
Omt1		scf13190	gene12447		
Omt2		scf13170	gene18606		
Omt3		scf13170	gene18605*		* the beginning of this prediction
Omt4		scf13170	gene18605*		* the end of this prediction

Supplementary Table 11. Fruit-flavor associated genes in *F. vesca* and corresponding nomenclature.

Supplementary Table 12. An inventory of *F. vesca* orthologs to photoperiodic flowering pathway genes.

GENE NAME	ENE NAME ARABIDOPSIS EXPERIMENTALLY DETERMINED		STRAWBERRY
	ORTHOLOG	FUNCTION	ORTHOLOG
PhyA	AT1G09570	Photoreceptor	gene22948
PhyB	AT2G18790	Photoreceptor	gene05117
Phy C	AT5G35840	Photoreceptor	gene15519
Phy D	AT4G16250	Photoreceptor	No gene model
Phy E	AT4G18130	Photoreceptor	gene11383, gene24884
Cry 1	AT4G08920	Photoreceptor	gene30027
Cry 2	AT1G04400	Photoreceptor	gene11459
Lhy1	AT1G01060	DNA binding / transcription factor	gene18602
Cca1	AT2G46830	transcription factor	No gene model
Elf3	AT2G25930	Nuclear protein	gene02656
Toc1	AT5G61380	transcription regulator/ two-component response regulator	gene26055
Esd4	AT4G15880	cysteine-type peptidase activity	gene06809
Fkf1	AT1G68050	signal transducer/ two-component sensor/ ubiquitin-protein ligase	gene06247
Lkp2	AT2G18915	protein binding / ubiquitin-protein ligase	No gene model
Zti	AT5G57360	ubiquitin-protein ligase	gene17000, gene16999
Со	AT5G15840	transcription factor	gene04172
Gi	AT1G22770		gene27581
Ft	AT1G65480	phosphatidylethanolamine binding / protein binding	gene04680
Soc1 / Agl20	AT2G45660	transcription factor	gene19425
Tfl1	AT5G03840	phosphatidylethanolamine binding	gene21992

			F. vesca gene prediction	
query species	gi	database	TAU prediction	genemark
Fragaria x ananassa	33235470	emb AJ578035.2	scf0513162 scf0513061 scf0513155	gene22255 gene24064 gene19940
Prunus persica	61844840	emblAJ633680.2	scf0513061	gene24063
			scf0513097 scf0513097 scf0513097	gene08610 gene08611 gene08676
Prunus persica	89479473	gb DY635267.2	scf0513158 scf0512954 scf0513152	gene18678 gene30035 gene04120
Zea mays	63021730	gb AY921644.2	scf0513192	gene16287
	query species Fragaria x ananassa Prunus persica Prunus persica Zea mays	query speciesgiFragaria x ananassa33235470Prunus persica61844840Prunus persica61844840Prunus persica89479473Zea mays63021730	query speciesgidatabaseFragaria x ananassa33235470emb AJ578035.2Prunus persica61844840emb AJ633680.2Prunus persica89479473gb DY635267.2Zea mays63021730gb AY921644.2	query speciesgidatabaseTAU predictionFragaria x ananassa33235470emb AJ578035.2scf0513162 scf0513061 scf0513155 scf0513061Prunus persica61844840emb AJ633680.2scf0513194 scf0513097 scf0513097 scf0513097Prunus persica89479473gb DY635267.2scf0513158 scf0513152Zea mays63021730gb AY921644.2scf0513192 scf0513192

Supplementary Table 13. Jasmonic acid metabolic genes identified in *F. vesca* genome

				<i>F. vesca</i> gene p	rediction
Gene name	query species	gi	database	TAU prediction	genemark
Pal	Fragaria x ananassa	157041078	dbj AB360394.2	scf0513149	gene03339.1
				scf0513008	gene31975.1
Pbs3	Arabidopsis thaliana	145357961	ref NM_121335.4	scf0513144 scf0513004 scf0513157 scf0513068 scf0512991 scf0513104	gene04620.1 gene32079.1 gene20644.1 gene24952.1 gene31443.1 gene06248.1
Eps1	Zea mays	1524382	emb X63374.2	scf0513153	gene03709.1

Supplementary Table 14. Salicylic acid associated genes identified in *F. vesca* genome

Supplementary Table 15. Nitric oxide related genes identified in F. vesca genome

				F. vesca gene prediction		
Gene name	query species	gi	database	TAU prediction	genemark	
Nos	Arabidopsis thaliana	108951288	gb DQ539437.2	scf0513044	gene25402.1	
Sod	Prunus persica	6066607	emb AJ238316.3	scf0513044	gene25277.1	
Cat1	Prunus persica	32526565	emb AJ496418.2	scf0513145	gene05469.1	

				F. vesca gene prediction		
Gene name	query species	gi	database	TAU prediction	genemark	
Npr1	Prunus persica	76261960	gb DQ149935.2	scf0513173	gene13847	
				scf0513088	gene25989	
				scf0513088	gene25990	
				scf0513192	gene16361	
	Fragaria x					
Pr2	ananassa	62362437	gb AY989819.2	scf0513194	gene15465	
				scf0513158	gene19106	
				scf0513194	gene15463	
				scf0513160	gene22435	
				scf0513154	gene20141	
				scf0513073	gene27009	
Dr2	Arabidopsis	156192214	ablEE576972.2	cof0513004	000000000000000000000000000000000000000	
FIS	linaliaria	130102214		scf0513030	gene00047	
				scf0513164	gene21457	
				sci0513104	gene21457	
				sci0513192	gene 14592	
	Fragaria y			5010010192	gene 14595	
	ananassa	11528438	abIAE320111.2	scf0513192	gene14592	
	ananaoou	11020100	957 1 020111.2	scf0513164	gene21457	
				scf0513192	gene14593	
				scf0513030	gene31135	
				scf0513094	gene08047	
Pr4	Prunus persica	19879969	gb AF362989.2	scf0513104	gene06067	
	,		5 1	scf0513133	gene00573	
				scf0513168	gene13129	
Pr5	Malus domestica	83853952	gb DQ318213.2	scf0513177	gene12514	
			0	scf0512983	gene28676	
	Arabidopsis				0	
Pr6	thaliana	17473692	gb AY065127.2	scf0513069	gene24622	
				scf0513069	gene24629	
Pr8	Malus domestica	83853954	gb DQ318214.2	scf0513196	gene16507	
				scf0513190	gene15894	
				scf0513190	gene15723	
				scf0513170	gene14163	
				scf0513190	gene15882	
				scf0513170	gene12948	
				scf0513170	gene12949	
Pr10	Prunus persica	159794682	gb EU117120.2	scf0513159	gene19834	

Supplementary Table 16. Pathogen related genes identified in *F. vesca* genome

Supplementary Table 17. Summary of number of family members for each of the major families of transcription factors with sequence similarity less than e^{-20} of plants with whole genome sequence.

	Fragaria vesca (Fv)	Vitis vinifera (Vv)	Arabidopsis thaliana (At)	Medicago truncatula (Mt)	Lotus japonicus (Lj)	Glycine max (Gm)	Ricinus communis (Rc)	Populus trichocarpa (Pt)	Oryza sativa (Os)	Zea mays (Zm)	Sorghum bicolor (Sb)
ABI3VP1	20	21	71	85	34	78	35	103	70	97	58
AP2-EREBP	108	127	146	109	159	381	114	211	199	338	161
ARID	10	9	10	12	9	22	9	12	8	19	5
ARF, AUX/IAA	35	43	51	24	36	129	37	70	99	191	59
	226	97	1/2	/1	84	393	96	145	1/4	309	151
	37	45	78	44	38	1/6	49	83	133	245	103
	1	24	34	15	21	12	22	38	42	60 E 4	32
	15	20	30	21	22	82 60	23 10	42	37	54 62	29
C2C2-GATA	/ 5	20	29	29		02 10	19	აი 12	30 15	03	ు
	0 69	57	172	50	4	205	50	13	110	41	0
	00 154	رو 101	66	ےC 111	00 105	395	29 21	73	110	10Z	206
	104	121	200	141	105	144	5	99 7	1440	347 17	200
	6	4	2	2	4	15	2	2	7 Q	14	6
	6	S Q	0 8	6	4	17	5	10	12	20	10
EZI-DF FII	5	0 4	о 3	7	6	14	0 4	6	12	29 13	7
FHA	22	13	5	ģ	10	33	15	19	22	28	14
GRAS	44	45	33	36	43	130	45	98	64	105	74
GRE	9	-0	2	14	15	6	8	7	51	12	29
HB	84	69	112	46	55	318	59	104	121	211	74
zf-HD	4	0	1	2	1	7	5	5	2	4	1
HMG	6	7	12	2	9	31	9	12	17	33	14
HSF	14	19	24	16	18	11	19	31	42	58	25
Jumonii	18	17	21	13	12	77	15	19	17	46	21
LFY	3	1	1	1	2	4	1	1	1	4	1
LIM	8	14	13	9	12	42	9	20	16	50	9
MADS	31	60	109	60	83	212	39	111	95	147	82
MBF1	2	0	3	1	3	4	11	3	1	7	0
MYB ^a	187	242	303	171	191	791	189	378	298	564	262
NAC	150	83	114	64	101	208	94	179	162	252	126
PHD	107	58	55	45	47	222	58	90	87	202	74

PLATZ	7	10	3	10	9	25	11	20	22	22	17
RWP-RK	10	8	14	5	12	23	10	18	14	37	13
SBP	25	18	16	11	15	48	15	29	29	70	18
SNF2 ^b	52	28	33	17	23	69	25	41	42	85	34
TAZ	3	4	10	5	2	1	5	7	11	17	5
TCP	16	19	6	11	21	65	21	34	24	59	26
TUB	9	8	2	12	8	24	7	11	26	43	20
WRKY	90	59	73	59	68	197	57	104	126	204	92
TOTAL	1616	1403	1856	1249	1365	4557	1245	2294	3706	4266	1994

^aMYB includes genes with sequence similarity to both MYB and MYB-related TFs. ^bSNF2 includes genes with sequence similarity to SWI/SNF-BAS and SW-like transcription factors.

			F. vesca gene prediction				
gene	Gi	database	TAU prediction	genemark	genemark+		
Myb1							
$(F. \times ananassa)$	15082209	gb AF401220.1	scf0513135.2250.1	gene09374	gene09407		
			scf0513135.2250.2				
Myb10							
$(F. \times ananassa)$	161878909	gb EU155162.1	scf0513095.997.1	gene31324	gene31413		
Myb10	161878911	gb EU155163.1	scf0513095.997.2				
(F. vesca)			scf0513095.997.3				
			scf0513095.997.4				
			scf0513095.997.5				
			scf0513095.997.6				
			scf0513095.997.7				
			scf0513095.997.8				
Mybpa1 (V. vinifera)							
× 5 /	130369072	emb AM259485.1	scf0513170.1998.1	gene18657	gene18691		
			na	gene25912	gene25982		

Supplementary Table 18. Genomic information relevant to key transcription factors.

SUPPLEMENTARY FIGURES

Supplementary Figure 1

Supplementary Figure 1. Illumina re-sequencing of the *F.vesca* **V8 assembly.** The *F. vesca* genome was re-sequenced using the Illumina platform and single-end 36mer reads

were mapped to the genome using ELAND.

Supplementary Figure 2. A molecular karyotype of diploid strawberry chromosomes. Mitotic (root tip) chromosomes of 'Hawaii 4' probed with differentially labeled 25S (red) and 5S (bright green) rDNA hybridization probes. In this molecular karyotype, the chromosome pairs have been sequentially numbered A through G according to decreasing size (length). Chromosomes D, F and G harbor 25S rDNA loci, while Chromosome G also harbors the 5S locus.

Supplementary Figure 3. *F. vesca* – *F. vesca* genome comparison to identify large repeat regions. This plot shows the result of an alignment of the *Fragaria vesca* concatenated contigs against themselves, as given by the program MUMmer (option nucmer, nucleotide sequence comparison). The contigs are in arbitrary order. In red are shown direct (or forward) sequence matches; in blue are shown reverse sequence matches. Only matches that are 10,000 bp or longer are shown; each dot outside the diagonal corresponds to one such match. The largest match found was 14,721 bp long. The scales in the *x* and *y* axes are in base pairs.

Supplementary Figure 4. Schematic depiction of the approach used for parsing DNA sequence into protein coding and non-coding regions. GeneMark-ES+ is the self-training program that combines *ab initio* predictions with gene elements mapped from high confidence mapped ESTs as well as with gene deserts mapped from transposable elements.

Supplementary Figure 5. Panel A. Summary of the *F. vesca* GO annotation and its comparison to *Arabidopsis thaliana* annotations. Annotations (as of March 10, 2010) available from the Gene Ontology website (<u>www.geneontology.org</u>). X-axis represents number of unique genes with GO annotations.

Supplementary Figure 5. Panel B. The category-wise summary of GO annotations from *Fragaria* and *A. thaliana*. X-axis represents number of unique genes with GO annotations.

A.

Cumulative Frequency of F. vesca ESTs Mapped to the Genome

Supplementary Figure 6. Panel A. Mapping of *F. vesca* ESTs onto the genomic sequence. *F. vesca* ESTs (454 and Sanger) were anchored onto the genomic assemblies as spliced alignments using the program BLAT². In total, 2,814,598 out of 3,117,395 transcript sequences (90.3%) could be mapped to the genomic sequence with a minimum aligned length of 50 nucleotides comprising a minimum of 50% of the transcript length. On the y-axis, the cumulative frequency of anchored ESTs is shown according to its dependence of alignment identity on the x-axis. For each EST, the single best match according to highest alignment identity has been selected in case of ESTs that mapped to several genomic alignment positions. The majority of ESTs could be mapped with high sequence identities, >2,800,000 and >2,810,000 sequences with an identity \geq 95% and \geq 90%, respectively.

Supplementary Figure 6. Panel B. Transcript support of gene models. Areas in blue indicate the proportion of *F. vesca* gene models supported by transcript evidence and areas in red indicate the proportion of gene models not supported by transcript evidence. Gene models were evaluated using \sim 3.6 Gb of Illumina RNA-seq data and \sim 1.2 Gb of Roche/454 ESTs representing a diverse collection of tissues and developmental stages. Overall, 90% of predicted gene models were supported by Roche/454 or Illumina transcript data, demonstrating the high accuracy of the *F. vesca* gene predictions. Moreover, over 90% of Roche/454 ESTs mapped to the sequence assembly, consistent with a near-complete genome coverage.

Supplementary Figure 7. Chloroplast nomads present in nuclear genome. A total of 876 regions with >80% identity and lengths ranging from 30-3,237 bp (median = 185.5 bp) to the chloroplast sequence was identified in the draft assembly. These were interpreted as recent DNA transfer from the plastid to the nuclear genome.

Supplementary Figure 8. Phylogenetic analysis of *F. vesca* flavor related gene families. (A) Acyltrasferases (B) Terpene Synthases (C) quinone oxidoreductases and (D) O-methyltransferases. Trees and their significance (bootstrap) values were computed by ClustalX and NJplot softwares. Asterisks indicated problematic gene prediction as detailed in Supplemental Table 11.

A. 0 1kb 2kb 3kb B. 0 1kb 2kb 3kb 4kb 5kb 6kb 7kb 8kb 9kb 10

C. 0 1 kb 2 kb 3 kb 4 kb 5 kb 6 kb 7 kb 8 kb 9 kb 10 kb 11

D. 1 kb 2 kb 3 kb 4 kb E. 1 kb 2 kb 3 kb 4 kb 5 kb 6 kb

Supplementary Figure 9. Intragenic architecture of genes central to photoperiodic flowering control. The *F. vesca* (A) *Co,* (B) *Ft,* (C) *Gi,* (D) *Tfl1* and (E) *Soc1 / Agl20* gene structures are compared to those of other plants (At, *Arabidopsis thaliana*: Le, *Lycopersicon esculentum*: Os, *Oryza sativa*: Zm, *Zea mays*).

Supplementary Figure 10. The MYB family of proteins from *F. vesca.* Phylogeny of full length predicted proteins of the R2R3 MYB family of Arabidopsis, and including full length predicted proteins of *Fragaria* MYBs (filled circles). Phylogeny was calculated using the Geneious program (<u>http://www.geneious.com/</u>), using an alignment generated by CLUSTAL W, and a bootstrap tree built via Neighbour-Joining, having distances calculated using Jukes-Cantor model.

References to Supplemental Materials

- Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. *Nucleic Acids Res.* 33, 6494-6506, (2005).
- 2 Kent, W. J. BLAT--the BLAST-like alignment tool. *Genome Res.* 12, 656-664, (2002).
- 3 Pertea, G. *et al.* TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. *Bioinformatics* **19**, 651-652, (2003).
- 4 Ostlund, G. *et al.* InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. *Nucleic Acids Res.* **38**, D196-203, (2010).
- 5 Schwartz, T. S., Tae, H., Yang, Y., Mockaitis, K., Van Hemert, J. L., Proulx, S. R., Choi, J-H. and Bronikowski, A. M. A garter snake transcriptome: pyrosequencing, *de novo* assembly, and sex-specific differences. *BMC Genomics, In Press.*
- 6 Pandelova, I. *et al.* Analysis of transcriptome changes Induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. *Mol. Plant* **2**, 1067-1083, (2009).
- 7 Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. *Stat. Med.* **9**, 811-818, (1990).
- 8 Maere, S., Heymans, K. & Kuiper, M. *BiNGO*: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics* **21**, 3448-3449, (2005).
- 9 Altschul, S. F. & Lipman, D. J. Trees, stars, and multiple biological sequence alignment. *Siam J. Appl. Math.* **49**, 197-209, (1989).
- Kurtz, S. *et al.* Versatile and open software for comparing large genomes. *Genome Biol.* 5, R12, (2004).
- 11 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol.* **10**, R25, (2009).
- 12 Zdobnov, E. M. & Apweiler, R. InterProScan an integration platform for the signaturerecognition methods in InterPro. *Bioinformatics* **17**, 847-848, (2001).
- 13 Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. *Nature Protocols* **2**, 953-971, (2007).
- 14 Small, I., Peeters, N., Legeai, F. & Lurin, C. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. *Proteomics* **4**, 1581-1590., (2004).
- 15 Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J. Mol. Biol.* **305**, 567-580, (2001).
- 16 Schlueter, J. A. *et al.* Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. *BMC Genomics* **8**, (2007).
- 17 Shoemaker, R. C. *et al.* Genome duplication in soybean (*Glycine* subgenus *soja*). *Genetics* 144, 329-338, (1996).
- 18 Latrasse, A. in *Volatile Compounds in Foods and Beverage* (ed H. Maarse) 329-387 (Dekker, 1991).
- 19 Ulrich, D., Hoberg, E., Rapp, A. & Kecke, S. Analysis of strawberry flavour discrimination of aroma types by quantification of volatile compounds. *Z. Lebensm. Unters. F. A.* **205**, 218-223, (1997).
- 20 Beekwilder, J. *et al.* Functional characterization of enzymes forming volatile esters from strawberry and banana. *Plant Physiol.* **135**, 1865-1878, (2004).

- 21 Gonzalez, M. *et al.* Aroma development during ripening of *Fragaria chiloensis* fruit and participation of an alcohol acyltransferase (*FcAAT1*) gene. J. Agric. Food Chem. **57**, 9123-9132, (2009).
- 22 Aharoni, A. *et al.* Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. *Plant Cell* **16**, 3110-3131, (2004).
- 23 Klein, D., Fink, B., Arold, B., Eisenreich, W. & Schwab, W. Functional characterization of enone oxidoreductases from strawberry and tomato fruit. *J. Agric. Food Chem.* **55**, 6705-6711, (2007).
- 24 Raab, T. *et al. FaQR*, required for the biosynthesis of the strawberry flavor compound 4hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. *Plant Cell* **18**, 1023-1037, (2006).
- 25 Lavid, N. *et al.* O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. *Plant Physiol.* **129**, 1899-1907, (2002).
- 26 Wein, M. *et al.* Isolation, cloning and expression of a multifunctional Omethyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. *Plant J.* **31**, 755-765, (2002).
- 27 Mouhu, K. *et al.* Identification of flowering genes in strawberry, a perennial SD plant. *BMC Plant Biol.* **9**, (2009).
- 28 Stewart, P. J. & Folta, K. M. A review of photoperiodic flowering research in strawberry (*Fragaria* spp.). *Crit. Rev. Plant Sci.* **29**, 1-13, (2010).