Developmental basis of limblessness and axial patterning in snakes

Martin J. Cohn*† & Cheryll Tickle†‡

* Division of Zoology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
† Department of Anatomy and Physiology, Wellcome Trust Building, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
‡ Department of Anatomy and Developmental Biology, University College London, Medawar Building, Gower Street, London WC1E 6BT, UK

The evolution of snakes involved major changes in vertebrate body plan organization, but the developmental basis of those changes is unknown. The python axial skeleton consists of hundreds of similar vertebrae, forelimbs are absent and hindlimbs are severely reduced. Combined limb loss and trunk elongation is found in many vertebrate taxa, suggesting that these changes may be linked by a common developmental mechanism. Here we show that Hox gene expression domains are expanded along the body axis in python embryos, and that this can account for both the absence of forelimbs and the expansion of thoracic identity in the axial skeleton. Hindlimb buds are initiated, but apical-ridge and polarizing-region signalling pathways that are normally required for limb development are not activated. Leg bud outgrowth and signalling by Sonic hedgehog in pythons can be rescued by application of fibroblast growth factor or by recombination with chick apical ridge. The failure to activate these signalling pathways during normal python development may also stem from changes in Hox gene expression that occurred early in snake evolution.

Limblessness has evolved many times in vertebrate evolution, and is often accompanied by elongation and loss of regional differentiation in the axial skeleton. Snakes evolved from tetrapod lizards and are closely related to mosasaurs, which are Cretaceous marine lizards that had complete forelimbs and hindlimbs and a clearly regionalized axial skeleton. Pythons have over 300 vertebrae (Fig. 1a), with ribs on every vertebra anterior to the hindlimbs, except for the atlas (Fig. 1a, b, e). The anterior vertebrae have both ribs (a thoracic feature) and ventral hypopophyses (generally a cervical feature) (Fig. 1b), suggesting that information encoding thoracic identity may have extended into the cervical region and partially transformed these segments. Thus, the entire trunk resembles an elongated thorax (Fig. 1a). There is no morphological evidence of forelimb development. Functional rudimentary hind-
limbs, consisting of a pelvic girdle and truncated femur (Fig. 1c, d), develop at the junction between rib-bearing vertebrae and lymphophysis-bearing vertebrae, at cloacal level (Fig. 1e, f).

Hox genes specify the axial pattern during embryonic development. In animals with different numbers of vertebrae, Hox expression domains in the paraxial mesoderm (which gives rise to vertebrae) correlate with vertebral identity rather than number. Hox genes also appear to be involved in the regionalization of the lateral plate mesoderm into forelimb, flank and hindlimb, to specify limb position. To determine whether changes in Hox gene expression in the paraxial and lateral plate mesoderm underlie the morphological transformations seen in the python trunk, we examined the distribution of three Hox proteins, HOXC6, HOXC8 and HOXB5. HOXC6 and HOXC8 are associated with the development of thoracic vertebrae in other tetrapods (Fig. 2a), whereas HOXB5 is expressed up to the first cervical vertebra (the atlas)1,2. In the lateral plate mesoderm of tetrapods and fish, the anterior expression boundaries of all three genes occur at the forelimb/pectoral fin level, where they are involved in specifying forelimb position and shoulder development. Python eggs are laid about eight weeks after fertilization, by which time the embryos have developed somites (derived from paraxial mesoderm) and hindlimb buds. In these embryos, HOXC6, HOXC8 and HOXB5 are expressed in somites throughout the entire trunk, extending from the cloacal/hindlimb level to the most anterior somite (Fig. 2b–g). We detected a sharp posterior boundary of HOXC8 expression at the level of the hindlimbs (Fig. 2b), which coincides with the last thoracic vertebra in older animals (compare Fig. 2b with Fig. 1a and e). HOXC8 and HOXB5 are present throughout the python lateral plate mesoderm, with expression terminating at the very anterior limit of the trunk (Fig. 2c, f). Thus, the entire vertebral column anterior to the cloaca exhibits patterns of Hox gene expression consistent with thoracic identity, and we were unable to detect restricted Hox expression patterns in the lateral plate mesoderm associated with forelimb position in other tetrapods (Fig. 2h). Expansion of these Hox gene expression domains in both paraxial and lateral plate mesoderm may be the mechanism which transformed the entire snake trunk towards a thoracic/flank identity and led directly to the absence of forelimb development during snake evolution.

The specification of hindlimb position and initiation of budding appears to be normal in python embryos. The outgrowth of vertebrate limb buds depends on the apical ectodermal ridge, a thickened epithelium rimming the distal edge of the limb buds (Fig. 3b)12. Although direct-developing frogs undergo normal limb development without forming a distinctive apical ridge, the distal limb bud ectoderm nevertheless expresses genes associated with ridge function. In python embryos between 1 and 5 days of incubation, no apical ridge could be detected either in histological sections or by scanning electron microscopy (Fig. 3a), and products of the Distal-less (Dlx), Fgf2 and Mxe genes, which normally characterize the apical ridge13,14, were not detected in limb ectoderm (Fig. 3c–h). High levels of expression of these genes were detected in python limb mesenchyme and/or other developing organs (for example, kidneys, tooth buds and scale buds), demonstrating that the antibodies we used can recognize the reptilian gene products. The absence of apical ectodermal ridge and lack of...
expression of ridge-associated genes could account for the severe hindlimb truncation seen in pythons.

Apical ectodermal ridge signalling is mediated by fibroblast growth factors (FGFs)\(^{17,18}\). Therefore, we tested whether grafting FGF2-loaded beads to python limb bud could sustain outgrowth. The proximodistal length of FGF2-treated limb buds was increased compared with the contralateral buds in two out of five embryos treated. One day after grafting, a 31% increase was seen with one FGF bead and a 9% increase was seen with two FGF beads. Thus, python limb bud outgrowth can be stimulated by FGF. As FGF can also promote proliferation in cultured vestigial limb buds of the slow-worm \textit{Anguis fragilis}\(^{19}\), a serpentine lizard, our results raise the possibility that the independent evolution of limblessness in different reptilian lineages may have involved similar developmental mechanisms.

In amniote limbs, the apical ridge forms at the boundary of the dorsal and ventral ectodermal compartments\(^{20}\). A dorsoventral interface between the morphologically distinct dorsal and ventral scales can be seen extending along the entire trunk ectoderm of python embryos, and the paired hindlimb buds develop at this interface (Fig. 1g). The failure of ridge development in chicken \textit{limbless} mutants is due to a lack of dorsoventral polarity in the limb buds\(^1\). Therefore, we examined python limb buds for expression of two molecules associated with dorsoventral polarity, Engrailed (EN) and LMX1. Just as in normal chick limb buds\(^2\) (Fig. 4i), EN was detected in the ventral ectoderm of python limb buds, with a sharp boundary of expression running along the bud apex (Fig. 4h). In addition, LMX1 (ref. 23) was confined to dorsal limb mesenchyme cells in pythons (Fig. 4j). Thus, python leg buds, in contrast to the limb buds of chicken \textit{limbless} mutants, have normal dorsoventral polarity.

Another possible reason for the failure of ridge formation is that mesenchymal changes have occurred in python hindlimb buds. To test the ability of python limb bud mesenchyme to signal to the ectoderm, we transplanted mesenchyme from the posterior of the python limb bud to the anterior chick wing bud, and then monitored expression of chick Fgf8 to determine the extent of the apical ridge. At 19.5 h after transplantation, Fgf8 expression was detected in anterior chick limb ectoderm overlying the python graft, whereas expression in the contralateral limb did not extend as far to the anterior (Fig. 4g). Thus, python limb mesenchyme can maintain an apical ectodermal ridge and Fgf8 expression.

Mesenchymal cells in the polarizing region, located at the posterior margin of vertebrate limb buds, act as a signalling centre and express Sonic hedgehog (SHH), which specifies the anteroposterior pattern of the limb. The polarizing region and apical ridge maintain each another through a positive feedback loop, mediated by SHH and FGF4, which coordinates limb bud outgrowth and patterning\(^7,18\). When \textit{Shh} is functionally inactivated in mice, their limbs are truncated\(^{24}\). We therefore examined \textit{Shh} expression in python embryos, which lack an apical ridge. SHH protein is closely associated with \textit{Shh} messenger RNA in the polarizing region in chick and mouse limb buds (Fig. 4b)\(^{25}\). In contrast, no \textit{Shh} protein could be detected in python hindlimb buds (Fig. 4a). SHH was present, however, in floor plate of the neural tube and in the notochord, both of which are known sites of \textit{Shh} expression in other vertebrate embryos\(^{25}\). Thus, in the absence of an apical ridge, \textit{Shh} is not expressed in python hindlimb buds.

Three different assays, however, showed that python hindlimb bud mesenchyme retains remarkable potential to express SHH and act as a polarizing region. In python posterior mesenchyme cells grafted under the apical ridge of a chick wing bud at stage 20, SHH was expressed within 24 h (Fig. 4e). In a second chick wing bud, expression of the SHH receptor \textit{patched}, which is induced in response to SHH signalling\(^{26}\), was detected in chick limb cells around a python graft 19.5 h after transplantation (Fig. 4f). Finally, a wing bud with a python graft left to develop for seven days contained two additional digits (anterior-to-posterior digit pattern 2-2-2-3-4), compared with the normal pattern (2-3-4) (Fig. 4c). This digit pattern can also be produced by anterior grafts of small numbers of \textit{Shh}-expressing cells\(^{27}\). These data show that python hindlimb mesenchyme is competent to express SHH and send a polarizing signal, and suggest that it fails to do so during python hindlimb development because the apical ridge is absent.

Unexpectedly, anterior mesenchyme grafted from python hindlimb also has polarizing potential and induced the development of an additional digit 2 in a chick wing (Fig. 4d). Thus, polarizing potential appears to exist both anteriorly and posteriorly in python hindlimb buds, rather than being posteriorly restricted as in other vertebrates. Moreover, three grafts of python lateral plate mesenchyme anterior to the hindlimb bud suggested that polarizing potential is also present in the flank. Several lines of evidence indicate that Hox gene-expression domains along the primary body axis define the spatial extent of polarizing potential. For
example, anterior extension of the *Hoxb8* domain in transgenic mice induces *Shh* expression anteriorly in the forelimb\(^28\). Thus, widespread polarizing potential in pythons is consistent with our finding that Hox expression domains are expanded anteroposteriorly. Furthermore, since positional information in the limb ectoderm is determined initially by the underlying mesoderm\(^29\), it is possible that changes in mesodermal Hox gene expression in pythons may also have eliminated the ability of the ectoderm to form an apical ridge.

A simple developmental mechanism involving progressive changes in Hox gene expression along the main body axis could link expansion of thoracic identity with acquisition of limblessness in snake evolution (Fig. 5). The primitive condition for all squamates, including snakes, is possession of complete forelimbs and hindlimbs, and a relatively short, regionalized vertebral column. The most primitive snake known, *Pachyrhachis problematicus*, had complete (or almost complete) polarized hindlimbs, but no forelimbs, and an elongated vertebral column with ribs on almost every segment\(^2\). Both scolecophidians and booids (which includes pythons) are primitive snakes with severely reduced hindlimbs and a trunk resembling an elongated thorax. Advanced snakes (colubroids) have even more uniformity in the axial skeleton and are completely limbless. Progressive expansion of Hox gene expression domains along the body axis can account for the major

Figure 4 Polarizing activity and dorsoventral polarity in python hindlimb buds. Anterior is at top in a–g and at right in h. a. Python embryo at 2 days of incubation stained with an antibody against SHH. SHH expression (dark brown) detected in floor plate (FP) and notochord (N), but not in hindlimb bud (HLB). b. SHH expression in polarizing region of chick wing bud. c. Wing of ten-day chick embryo with duplicated pattern of digits that developed after transplantation of python posterior limb bud mesenchyme to anterior margin of wing bud at stage 20. Two additional digit 2s were specified anterior to the normal set of digits. (asterisk, duplicated digits). d. Wing of ten-day chick embryo with duplicated pattern of digits that developed after transplantation of python anterior limb bud mesenchyme to anterior margin of wing bud at stage 20. A single duplicated digit 2 is present anterior to normal digits. e. SHH expression in chick wing bud 24 h after python posterior limb mesenchyme was grafted anteriorly under the apical ridge. SHH expression was detected in the graft of python cells (arrow) and in the host chick polarizing region. f, g. Double *in situ* hybridization showing expression of chick *Ptc* and *Fgf8* 24 h after transplantation of python posterior limb mesenchyme to anterior margin of the chick right wing bud. Red arrow in f (dorsal view) indicates ectopic expression of chick *Ptc* in anterior mesenchyme around grafted python cells. Red arrow in g (ventral view) indicates anteriorly extended domain of *Fgf8* in chick ectoderm overlying the python mesenchyme cells (compare anterior limit of *Fgf8* expression in limb containing graft (left) with contralateral limb (right)). h–k. Dorsoventral polarity in python limb buds. Antibody staining of EN and LMX1 in python limb buds at 1 day of incubation and chick limb buds at stage 20. h, i. Expression of EN is detected in ventral ectoderm of python (h) and chick (i) limb buds. EN expression is also seen in python somites (h). Expression of LMX1 is detected in dorsal mesenchyme of python (j) and chick (k) limb buds. D, dorsal; V, ventral.
morphological transitions in snake evolution (Fig. 5). Such higher-order genetic changes could have resulted in sudden anatomical transformations, rather than gradual changes, during snake evolution, a hypothesis which can be tested by the fossil record. Our model predicts that embryos of colubroid snakes should show even more homogenization of Hox gene expression domains along the head-to-tail axis than pythons.

Methods

Whole-mount skeletal preparations. Python embryos to be double-stained for cartilage and bone were fixed in 80% ethanol, then skinned, eviscerated and dehydrated in 96% ethanol. We then incubated them in acetone, rinsed them in 96% ethanol and stained them for 2–6 h in Alcian blue and Alizarin red in 70% ethanol with 5% acetic acid. Embryos were then rinsed in 96% ethanol followed by tap water before clearing in 1% KOH and a graded glycerol series. Embryos stained for cartilage alone were fixed in 5% trichloroacetic acid and stained with Alcian green, then dehydrated in ethanol and cleared in graded glycerol.

Scanning electron microscopy. Embryos were fixed in modified Tyrode's saline, then dehydrated in ethanol with 5% acetic acid. Embryos were then rinsed in 96% ethanol and stained them for 2–6 h in Alcian blue and Alizarin red in 70% ethanol and then dehydrated in 96% ethanol. We then incubated them in acetone, rinsed them in 1% osmium in 0.1M phosphate buffer, specimens were dehydrated in graded ethanol, placed in amyl acetate, critical point dried, sputter-coated with gold particles and viewed on a Hitachi S-530 scanning electron microscope.

Whole-mount in situ hybridization and immunohistochemistry. Whole-mount in situ hybridization was done as described with digoxigenin-labelled riboprobes for chick Fgf8 and patched. Whole-mount antibody staining was performed as described for HOXc6, DLX3, EN2, SHH, HOXB5 and HOXc8. These antibodies were raised against *Xenopus* (HOXc6), butterfly (DLX) and mouse (EN, SHH, HOXB5) proteins, and have been shown to recognize the target epitope in a wide range of vertebrates. For immunohistochemistry on frozen sections, embryos were fixed in 4% paraformaldehyde, equilibrated in 30% sucrose, embedded in Tissue-Tek O.C.T. compound and frozen at −80°C. Serial sections were cut at 10 μm and stained using a Vectastain ABC kit according to manufacturer's instructions.

Tissue transplantation and application of FGF2 beads. Python embryos were washed in PBS buffer, then dissected in culture medium. We removed fragments of mesenchyme from specific locations using electrolytically sharpened tungsten needles and fine forceps. Tissue was incubated in 2% trypsin and ectoderm was removed. (All previous steps were carried out on ice.)
We prepared host chick wing buds by lifting the apical ridge away from the anterior mesenchyme to make a loop. Python tissue was transplanted inside the loop and the chick embryos were then reincubated at 38°C. FGF beads were prepared as described\(^\text{1}\). Python eggs were briefly candled to locate embryos and major vessels, then windowed, and membranes and vessels were carefully detached from the inside of the shell to minimize damage. After FGF beads were implanted into a slit at the apex of python limb buds, the python eggs were resealed and incubated at 30°C in a humidified box.

Received 27 January; accepted 24 March 1999.

The mitogen-activated protein kinase (MAPK) pathway is a highly conserved eukaryotic signalling cascade that converts extracellular signals into various outputs, such as cell growth and differentiation\(^\text{1,2}\). MAPK is phosphorylated and activated by a specific MAPK kinase (MAPKK)\(^\text{3}\). MAPK is therefore considered to be an activating regulator of MAPK. Pmk1 is a MAPK that regulates cell integrity\(^\text{4}\) and which, with calciuminurin phosphatase, antagonizes chloride homeostasis in fission yeast. We have now identified Pek1, a MAPK, for Pmk1 MAPK. We show here that Pek1, in its unphosphorylated form, acts as a potent negative regulator of Pmk1 MAPK signalling. Mk1, an upstream MAPK kinase (MAPKKK), converts Pek1 from being an inhibitor to an activator. Our results indicate that Pek1 has a dual stimulatory and inhibitory function which depends on its phosphorylation...