
317

OMICS A Journal of Integrative Biology 
Volume 7, Number 3, 2003
© Mary Ann Liebert, Inc.

Analysis of Noise in Quorum Sensing

CHRIS D. COX,1,2 GREGORY D. PETERSON,2,3 MICHAEL S. ALLEN,2,4

JOSEPH M. LANCASTER,3 JAMES M. MCCOLLUM,3 DEREK AUSTIN,3,4

LING YAN,1,2 GARY S. SAYLER,2,5 and MICHAEL L. SIMPSON2,4,6

ABSTRACT

Noise may play a pivotal role in gene circuit functionality, as demonstrated for the genetic
switch in the bacterial phage l. Like the l switch, bacterial quorum sensing (QS) systems
operate within a population and contain a bistable switching element, making it likely that
noise plays a functional role in QS circuit operation. Therefore, a detailed analysis of the
noise behavior of QS systems is needed. We have developed a set of tools generally applic-
able to the analysis of gene circuits, with an emphasis on investigations in the frequency do-
main (FD), that we apply here to the QS system in the marine bacterium Vibrio fischeri. We
demonstrate that a tight coupling between exact stochastic simulation and FD analysis pro-
vides insights into the structure/function relationships in the QS circuit. Furthermore, we
argue that a noise analysis is incomplete without consideration of the power spectral densi-
ties (PSDs) of the important molecular output signals. As an example we consider reversible
reactions in the QS circuit, and show through analysis and exact stochastic simulation that
these circuits make significant and dynamic modifications to the noise spectra. In particu-
lar, we demonstrate a “whitening” effect, which occurs as the noise is processed through
these reversible reactions.

INTRODUCTION

IT IS NOW UNDERSTOOD that noise often plays a pivotal role in gene circuit functionality. In perhaps the
most notable example to date, Arkin, Ross, and McAdams analyzed the coupling between a noise-mod-

ulated genetic switch and macroscopic phenotype selection using the l phage lysis-lysogeny decision cir-
cuit (l switch) as a model system (Arkin et al., 1998). The l phage infects E. coli and chooses between
lysogenic and lytic pathways. The lysogenic or lytic outcome in each cell is determined by a critical race
(Mcadams and Shapiro, 1995) between the accumulations of two regulatory proteins, cI and Cro, after in-
fection. If there is enough early production of cI, positive feedback drives cI production up, while negative
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feedback drives Cro production down, leading to the choice of the lysogenic pathway. This happens only
when, by chance (i.e. noise), there is early and strong cI production.

The probabilistic nature of the l switch provides the means for an interesting l phage population con-
trol mechanism. Various studies have shown that the nutritional state of the cell and the level of the phage
population around the cell influence the fraction of l-infected E. coli cells that become lysogenic. These
signals influence the l switch critical race by affecting the early production of cI, which modulates the frac-
tional split of lytic and lysogenic outcomes. This use of noise is reminiscent of dithering, a scheme that
adds noise to analog-to-digital converter circuits to provide an advantage in a collective sense. The l switch
only provides one-bit resolution within individual cells. However, in a manner similar to dithering, the noise
and the critical race condition allow a nearly continuous selection of the fraction of cells that become lyso-
genic within a population, thus yielding precise control from very imprecise components. It is important to
note that this favorable (for the phage) behavior arises within a population, not within individual cells, and
the noise is an essential element in this emergent functionality of this gene circuit. An understanding of this
and similar gene circuit architectures requires a comprehensive understanding of the nature of the noise and
how it is processed by gene circuits.

Noise analysis in genetic circuits usually is performed using exact stochastic simulation (Gillespie, 1977),
or approximate solutions are found using the Langevin approach (Rao et al., 2002). Exact stochastic sim-
ulation provides the most accurate analysis as it deals with discrete molecules of each species, microscopic
rate constants, and circuit non-linearities. However, even for circuits of only modest complexity, this sim-
ulation can be computationally demanding, and does not generally lead to the easy coupling of simulated
noise behavior with specific circuit elements, parameters, and operational regimes. On the other hand, the
Langevin approach approximates stochastic processes in cells by adding small white noise terms to the or-
dinary differential equations (ODEs) associated with the chemical reactions (Rao et al., 2002). Although
the Langevin equations are much easier to deal with analytically than exact stochastic simulation, there are
several important caveats. At low molecular populations the Langevin representation and the associated lin-
earization and approximations may lose validity, and considerable care must be exercised in applying
Langevin analysis to systems with pathway bifurcations (e.g., the l switch described above). A naïve ap-
plication of this analysis technique in such situations can lead to erroneous results that completely miss es-
sential circuit function (Arkin et al., 1998). However, even though all of these issues affect the quantitative
accuracy of the analysis for some circuits in some operational regions, qualitative (i.e., circuit architecture)
observations still have some validity and often lead to insights into gene circuit topology.

The noise behavior of relatively simple gene circuits have been solved through the time domain solution
of the associated Langevin equations (Ozbudak et al., 2002). However, for more complex circuits with mul-
tiple noise sources and signal processing elements, such analysis becomes cumbersome and obscures the
intuitive connection between calculated noise behavior and circuit elements, parameters, or operational
regimes that originally motivated the use of the Langevin approach instead of (or more likely in addition
to) exact stochastic simulation. We recently reported a frequency domain (FD) analysis technique that ex-
plicitly retained the spectral features of the noise in the analysis (Simpson, 2003). Applied to negatively
autoregulated genetic circuits, the FD analysis showed that feedback impacts both magnitude and frequency
composition of the noise, and the response of downstream gene circuits to this noise exhibited a strong de-
pendence on frequency composition (Simpson et al., 2003).

Here we report the use of the FD techniques in combination with optimized exact stochastic simulation
tools for the analysis of gene circuit architecture. We have found this coupling between analytical and sim-
ulation approaches leads to a deeper understanding of the circuit architecture and strategy, and clearly iden-
tifies the most important relationships between circuit structure and function. For example, in addition to
the effects on the noise magnitude and frequency composition, the FD analysis of the negatively autoreg-
ulated gene circuit showed that the arrangement of decay rates most often encountered in natural gene cir-
cuits (e.g., mRNA usually decays much faster than protein, Hill kinetics usually faster than mRNA decay)
minimizes noise in the protein concentration, not the mRNA concentration (Simpson et al., 2003). As the
regulatory elements are usually proteins and minimal noise in the regulatory system may be advantageous,
perhaps this is not just coincidence. It is these types of insights that we seek from a coupled FD/simulation
approach.
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The bacterial quorum sensing (QS) system is a prime candidate for architectural analysis using FD/ ex-
act stochastic simulation techniques. The QS circuit contains both positive and negative feedback, and a
cascade of circuit blocks through which the spectra of the numerous noise sources are shaped. Furthermore,
QS operates on a population, and as demonstrated in the l switch example, noise may play a functional
role in such circuits. However, the QS circuit does contain a bistable switching element, so care must be
exercised when using FD analysis in the operational regime near the switching point.

RESULTS

Analysis and simulation of the quorum sensing circuit

QS is a cell-cell communication network that enables bacterial populations to collectively regulate their
behavior based on cell density, serving as a way for bacteria to coordinate their metabolic efforts for spe-
cific functions such as infection onset, antibiotic production, or biofilm formation (Greenberg, 2000; With-
ers et al., 2001). This intercellular exchange relies on self-generated, low molecular weight diffusible sig-
nal molecules called autoinducers (AIs). AI molecules released by a single, free-living bacterium do not
accumulate to high enough concentrations to be detected. However, when a sufficient bacterial population
density is reached, AI concentrations achieve a threshold level that allows individual bacteria to coordi-
nately activate or repress specific gene expression. QS was first identified in the marine bacterium Vibrio
fischeri, where it controls expression of bioluminescence (Stevens and Greenberg, 1997). The V. fischeri
QS network consists of AI molecules called N-acylhomoserine lactones (AHLs). AHLs are synthesized
from precursors by a synthase protein, LuxI, and, upon reaching a critical threshold, interact with a tran-
scriptional activating LuxR protein to induce expression of genes responsible for bioluminescence.

The lux regulon consists of two divergently transcribed operons, designated operonL and operonR, and
exhibits complex regulatory behavior (Fig. 1). OperonL consists of the luxR gene, which has a promoter re-
gion consisting of three transcriptional start sites designated L1, L2 and L3. OperonR contains luxICDABEG,
the genes responsible for AI production (luxI) and bioluminescence (luxCDABEG). Binding of cyclic
AMP–cAMP receptor protein (cAMP-CRP) complex to the crp regulatory region of the DNA positively
regulates luxR transcrition at sites L1 and L2 and negatively regulates operonR (Dunlap and Greenberg,
1988; Shadel and Baldwin, 1992a). L3 is independent of cAMP-CRP (Shadel and Baldwin, 1992a). LuxR
binds with AI to form a complex (designated [RAI]2 in our model) that binds to the lux regulatory region,
thereby positively regulating operonR (Engebrecht et al., 1983) and all three of the transcriptional start sites
of operonL (Shadel and Baldwin, 1992a). However, at very high expression levels, luxR has been shown
to be capable of negative autoregulation (Dunlap and Greenberg, 1988). While the precise mechanism is
unknown, it has been shown to be dependent on LuxR, AI, the lux regulatory region, and a regulatory el-
ement contained in the luxD gene (Shadel and Baldwin, 1991). The luxD element shares 11 of 20 bp with
the lux regulatory region and functions as a LuxR binding site (Shadel and Baldwin, 1992b), possibly sug-
gesting the formation of a DNA loop through interaction of (RAI)2 complexes bound at the lux regulatory
and the luxD element control regions. The loop could interfere with the binding of cAMP-CRP or of RNAp
to the promoter of operatorL (Shadel and Baldwin, 1991).

On the basis of the regulatory behavior described above, we have developed a model for the luxIR QS
circuit in Vibrio fischeria that is depicted in Fig. 2 and formulated in terms of chemical reactions in Table 1;
the rationale for parameter value selection will be discussed below. In this version of the model, we have
assumed that the cell is growing in the absence of glucose such that cAMP-CRP is bound to the crp regu-
latory region resulting in a relatively high transcription rate of luxR (kcrpR ) and low transcription rate of
luxI (kbasalI). Upon binding of the (RAI)2 complex to the lux operator, transcription of both operons in-
crease (kmaxR and kmaxI). Transcription produces messenger RNA (mRNA), which is in turn translated to
the two proteins LuxR and LuxI. Decay reactions exist for both mRNA and proteins. AI is produced from
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aThe Vibrio fischeri quorum sensing model described in this paper is available in SBML (Systems Biology Markup
Language) level 2.0 format at: http://biocomp.ece.utk.edu.



substrates (assumed not to be limiting) via LuxI. AI binds with LuxR to form the complex RAI, which in
turn is assumed to undergo dimerization to form the final regulatory complex (RAI)2. This complex binds
to both the lux operator and to the regulatory region of luxD. When both DNA sites are occupied, the DNA
looping reaction is allowed to occur, which completely stops transcription of LuxR. A pool of AI is as-
sumed to exist external to the cell, which is allowed to freely diffuse in without depleting the amount of
AI in solution. Diffusion of AI out of the cell is then modeled as decay.

Values of some parameters are available from the literature. The rate of autoinducer synthesase by LuxI
(kAI) is given by Schaefer (Schaefer et al., 1996). We assumed a typical mRNA half-life of 2 min to esti-
mate gmR and gmI. (Stephanopoulos, 1998). AI has been shown to diffuse freely through the cell walls of

COX ET AL.

320

FIG. 1. Regulatory region and behavior of the lux regulon.

FIG. 2. The schematic representation of quorum sensing model. 
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Vibrio fischeri (Kaplan and Greenberg, 1985). Based on these results we estimated the stochastic rate con-
stant for a reaction event that causes AI to diffuse from the cell as:

kout 5 (1)

where D is the diffusion coefficient (5 3 10210 m2/sec), A is the external area of the cell (8 3 10212 cm2),
V is the volume of the cell (1.6 3 10218 m3), and d is the diffusion distance (5V1/3). The value obtained
(2134 sec21) was so large that virtually all the computation time would be consumed moving molecules in
and out of the cell. It was decided to reduce the magnitude of this constant by a factor of 300. This should
have negligible effect on the simulations since the value of the constant is still much greater than the sto-
chastic rate constant for any other reaction directly involving AI. To verify this, the mean and standard de-
viation of AI populations were compared for simulations of the entire luxIR model and for a model that
only included diffusion of AI in and out of the cell; they were not statistically different. A comparison of
the mean and standard deviations of AI populations for the latter model using different values of kin and
kout while keeping their ratio constant also yielded no significant differences.

Values of the remaining constants were determined by rough calibration to reproduce phenotypic be-
havior of Vibrio fischeri as reported in the literature using realistic constraints on parameter values. For ex-
ample, the burst rate (5ktl/gm) was constrained to be between 5 and 40 (Kennell and Riezman, 1977). These
behaviors include (a) a rapid response (,30 min) to exogenously added AI (Kaplan and Greenberg, 1985),
(b) an increase by almost 3 orders of magnitude of OR gene products in response to a 203 increase in ex-
ogenous AI (Kaplan and Greenberg, 1985), and (c) induction of luxR at moderate AI levels but repression
at high levels (Shadel and Baldwin, 1991, 1992b). Quasi steady-state analysis was used to identify kinetic
parameters yielding desired behavior. Assumptions of quasi steady state are valid for reversible equilibrium
reactions when these reactions occur much more frequently than the production and decay reactions for the
proteins. We will further assume that AI is maintained at a constant level within the cell by diffusion from
an external source (such as other cells). The model is formulated by considering the five possible states that

DA
}
Vd
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TABLE 1. MODEL REACTIONS AND STOCHASTIC RATE CONSTANTS

Reaction Rate constant

AI 1 LuxR ® RAI kf1 5 0.1
RAI ® LuxR 1 AI kr1 5 2
2 RAI ® RAI2 kf2 5 0.06
RAI2 ® 2 RAI kr2 5 4
RAI2 1 luxD ® luxDcomp kfD 5 0.01
luxDcomp ® RAI2 1 luxD krD 5 3
luxDcomp 1 ipromR ® DNAloop kf-loop 5 6
DNAloop ® luxDcomp 1 ipromR kr-loop 5 1
mRNAR ® LuxR 1 mRNAR kt1R 5 0.03
mRNAI ® LuxI 1 mRNAI kt1I 5 0.03
mRNAR ® * gmR 5 0.006
mRNAI ® * gmI 5 0.006
LuxI ® * gPI 5 0.001
LuxR ® * gPR 5 0.006
LuxI ® LuxI 1 AI kAI 5 0.017
AI ® * kout 5 7.1
AIsource ® AI 1 AIsource kin 5 variable
luxbox 1 RAI2 1 promI 1 promR ® ipromI 1 ipromR kf3 5 0.1
ipromI 1 ipromR ® luxbox 1 RAI2 1 promI 1 promR kr3 5 5
promR ® promR 1 mRNAR kcrpR 5 0.01
promI ® promI 1 mRNAI kbaslI 5 0.000015
ipromR ® ipromR 1 mRNAR kmaxR 5 0.06
ipromI ® ipromI 1 mRNAI kmaxI 5 0.1



exist considering whether the lux box operator and the luxD regulatory element are occupied by (RAI)2 or
not: (1) both empty; (2) lux box empty, luxD occupied; (3) lux box occupied, luxD empty; (4) both filled;
and (5) DNA loop formation. We will let Si represent the fraction of time that the regulon is in each of the
five states such that:

^
5

i51
Si 5 1 (2)

The conditional probability of S5 given that both regulatory regions are occupied is given by kf-loop/
(kf-loop 1 kr-loop) so that:

S5 5 (S4 1 S5) (3)

In a like manner, if we consider the conditional probability of the lux box being occupied given that there
is no DNA loop we can write the equation:

S3 1 S4 5 (1 2 S5)Vlux (4)

where Vlux is the probability of occupation of the lux box neglecting the possibility of DNA loop forma-
tion and is given by:

Vlux 5
1

1 1 (5)

where [AIint] is the average population number of AI internal to the cell and

Kd9 5 5 Kd (6)

The probability of the luxD site being occupied is handled in a parallel manner:

S2 1 S4 5 (1 2 S5)VluxD (7)

VluxD 5 1

1 1 (8)

where

KdD9 5

Finally, a quasi-steady state balance on S1 yields:

S1 5 (9)

Now the average luxR and luxI transcription rates for any population of R and AIint can be written:

transcription

5 kcrpR(S1 1 S2) 1 kmax R (S3 1 S4) (10)

transcription

5 kbasalI (S1 1 S2) 1 kmax I (S3 1 S4 1 S5) (11)

Steady-state balances on R and I can now be written to yield:

R 5 [kcrpR(S1 1 S2) 1 kmax R (S3 1 S4)] (12)

I 5 [kbasalI (S1 1 S2) 1 kmax I (S3 1 S4 1 S5)] (13)

Equations 2–13 can be solved simultaneously to yield the steady-state solution. A data set by Kaplan and
Greenburg (1985) showing the increase in bioluminescence as a function of exogenous AI was used to cal-
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ibrate the model by adjusting the parameters to fit data. The parameters obtained are the same as the sto-
chastic constants listed in Table 1 except the value of kf2 for the deterministic model was half of the 
stochastic version of the constant to account for reaction stoichiometery (Gillespie, 1977). Bioluminescence
was used as an indicator of luxI transcription rates, since the genes are on the same operon. The steady-
state analytical solution of the model and data are compared in Figure 3. At this point in time, only the rel-
ative response of the regulon is compared, since the set of parameters determined were not unique. Exper-
iments underway to measure average LuxR levels within the cell will provide the data needed to further
constrain the choices of parameters.

Another model calibration criteria was that both positive and negative autoregulation of LuxR has been
described in the literature. The transcriptional rates of LuxR and LuxI calculated by equations (10) and (11)
are shown in Figure 4. Transcription of luxR initially increases with AI population, but levels out and de-
creases slightly as a result of negative autoregulation via the formation of the DNA loop. The arrow indi-
cates the occurrence of a fivefold over-expression of LuxR, resulting in a further decrease in luxR tran-
scription rate, as has been reported in the literature (Dunlap and Greenberg, 1988; Shadel and Baldwin,
1991). The transcription rate of luxI is proportional to S3+S4 1 S5 and increases with AI. The transcription
rate of luxR is proportional to S3 1 S4 and any time spent in S5 reduces its transcription rate and lowers
the steady-state population of LuxR. Therefore, negative autoregulation of LuxR greatly extends the dy-
namic range of the operonR response, because otherwise the induction rate would equal Vlux, which is pro-
portional to[LuxR]2.

Stochastic simulations were performed using ESSb (Exact Stochastic Simulator) an implementation of
the Gibson and Bruck (2000) optimization of Gillespie’s algorithm (Gillespie, 1977). A range of values (25
to 2000) for kin was used to yield various AI levels within the cell. The results from stochastic simulation
are compared to the deterministic steady-state calculations in Figure 5. Some differences between the de-
terministic and stochastic models are expected because each of the states is discrete, having a value of ei-
ther 0 or 1. Nevertheless the two modeling approaches give nearly identical results. The stochastic model
displays the same dynamic range that was seen in the deterministic model. This is an important result be-
cause is demonstrates that the model parameters determined using a deterministic model are useful in sto-
chastic models, with appropriate adjustment. This is especially important for calibration, since calibration
via stochastic simulation would be tedious beyond measure.

Stochastic simulations provide information concerning the noise behavior of the system. The luxIR sys-
tem becomes up regulated when the (RAI)2 complex binds to the lux box. Positive feedback systems are
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bOpen source code for the Exact Stochastic Simulator (ESS) is available at www.biospice.org or http://biocomp.
ece.utk.edu.

FIG. 3. Calibration of the steady-state analytical model to experimental data.
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characterized by a threshold that must be crossed for the system to transition from a lower stable state to a
higher one. The threshold in the luxIR system can be considered to be the concentration of (RAI)2 complex
required to initiate the state transition. An increase in AI population contributes to crossing this threshold
in two ways. Most obviously, it increases the mean population of (RAI)2 via its interactions with LuxR. A
more subtle, equally important effect, is that the noise in (RAI)2 also increases as the threshold is approached.
These effects can be seen in Figure 6. The standard deviation of the (RAI)2 population increases as it ap-
proaches the threshold. Once the threshold is reached, the production of LuxI increases rapidly with small
increases in AI.

Frequency domain analysis: tools for gene circuit architectural analysis

The FD approach is equivalent to the Langevin approach (Gillespie, 2000) and shares the same limita-
tions and caveats. However, in FD analysis the noise is dealt with using its power spectral density (PSD;
the frequency distribution of the noise) and the signal processing elements are dealt with in terms of their
transfer functions, H( f ) 5 ¶o( f )/¶i( f ), where o and i are output and input signals (molecular concentrations
or synthesis rates) respectively, and f is the frequency in Hz (Simpson et al., 2003). For a circuit with l nodes
(chemical species) with g noise sources, the noise PSDs at all nodes within the gene circuit are given by

[Sout( f )] 5 [uH( f )u2][Ssource( f )] (14)
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FIG. 4. Relative transcription rates as a function of AI population calculated by the deterministic model.

FIG. 5. Comparison of stochastic and deterministic solutions to luxIR quorum sensing model. The error bars for the
stochastic model results represent one standard deviation.
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where [Sout( f )] is an l 3 1 matrix of the PSDs of the total noise in the concentration of each chemical
species; [Ssource( f )] is an g 3 1 matrix of the PSDs of the noise sources; and [uH( f )u2] is an l 3 g matrix
of the power gains between node k (source) to node j (output). The elements of the noise power gain ma-
trix are given by

Hj,k ( f )H*j,k ( f ) 5 H2
const

P
nj,k

n51
11 1 1 2

2

2
P
mj,k

m51
11 1 1}

fpm

f

_ j,k
}2

2

2
(15)

where Hj,k(0) 5 ¶oj(0)/¶ik(0), Hconst, is a frequency independent term (usually Hconst 5 Hj,k(0)), H*j,k( f ) is the
complex conjugate of Hj,k( f ), and fz1. . . .n and fp1. . . .m are the critical frequencies associated with the zeros and
poles of the transfer functions from a source at location k to an output at location j. This assumes no poles or
zeros at the origin. Poles or zeros at the origin are easily added by the placement of the proper term(s) in the
numerator and/or denominator of equation (15). For later convenience, the order of the poles and zeros are
arranged from lowest (n,m 5 1) to highest (n,m 5 nj,k, mj,k) frequency. The poles arise from molecular decay or
dilution processes, and the zeros from poles in the back propagating path in feedback circuits (Simpson et al.,
2003).

The noise sources in genetic circuits are most often found in pairs at the point of molecular synthesis (or
polymerization or complex formation) and the associated point of decay (or dilution or polymer/complex
dissolution) due to the random timing and discrete nature of these events. For example, the single gene cir-
cuit of Figure 7 has four distinct noise sources associated with mRNA synthesis, mRNA decay, protein syn-
thesis, and protein decay or dilution. Analysis of these noise sources shows them to be well described by
shot noise with a wide band (compared to the frequency limitations of the circuit) white spectrum (Simp-
son et al., 2003). For a rate of a particular molecular event (i.e., synthesis, decay, dimerization, etc.) of kT,
the single-sided (positive frequency only) PSD of the noise source, Ssource( f ), is (Simpson et al., 2003)

Ssource ( f ) 5 2kT (16)

f
}
fzn_ j,k
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FIG. 6. Effect of noise in reaching the threshold in positive feedback circuits. Error bars represent 10 and 90 per-
centile values.
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At steady state, production and decay (polymerization and dissolution, etc) are in equilibrium, so the total
PSD for the pair of noise sources is

STT_eq ( f ) 5 4kT (17)

and the noise can be modeled as random sources in parallel with the molecular processes generating the
noise (Fig. 7).

Below we describe the application of FD techniques to the architectural analysis of an important sub-cir-
cuit of the QS system. Through this architectural analysis we seek an assessment of the most important
(i.e., dominant) noise sources and frequency shaping elements in the sub-circuit; the location and effect of
feedback elements; the parameter values that most affect critical circuit functions; and the role of noise (i.e.,
as a critical functional element as in the l switch, or as a detriment to circuit operation to be minimized).
Furthermore, we look to develop a deeper understanding of the role of this sub-circuit in the overall circuit
strategy coupled to feasible explanations of the selective pressures that led to the evolution of the circuit
architecture.

In principle it would be possible to perform the analysis using the graphical representation in Figure 2
or even just the list of chemical reactions and associated differential equations that constitute the circuit.
However, as we are dealing with signal processing concepts, we adopt an analogous electronic circuit rep-
resentation, as shown in Figure 8. Sources of molecular synthesis (including polymerization or complex
formation or dissolution) are modelled as either independent or dependent current sources; molecular de-
cay and dilution are modelled as resistors; and the molecular storage elements (i.e., the interior of the cell)
are modelled as capacitors (one for each molecular species). We use the circuit representation to determine
the transfer functions that go into equations (14) and (15).

As shown in Figure 8, we have divided the circuit into three sections: (1) transcription/translation (noise
analysis previously reported [Thattai and van Oudenaarden, 2001; Ozbudak et al., 2002; Simpson et al.,
2003]); (2) binding of the autoinducer (AI) and dimerization; and (3) feedback. Reversible reaction circuits,
like those of section (2), are ubiquitous elements in gene circuits and they play an important role in the
function and noise behavior of the QS system. As such, we present the details of the general analysis of
such circuits below.

Consider the simple reversible reaction in Figure 9. Species A is synthesized at a rate of kp, is converted
to species B at rate kf [A], and decays at rate gD[A]. Species B is converted back into A at a rate kr[B]. The
transfer functions are found by circuit analysis to be approximately (we have assumed that kr $ gD):c
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FIG. 7. Single gene circuit showing the noise sources associated with mRNA and protein synthesis and decay.

cNote that we have employed the concepts of the Miller effect and pole splitting, which are commonly used in the
analysis of electronic circuits [21]. If gD . kr, these two terms should be exchanged in the denominators of the trans-
fer functions.
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A simple examination of the transfer functions yields some important information. First, the zeros in the
transfer function come from the feedback inherent in reversible reactions. Furthermore, notice that the ad-
dition of the reversible reaction to the kp/gD circuit (which is equivalent to the protein output of the single
gene circuit [Thattai and van Oudenaarden, 2001; Ozbudak et al., 2002; Simpson et al., 2003]) adds a pole
and a zero to this output signal. So, the reversible reaction changes the transient response and the noise
spectrum at A, but does not change the steady state value of A. The transfer function from kp to B has the
same two poles as that from kp to A, but does not have the zero. So, the high frequency components of the
noise associated with kp are more heavily filtered at B than at A.

A second round of insights is gained by noticing that the low frequency pole of the transfer functions is
divided by the gain of the circuit (D,B./D,A. 5 kf /kr

d) plus one, while the high frequency pole is mul-
tiplied by this factor. This phenomenon is know as pole splitting (Gray, 2001), and as the gain is increased,
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the low-frequency pole moves closer to the origin ( f 5 0), while the other pole moves higher in frequency.
For reasons that will become obvious shortly, it is instructive to consider two special cases: (1) species A
is most likely to decay before cycling through the reversible reaction (gD..kf) and the gain is low (kr ..kf);
and (2) species A is likely to cycle through the reversible reaction several times before decay (kf ..gD)
and the gain is high (kf ..kr). For the first special case, the circuit at A has reduced to simply the kp/gD

circuit, and there is both very little signal and very little noise in B. The noise in A is band limited (band-
width 5 2p/gD) and mostly comes from the kp /gD noise sources (Fig. 10a).

In the second case, noise in A comes predominantly from the noise associated with the reversible reac-
tion sources and it is very broadband, while the PSD of the noise in B has two components: (1) the PSD
of the noise in B associated with kp has a large magnitude, but is very limited in bandwidth; and (2) the

COX ET AL.

328

FIG. 8. Simplified analogous electronic circuit representation of the LuxI/R quorum sensing system. This circuit only
includes the components of the positive feedback loop.

FIG. 9. A reversible reaction where Species A is synthesized at a rate of kp, is converted to species B at rate kf [A],
and decays at rate gD[A]. Species B is converted back into A at a rate kr[B].

http://www.liebertonline.com/action/showImage?doi=10.1089%2F153623103322452422&iName=master.img-007.png&w=432&h=282
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PSD of the noise in B associated with cycling through the reversible reaction is relatively small in magni-
tude (greatly attenuated by the low frequency pole), but has a very broad spectral distribution as the low-
frequency pole and the zero cancel at frequencies above the zero (Fig. 10b).

These two special cases are of particular interest in the QS systems as the binding of the autoinducer (AI)
and dimerization of this complex (Figs. 1, 2, and 8) proceed from the first special case to the second as [AI]
increases. In the binding of AI, the forward reaction takes place at a rate of (Table 1) kf1[AI][R]. From the point
of view of R, the linearized small signal value of kf in the above analysis would be kf1[AI]. For small [AI] the
first special case above applies because kf R 0. Conversely as [AI] increases, so does the small signal kf, and
the noise behavior approaches that of the second special case. The same is true for the dimerization reaction,
where the small signal kf value grows from essentially zero to larger values as the [RAI] increases. A final el-
ement in this chain is the reversible binding of the (RAI)2 to the operator in the lux promoter (Fig. 2). These
three reversible reactions are cascaded, and as described earlier, each reversible reaction operates to separate
the two most closely spaced poles. At a node where two reversible reactions are connected, there are two pos-
sible paths (Fig. 11). At a given node (C in Fig. 11) if the most likely event is to proceed into the forward path
of the next reversible reaction in the chain, then the noise at this node (C) “whitens,” and the band-limited noise
appears at the output of the next reversible reaction (D) in the chain. For the reactions described here, where
the linearized (i.e., small signal) kf terms are a function of molecular concentrations, this situation evolves as
[AI] and then in turn [RAI] and [(RAI)2 ] increase, giving rise to a dynamic noise behavior as demonstrated
through the simulation results (using ESS) shown in Figure 12.

DISCUSSION

Figure 6 clearly demonstrates that the role of noise in the QS circuit is to include the entire population
in the positive feedback function. As the [AI] increases toward the threshold value (i.e., the concentration
where the QS circuit switches into the induced state), the noise in (RAI)2 increases. At an individual cell
level, this would only result in some cells reaching the threshold early, while others reach it later. How-
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FIG. 10. The noise power spectral density for (a) species A and (b) species A dimer. The arrows show the pole split-
ting and the change in noise spectrum as the small signal kf increases due to increasing [A]. The noise in species A
whitens as kf increases, while the noise in the dimer becomes more band-limited.



ever, since these early switching cells reinforce their behavior throughout the population by production of
additional AI (and there is no counter balancing penalty for those cells with low [(RAI)2 ]), the noise is a
functional element in the QS positive feedback system. On the surface this does not seem to be as striking
an example of noise functionality as that seen in the l switch, as the noise would seem to do nothing that
increasing the strength of the positive feedback would not provide. However, we hypothesize that there is
a benefit obtained by distributing this additional positive feedback, in the form of noise, throughout the
population instead of within the individual cells. We outline this hypothesis below.

Consider a case where the AI is actively removed from the population, either by degradation (perhaps
by a gram-positive competitor) or by some other means. In this case, [AI] under represents the magnitude
of the population, and the QS circuit does not switch as it would if AI were removed only by passive dif-
fusion. However, as the population increases, more cells will switch due to noise. At relatively low popu-
lation levels, cells that have switched are likely to be well removed from each other, and they will not re-
main in the induced state as the background [AI] is too low. However, at higher population levels the
possibility of small groups of locally clustered cells all switching into the induced state is increased. If this
group is large enough, the additional local production of AI may allow these cells to remain in the induced
state. Over time more of these local groups are formed, perhaps eventually leading to self-sustained in-
duction of the entire population. Thus the noise, acting as positive feedback distributed throughout the pop-
ulation, may act to ensure the operation of the QS circuit even if other organisms or processes are actively
interfering with the signaling system.

The rationale for the use of frequency domain analysis is that the power spectral densities of the noise
terms are critically important in gene circuit noise behavior. It was previously demonstrated that autoregu-
lated gene circuits may optimize noise performance by shifting noise into frequency regimes where it has
a smaller effect on total circuit performance (Simpson et al., 2003). The analysis of the reversible reactions
of the QS system reported here show a significant and dynamic remodeling of the noise spectra. How this
may ultimately impact the total operation of the QS circuit is still under investigation. However, the analy-
sis of this gene circuit will not be complete without a careful consideration of this complex noise behavior
and perhaps other implications of the dynamic modulation of the circuit frequency response. Furthermore,
as similar reversible reactions are ubiquitous in gene circuit architectures, a detailed understanding of these
mechanisms as circuit components is fundamental to the development of gene circuit analysis, modeling,
simulation, and design disciplines.

Finally, a common caveat to the use of the Langevin equations, on which FD analysis is based, is that
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FIG. 11. The noise behavior in cascaded reversible reaction circuits depends on the most likely fate of molecules at
a given node.

FIG. 12. Autocorrelation (AC) functions of noise in the reversible reactions of the QS system simulated using ESS.
Example AC functions for purely white noise (a) and for band-limited noise (b). As the bandwidth decreases, the width
of the AC function increases. (c)–(e), (f)–(h), and (i)–(k) show the evolution of the AC function of the noise in R, RAI,
and (RAI)2, respectively as [AI] increases. Notice the growth of white noise (impulse at the origin) for R and RAI as
forward path of the subsequent reaction begins to dominate.
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they lose validity as the number of molecules of a given species becomes small. A comparison of simu-
lated (using ESS) and calculated (using equations (18[a]–[d]) PSDs for a dimerization reaction are shown
in Figure 13. Note that the excellent agreement between calculated and simulated results was obtained for
an average population of only 10 molecules in the monomer species. This suggests that at least the archi-
tectural insights provided by FD analysis hold validity even for small molecular concentrations.

METHODS

Exact stochastic simulator

The simple, deterministic approach to the description of chemical reactions uses the reaction rate and
stoichiometry of each of the constituent reactions to derive a system of ordinary differential equations. When
modeling systems with large populations of each chemical species, this approach can describe exactly the
evolution of the system over time. For systems containing smaller populations of molecules, this approach
no longer provides adequate fidelity. In this regime, a stochastic approach is employed instead.

The chemical master equation (CME) can be used for stochastic simulations of chemical reactions and
provides an exact representation of any gas-phase chemical system that is well-stirred and in thermal equi-
librium (McQuarri, 1967; Gillespie, 1977, 1992). The CME describes the probability distribution over time
of each species using a set of discrete, time-dependent difference and differential equations. At any given
time, the state of the chemical system is completely described by the current population of each species.
Hence, the CME is a Markov process. The chemical reactions are assumed to occur according to a Pois-
son process, with the rate of each reaction (also known as its propensity) determined by a stochastic rate
constant scaled by the number of available reacting molecules as shown below.

A 1 B R X 1 Y r1 5 k1[A][B] (19)

2C 1 3D R X 1 2Z r2 5 k2[C]([C] 2 1)[D]([D] 2 1)([D] 2 2) (20)

In the first reaction, propensity is the product of the stochastic rate constant and the populations of each of
the reacting species. Similarly, in the second reaction the propensity is the product of the stochastic rate
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FIG. 13. The calculated and simulated (using ESS) noise power spectral density in species A in a dimerization re-
action like that shown in Figure 9. For dimerization, species B becomes A2, and the forward reaction rate becomes
kf [A]2. In the above, kf 5 0.02, kr 5 0.01, gD 5 0.001, and kp 5 0.01. In the analysis, the contributions of noise from
molecular synthesis and the reversible reaction are shown separately and as a sum. Notice the excellent agreement be-
tween the simulated and calculated PSDs even though the average [A] is 10 molecules.



constant and the populations of each of the reacting species. Note that for reactants with stoichiometries
greater than one the reaction consumes more that one reactant molecule; hence, we must account for the
reduction in the populations of available reactants. Each state of the system consists of the populations of
each of the chemical species; given this state the propensity of each reaction can be easily determined. One
can then construct a Markov chain with each state determined by the population counts, the transitions de-
termined by the set of reactions, and using the propensity values as the reaction rates.

As the potential type and number of chemical species increases, the state space of the Markov chain
grows very quickly, making it quite difficult to solve analytically or numerically. Although researchers have
demonstrated that smaller systems can be solved analytically or numerically (Elf, 2003), such approaches
are often not practical and the CME is simulated using Monte Carlo techniques.

Gillespie introduced two techniques for the exact stochastic simulation of the CME (Gillespie, 1976), the
Direct Method and the First Reaction Method. The Direct Method exploits the fact that the reactions fol-
low a Poisson process by adding all the reaction propensity values to find the overall reaction rate of the

system a 5
î

ai. This overall propensity is the parameter for an exponential distribution used to compute

the time of the next reaction. To identify which reaction occurred, a uniform random variable is sampled,
with each reaction having likelihood ai/a of being selected. After finding the next reaction, the populations
of each of the species populations are updated in accordance with the reaction stoichiometry and the propen-
sity values are calculated for the new state. This process is repeated until the end of the simulation is reached.

The First Reaction Method (Gillespie, 1976) computes a set of exponentially distributed random vari-
ables using the propensity values for each of the potential chemical reactions as the rate constant for the
distribution. Each of these sampled values represents the length of time until the next occurrence of its re-
spective reaction. One then selects the first reaction that will occur, and updates the system state as with
the Direct Method. Although one may wish to then apply the second reaction when the first reaction is com-
pleted, it would not be mathematically correct to do so because the first reaction will alter the propensity
values of the system reactions. As with the Direct Method, after each reaction the propensity values are re-
calculated before proceeding to the next reaction.

Gibson and Bruck (Gibson and Bruck, 2000) developed an optimization of the Gillespie method by not-
ing that the propensity values for reactions are only changed if one of the reactant populations is changed.
Moreover, the reaction time samples drawn using Gillespie’s First Reaction Method remain accurate as long
as the reaction propensity values do not change. Hence, Gibson and Bruck employ dependency graphs and
improved data structures in their Next Reaction Method to significantly improve performance over the First
Reaction Method.

Our Exact Stochastic Simulator (ESS) reads SBML level 2 models and simulates biological models us-
ing the Gillespie algorithm with the Gibson and Bruck enhancements. ESS allows reactions to specify rates
with constants or Hill Repression Kinetics. However, while the use of Hill Kinetics may significantly speed
computation, the noise implications of this representation have not been fully explored. Accordingly, Hill
Kinetics within ESS should be used with due caution.
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