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Abstract
Background: Gene expression in a cell entails random reaction events occurring over disparate
time scales. Thus, molecular noise that often results in phenotypic and population-dynamic
consequences sets a fundamental limit to biochemical signaling. While there have been numerous
studies correlating the architecture of cellular reaction networks with noise tolerance, only a
limited effort has been made to understand the dynamic role of protein-protein interactions.

Results: We have developed a fully stochastic model for the positive feedback control of a single
gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo
and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among
proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the
overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the
physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is
independent of the choice of monomer or dimer as transcription factor and persists throughout
the multiple model topologies considered. For the toggle switch, we additionally find that the
presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its
random switching rate. Hence, the dimer promotes the robust function of bistable switches by
preventing the uninduced (induced) state from randomly being induced (uninduced).

Conclusion: The specific binding between regulatory proteins provides a buffer that may prevent
the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic
function of association-dissociation rates. Since the protein oligomerization per se does not require
extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or
extrinsic noise. The stabilization of regulatory circuits and epigenetic memory in general is of direct
implications to organism fitness. Our results also suggest possible avenues for the design of
synthetic gene circuits with tunable robustness for a wide range of engineering purposes.

Background
Recent experiments on isogenic populations of microbes
with single-cell resolution [1-3] have demonstrated that
stochastic fluctuations, or noise, can override genetic and
environmental determinism. In fact, the presence of noise

may significantly affect the fitness of an organism [4]. The
traditional approach for modeling the process of molecu-
lar synthesis and degradation inside a cell is by determin-
istic rate equations, where the continuous change of
arbitrarily small fractions of molecules is controlled
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instantaneously and frequently represented through sig-
moidal dose-response relations. However, the rate-equa-
tion approaches can not explain the observed phenotypic
variability in an isogenic population in stable environ-
ments. In particular, when molecules involved in feed-
back control exist in low copy numbers, noise may give
rise to significant cell-to-cell variation as many regulatory
events are triggered by molecules with very low copy num-
bers d 100 [5]. A well known example is the regulation of
inorganic trace elements [6], such as iron, copper, and
zinc. While these trace elements are essential for the activ-
ity of multiple enzymes, their presence may quickly turn
cytotoxic unless their concentrations are carefully control-
led.

Although the presence of phenotypic variation due to sto-
chastic fluctuations need not be detrimental for a popula-
tion of cells [7], elaborate regulatory mechanisms have
evolved to attenuate noise [8]. Several systems-biology
studies have recently focused on a select set gene-regula-
tory circuits, in particular those with feedback control.
Feedback control circuits have been identified as impor-
tant for multiple species and proven responsible for noise
reduction and increased functional stability in many
housekeeping genes through negative autoregulation [9],
long cascades of ultrasensitive signaling [10], bacterial
chemotaxis [11], and the circadian clock [12]. Addition-
ally, recent studies on iron homeostasis [13,14] in E. coli
highlight the noise-reducing capability mediated by small
RNAs.

Here, we study reversible protein-protein binding as a
novel source for genetic noise control. In particular, we
have quantitatively analyzed the effects of protein oli-
gomerization on noise in positive autoregulatory circuits
as well as a simple toggle-switch [15]. The all-or-none
threshold behavior of positive-feedback circuits typically
improves robustness against "leaky" switching. However,
due to their functional purposes, gene circuits involved in
developmental processes or stress responses that often
accompany genome-wide changes in gene expression are
intrinsically noisier than negative feedback circuits.

It is frequently observed that transcription factors exist in
oligomeric form [16], and protein oligomerization is an
important subset of protein-protein interactions, consti-
tuting a recurring theme in enzymatic proteins as well as
regulatory proteins. Well studied examples include the λ-
phage repressor, λCI (dimer), the TrpR (dimer), LacR
(tetramer), and Lrp (hexadecamer or octamer). While
many of the RNA-binding proteins dimerize exclusively in
the cytosol, the LexA repressor [17], the leucine-zipper
activator [18,19], and the Arc repressor [20] have been
shown to form an oligomer either in the cytosol ("dimer
path") or on the DNA by sequential binding ("monomer

path"). Previously, the efficacy of monomer and dimer
transcription-regulation paths to reduce noise was sepa-
rately studied for a negative-feedback autoregulatory cir-
cuit [21]. In contrast, we have focused on oligomerization
in positive-feedback autoregulatory circuits, as well as
genetic toggle switches based on the mutual repression of
genes [15]. We find that cytosolic transcription-factor oli-
gomerization acts as a significant buffer for abundance-
fluctuations in the monomer, overall reducing noise in
the circuit. Additionally, the noise-power spectral density
is shifted from the low-to the high-frequency regime. In
the toggle switch, cytosolic oligomerization may signifi-
cantly stabilize the functional state of the circuit. This is
especially evident for heterodimerization.

Yet another interesting case of ligand-binding-mediated
receptor oligomerization has been reported [22,23],
where the formation of various structures of oligomers
may act to buffer the intracellular signaling against noise.
Although our modeling and analysis is based on prokary-
otic cells, we expect our main findings to be organism
independent since protein oligomers, especially
homodimers, is such a common occurrence across the
species [24], with homodimers comprising 12.6% of the
high-fidelity human proteome [25,26].

Results and Discussion
Dimerization breaks long-time noise correlations in 
autogenous circuit
To evaluate the dynamic effects of protein-protein bind-
ing in positive-autoregulation gene circuits, we construct
several alternative models of positive autogenous circuits.
Each model emphasizes a different combination of possi-
ble feedback mechanisms, and the network topologies
considered can be grouped into the two classes of mono-
mer-only (MO) and dimer-allowed (DA) circuits, accord-
ing to the availability of a protein-dimer state (color
coding in Fig. 1). We further group the DA circuits into
three variations, DA1 through DA3, depending on which
form of the protein is the functional transcription factor
(TF) and where the dimerization occurs. For DA1, we only
allow the dimer to bind with the DNA-operator sequence
(dimeric transcription factor, DTF), while for DA2 dimer-
ization occurs through sequential binding of monomers
on the DNA. In DA3, the protein-DNA binding kinetics is
the same as in the MO circuit, hence monomeric tran-
scription factor (MTF), with the addition of a cytosolic
protein dimer state. While we will only present results for
DA1 in this paper, there is no significant difference for
DA2 and DA3 [Additional file 1].

Note that the feedback loop is not explicit in Fig. 1 but
implicitly included through the dependence of RNAp-
promoter binding equilibrium on the binding status of
the TF-operator pair. The sign (positive or negative) and
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strength of the feedback control is determined by the rel-
ative magnitude of the dissociation constants between
RNAp and DNA which is either free or TF-bound. For
instance, topology DA1 has positive feedback control if
K30 = k30/q30 > K32 = k32/q32, and K30 corresponds to the

level of constitutive transcription (transcription initiation
in the absence of bound transcription factor). For each
topology, we study the dependence of noise characteris-
tics on the kinetic rates by varying the dimer lifetime,
binding affinity, and the individual association/dissocia-

Schematic of model autoregulation gene circuitFigure 1
Schematic of model autoregulation gene circuit. The DNA binding status is indicated by Dxy, where x corresponds to 
the operator region (empty = 0, monomer = 1, dimer = 2), and y to the promoter region (empty = 0, RNA polymerase bound 
= 1). C represents the open complex of DNA-RNAp holoenzyme with the promoter sequence just cleared of RNAp and is 
subject to transcription elongation. Finally, M, P1 and P2 correspond to mRNA, protein monomer, and dimer, respectively. 
The network topologies can be grouped into two classes, monomer-only (MO) or dimer-allowed (DA) circuits. We have stud-
ied DA1 (red lines), which only allows the dimer to bind with the DNA-operator sequence, DA2 (green) with sequential bind-
ing of monomers on the DNA, and DA3 (blue), which shares protein-DNA binding kinetics with MO while allowing 
dimerization in the cytosol. Note that for topology DA2, we have chosen K31 = K30 (see text for details) We have assumed cells 
to be in the exponential growth phase and the number of RNAp (R) constant.
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tion rates (see Table and Fig. 1). While we only discuss
positive feedback control of the autogenous circuit in this
paper, we have obtained corresponding results for nega-
tive feedback control [Additional file 1].

Fig. 2 shows a sample of ten representative time courses
for the protein abundance. The effect of stochastic fluctu-
ations is marked in the MO circuit. However, in all the DA
circuits where the protein may form a cytosolic dimer we
observe a significantly reduced level of noise in the mon-
omer abundance. The suppression of fluctuations persists
throughout the range of kinetic parameters that (so far) is
known to be physiologically relevant (see Table 1).

Calculating the steady-state distribution for the monomer
and dimer abundances (Fig. 3) we observe a clear trend
that the monomer Fano factor (variance-to-mean ratio) is
reduced as the binding equilibrium is shifted towards the
dimer. This trend is conserved for all the investigated DA
topologies (see Supplementary Information). As long as
dimerization is allowed in the cytosol, the fast-binding
equilibrium absorbs long-time fluctuations stemming
from bursty synthesis or decay of the monomer. When a
random fluctuation brings about a sudden change in the
monomer copy number, dimerization provides a buffer-
ing pool that absorbs the sudden change. Otherwise, ran-
dom bursts in the monomer abundance will propagate to
the transcriptional activity of the promoter, leading to
erratic control of protein expression. It should be empha-
sized that this has nothing to do with the sign of regula-
tion and is in agreement with the observations of Ref. [21]

for negative autoregulation. Surprisingly, the magnitude
of noise reduction in the positive autoregulatory circuit is
nearly the same as that for negative autoregulation which
is typically considered a highly stable construct [Addi-
tional file 1].

A heuristic explanation can be found from Jacobian anal-
ysis of a deterministic dynamical system, which is justified
for small perturbations around a steady state. When a ran-
dom fluctuation shifts the monomer copy number away
from its steady-state value, the decay toward the steady
state can be described by the system Jacobian. The dispar-
ity in the magnitude of the (negative) eigenvalues of the
Jacobian matrix for the MO versus the DA circuits signifies
that the perturbed state is buffered by fast settlement of
the monomer-dimer equilibrium. This buffering occurs
before random fluctuation can accumulate, possibly with
catastrophic physiological effects, explaining the coarse
long-time patterns observed in the MO model in contrast
with the DA circuits (Fig. 2).

Frequency-selective whitening of Brownian noise
The dimerization process itself generates stochastic fluctu-
ations on a short time scale. However, since this time scale
is essentially separated from that of monomer synthesis
and decay (orders of magnitude faster), dimerization
effectively mitigates monomer-level fluctuations. The fre-
quency content of the fluctuations is best studied by an
analysis of the power spectral density (PSD), which is
defined as the Fourier transform of the autocorrelation
function [27], originally introduced for signal processing.
Fig. 4 shows the noise power spectra of DA1, and the dis-
tinction between the MO circuit and the DA topology is
immediately evident. In particular, we note the following
two features. (i) A power-law decay with increasing fre-
quency and (ii) a horizontal plateau for the DA circuits.
The power-law feature is explained by the "random walk"
nature of protein synthesis and decay: The power-law
exponent is approximately 2, which is reminiscent of
Brownian motion (a Wiener process) in the limit of large
molecular copy numbers. Compared to other commonly
observed signals, such as white (uncorrelated) noise or 1/
f noise, protein synthesis/decay has a longer correlation
time. If the autocorrelation function of a time course is
characterized by a single exponential decay, as is the case
for Brownian noise, the PSD is given by a Lorentzian pro-
file, and thus, well approximated by an inverse-square law
in the low-frequency regime. We do not observe a satura-
tion value for the MO circuit, and it is likely not in the fre-
quency window of physiological interest. This may
especially be the case for circuits where the correlation
times are long.

The noise reduction is in the physiologically relevant low-
frequency regime, and in Fig. 4 we have indicated the typ-

Ten independent time courses of the abundance of protein monomers in the (positive) autoregulatory circuitFigure 2
Ten independent time courses of the abundance of 
protein monomers in the (positive) autoregulatory 
circuit. The availability of a cytosolic dimer state (red, using 
circuit topology DA1) significantly reduces the copy-number 
fluctuations of the monomer compared to the monomer-
only (MO) circuit (blue). All corresponding MO and DA1 
parameters have the same values. In the ensuing simulations 
initial conditions are chosen to be the steady state solution 
of the corresponding deterministic rate equation so that the 
transient behavior should be minimized.
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ical values for a cell cycle and mRNA lifetime. Although
stochastic fluctuations impose a fundamental limit in cel-
lular information processing, multiple noise sources may
affect cellular physiology non-additively. For a living cell,
fluctuations are especially relevant when their correlation
time is comparable to, or longer than, the cell cycle. At the
same time, short-time scale fluctuations (relative to the
cell cycle) are more easily attenuated or do not propagate
[28]. Additionally, the observed flat region in the PSD of
the DA circuits implies that as far as mid-range frequency
fluctuations are concerned, we can safely approximate
them as a white noise. This insight may shed light on the
reliability of approximation schemes for effective stochas-
tic dynamics in protein-only models.

Increased lifetime of dimer plays an important role
The virtue of the cytosolic dimer state is also directly
related to the extended lifetime of proteins when in a
complex. Except for the degradation tagging for active pro-
teolysis, a much slower turnover of protein oligomers is
the norm. This is partly explained by the common obser-
vation that monomers have largely unfolded structures,
which are prone to be target of proteolysis [29]. It has also
been pointed out that the prolonged lifetime of the oligo-
meric form is a critical factor for enhancing the feasible
parameter ranges of gene circuits [30]. As seen from Fig. 3
(also Table 2), the fold change of the noise reduction,

while still significant, is not as strong for the (hypotheti-
cal) case of dimer lifetime being the same as that of the
monomer (γ2/γ1 = 1/2). However, the low-frequency
power spectra still exhibit almost an order-of-magnitude
smaller noise power than in the MO circuit with the same
rate parameters (Fig. 4). Hence, the noise reduction capa-
bility holds good as long as the dimer lifetime is kept suf-
ficiently long compared with the monomer-dimer
transition.

Effects of homo-dimerization in genetic toggle switch
The exceptionally stable lysogeny of the phage λ, for
which the spontaneous loss rate is d 10-7 per cell per gen-
eration [31,32], has motivated the synthesis of a genetic
toggle switch [15]. Toggle switch is constructed from a
pair of genes, which we will denote as gene A and B, that
transcriptionally repress each other's expression. This
mutual negative regulation can be considered an effective
positive feedback loop and provides the basis for the mul-
tiple steady states. The existence of multistability, in turn,
may be exploited as a device for epigenetic memory or for
decision making [33].

As the general attributes of positive feedback with cooper-
ativity suggest, a genetic toggle switch responds to external
cues in an ultrasensitive way: When the strength of a sig-
nal approaches a threshold value, the gene expression

Table 1: Probability rates for positive autogenous circuit

Category Symbol Reaction Value (s-1) Ref.

protein dimerization k1 P1 + P1 → P2 0.001–0.1 [51,52]
q1 P2 → P1 + P1 0.1–1

TF-operator int k20 P2 + D00 → D20 0.012 [53-55]
q20 D20 → P2 + D00 0.9
k21 P1 + D00 → D10 0.038
q21 D10 → P1 + D00 0.3
k22 P1 + D10 → D20 0.011
q22 D20 → P1 + D10 0.9

RNAp-promoter int k30 R + D00 → D01 0.038 [56-58]
q30 D01 → R + D00 0.3
k31 R + D10 → D11 0.038†, 0.38‡

q31 D11 → R + D10 0.3†, 0.03‡

k32 R + D20 → D21 0.38*†

q32 D21 → R + D20 0.03*†

Isomerization ν Dx1 → C + Dx0 0.0078 [55]

tsx-tsl elongation & decay α C → M + R 0.03 [59,60]
β M → P1 + M 0.044
γ0 M → ∅ 0.0039
γ1 P1 → ∅ 7 × 10-4

γ2 P2 → ∅ 0.7–3.5 × 10-4

Kinetic rates for the positive autogenous circuit. Experimentally available rates are all taken from lambda phage-E. coli complex. The values with 
superscript correspond to the circuit topologies DA1 (*), DA2 (†), and DA3 (‡) in Fig. 1.
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state can be flipped by a small change in the signal. For
example, the concentration of protein A (B) may rapidly
switch from high to low and vice versa. However, previous
studies of a synthetic toggle switch have shown that the
noise-induced state switching is a rare event [15,34,35]. In
the ensuing analysis, we aim to delineate the origin of this
exceptional stability.

In a simple model, the monomer-only (MO) toggle, regu-
latory proteins only exist in monomeric form. Although

an external signal is not explicitly included, random fluc-
tuations in the abundance of the circuit's molecular com-
ponents will occasionally flip the toggle-state for the two
protein species. Drawing on the results from our analysis
of positive autoregulatory gene circuits, we hypothesize
that dimerization in the regulatory proteins of the toggle
switch will serve to stabilize its performance against noise.
We allow the protein products of each gene to form a
homodimer, being either AA or BB, which is similar to the
cI-cro system in phage λ [36]. The dissociation constant

Stationary state distribution of monomer (black) and dimer (orange) protein abundance in the positive autogenous circuitsFigure 3
Stationary state distribution of monomer (black) and dimer (orange) protein abundance in the positive autog-
enous circuits. The left (right) column corresponds to a ratio of the dimer and monomer decay rates of γ2/γ1 = 1/10 (γ2/γ1 = 
1/2). The molecular copy numbers are collected at a fixed time interval (5·103 sec) after the steady state has been reached. 
Here K1 ≡ q1/k1 is the dissociation constant of the protein dimer. As the binding equilibrium is shifted towards the dimer state 
(decreasing K1), the noise level is monotonically reduced (see Table 2). Note that the prolonged protein lifetime due to the 
complex formation (left column) affects the noise level.
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for the dimers is defined as K1 = q1/k1, where k1 is the rate
of two monomers forming a complex, and q1 the rate of
the complex breaking up into its two constituents.

We evaluate the effect of the fast protein binding-unbind-
ing dynamics on the toggle switch performance by using
either (i) the monomers or (ii) the homodimers as the
functional form of the repressor. Fig. 5 shows, for selected

values of the dissociation constant K1, representative time
series of the protein monomer (left) and dimer (right)
abundances for the case of (a) monomeric or (b) dimeric
transcription factors, respectively. A careful analysis of the
phase space (in presence of noise) for our chosen set of
parameters confirms that the studied toggle-switch sys-
tems are in the bistable region [37].

When monomer is the functional form of the repressor
molecule (Fig. 5(a)) and K1 is large (limit of low dimer
affinity), the protein populations are dominated by mon-
omers. Hence, the circuit effectively behaves as an MO
toggle. As K1 decreases, we see that the level of random
switching is suppressed: Analogous to the autogenous cir-
cuit, the dimer pool stabilizes the protein monomer pop-
ulation. However, the noise suppression is not monotonic
with increasing dimer binding affinity. Indeed, for very
large binding affinities (small K1), the number of random
switching events is increased since the monomer is only
available in low copy numbers. Consequently in this
limit, it becomes more likely that a small fluctuation in

Power spectral density (PSD) of fluctuations in protein abundanceFigure 4
Power spectral density (PSD) of fluctuations in protein abundance. The PSD of the MO circuit clearly displays a 
power-law behavior. All other model systems with an available cytosolic protein dimer state (DA1 shown here) develop a pla-
teau in the mid-frequency region regardless of the model details (see Supplementary Information). As the dimer binding affinity 
increases, the noise level is further reduced. We have included the MO result in the dimer panel (right) for reference. Datasets 
with solid (empty) symbols correspond to γ2/γ1 = 1/10 (γ2/γ1 = 1/2).

Table 2: Relative Fano factors of protein abundance 
distributions

γ2 = γ1/10 γ2 = γ1/2

K1 (nM) monomer dimer monomer dimer

1 0.127 0.809 0.132 0.679
20 0.209 0.936 0.230 0.716
500 0.866 0.478 0.826 0.426

The Fano factor of protein abundance distribution for the autogenous 
circuits (topology DA1), relative to that of the monomer-only (MO) 
circuit, 8.729.
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Sample time series of monomer and dimer copy numbers in genetic toggle switchFigure 5
Sample time series of monomer and dimer copy numbers in genetic toggle switch. (a) MTF circuit, where mono-
mer is the functional form of the repressor. (b) DTF circuit, where dimer is the functional form of the repressor. The left 
(right) column shows the number of the two monomer molecules A and B (dimers AA and BB), and the initial state is always 
with species A (red) in high abundance. Note that the switching frequency depends on the binding affinity of protein dimer.
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the monomer abundance can cause a dramatic change in
the overall gene expression profile. The noise-stabilizing
effect of dimerization is also reflected in the correspond-
ing PSDs [Additional file 1]. For instance, we observe a
marked suppression of low-frequency fluctuations in the
monomer abundance with increasing K1.

In Fig. 5(b) we show corresponding sample time series for
the case of a dimeric repressor, all other properties being
the same as in (a). While the overall trends are similar, we
do note the following difference. Contrary to the mono-
meric repressor case, there are very few toggle events in the
strong binding limit: Since the signaling molecules (dim-
ers) of the dominant gene (the "on"-gene) tend to exist in
large copy numbers, a significant fluctuation is needed to

flip the state of the toggle switch. In the case of mono-
meric repression, the signaling molecule exists in low
abundance in this limit. Thus, the dominant protein spe-
cies in the dimeric-repressor system is able to maintain
much better control over the state of the toggle switch.

In Fig. 6, we show the distribution (NA - NB), the differ-
ence in molecule abundance for the two protein species in
the case of monomeric (left) and dimeric (right) transcrip-
tion factor. The asymmetry with respect to the zero axis is
caused by our choice of initial conditions (protein species
A in high concentration and species B in low concentra-
tion), as well as the finite length of the time series. For
monomeric transcription, the presence of dimers with
moderate binding affinity sharpens the monomer abun-

Distribution of monomer abundance differences between protein species A and BFigure 6
Distribution of monomer abundance differences between protein species A and B. The asymmetry with respect to 
the zero axis is due to the choice of initial state (species A high) and the finite time span of simulations.
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dance distribution while accentuating its bimodal charac-
ter. This is in agreement with the qualitative observation
from Fig. 5 on switching stability. For dimeric transcrip-
tion, we clearly observe that the symmetry of the system is
broken for small values of K1, indicating that the state of
the toggle switch is extremely stable, and hence, likely
determined by the choice of the initial conditions.

To systematically quantify our observations on the inter-
play between dimer-binding affinity and the functional
stability of the toggle switch, we generated long time series
(≈3·107 sec) to measure the average spontaneous switch-
ing rate. In Fig. 7, we show the average toggle frequency
relative to that of the MO toggle for the binding affinities
K1/nM = {2, 20, 100, 1000}, and the average MO switch-
ing rate is 7.5 × 10-6/hour. As expected, we find that inter-

mediate values of K1 are able to stabilize the toggle switch.
Fig. 7 also highlights the increased stability of the toggle
switch for a dimeric versus monomeric transcription fac-
tor, the dimeric switching rates always being lower and
approaching zero for strong dimer binding.

Heterodimerization in genetic toggle switch
We have also considered the case of heterodimerization in
the toggle switch, since the noise- and functional stabili-
zation of the switch may be directly affected by the com-
position and source of the dimers. Note that, the gene-
regulation activity is conferred by the two monomer pro-
teins A and B and not the heterodimer AB. However, we
find that the presence of (inactive) heterodimers gives rise
to very similar noise-stabilizing effects as that of
homodimers (Fig. 7). In fact, the existence of heterodimer

Random switching rates of genetic toggle switchesFigure 7
Random switching rates of genetic toggle switches. Ordinate is the ratio of the random switching rates of various tog-
gle switches to that of the monomer-only (MO) circuit, 7.5 × 10-6/hour. MTF, monomeric transcription factor; DTF, dimeric 
transcription factor; Het-MTF, monomeric transcription factor with deactivated heterodimer state.
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state allows the dominant protein species to effectively
suppress the (active) monomers of the minority species.
Thus the heterodimer circuit shows dramatically
enhanced functional stability as compared to the case of
homodimeric repressors, not sharing the discussed vul-
nerability of MO circuit to intrinsic noise. Although, to
our knowledge, this is a purely hypothetical toggle-switch
design, it provides a general strategy for noise control in
synthetic gene circuits, along with previously proposed
approach of overlapping upstream regulatory domains
[38].

Conclusion
Cells have evolved distinct strategies to combat the funda-
mental limits imposed by intrinsic and environmental
fluctuations. We investigated the role of protein oligomer-
ization on noise originating from the random occurrence
of reaction events and the discrete nature of molecules.
Recent efforts to correlate network structure with func-
tional aspects may provide valuable insights into
approaches for network-level noise control [39]. While
negative feedback is one of the most abundantly observed
patterns to achieve the goal of stability, it begs the ques-
tion of how cells reliably change the expression of genes
from one state to another. The ultrasensitive response cir-
cuit, exemplified by the ubiquitous signal transduction
cascades in eukaryotic cells, has been proposed as an
answer to this question [40,41].

In addition to the combinatorial expansion of functional
specificity, we argue that the availability of oligomeric
states contributes to the attenuation of stochastic fluctua-
tions in protein abundance. In positive autoregulatory
gene circuits, where the abundance of an expressed pro-
tein controls its own synthesis rate, dimerization provides
a buffer serving to mitigate random fluctuations associ-
ated with the bursty transcription-translation process. We
find that short-time binding-unbinding dynamics reduce
the overall noise level by converting potentially patholog-
ical low-frequency noise to physiologically unimportant,
and easily attenuated, high-frequency noise [28].

Noise-induced switching generally signals a defect in cel-
lular information processing. Untimely exit from latency
in the lambda-phage system directly implies, as the imme-
diate consequence to viruses, increased chance of being
targeted by a host immune system. In the case of a bacte-
rium, the expression of a specific set of sugar uptake genes
when the sugar is absent from the external medium is a
considerable waste of cellular resources. For example, lac
operon of E. coli can be considered to have the circuitry of
mutual antagonism between the lacI gene and lactose
uptake-catabolic genes [42]. A difference lies in the non-
transcriptional deactivation of the allosteric transcription
factor LacI. LacY, lactose permease, indirectly regulates

LacI by increasing lactose uptake, which in turn catalyti-
cally deactivates LacI. Likewise, many pili operons of
Gram-negative bacteria are also known to utilize heritable
expression states, which are of crucial role in pathogenesis
[43,44].

We expect that the random flipping of gene expression
states in the examples of positive-feedback-based genetic
switches may very well be closely coupled with the fitness
of an organism. Phenomenological models relating the
fitness of an organism to random phenotypic switching in
fluctuating environments have provided important
insights into the role of noise [45], but still many ques-
tions remain unanswered. Applying these insights to the
design of a synthetic gene switch demonstrates the poten-
tial use of affinity-manipulation for synthetic biology,
where the construction of genetic circuits with tunable
noise-resistance is of central importance. In particular, our
analysis highlights the potential utility of heterodimeriza-
tion to stabilize ultrasensitive switches against random
fluctuations. In practice, small ligand molecules may be
employed to regulate and tune the binding affinity of reg-
ulatory proteins, being either monomers or dimers. Our
results further suggest that the structure of the protein-
interaction network [33] may provide important insights
on methods for genome-level noise control in synthetic
and natural systems.

Methods
Model construction
To evaluate the general role of protein oligomerization in
a broad functional context, we studied the two most com-
mon motifs found in genetic regulatory circuits: positive
autoregulation and the bistable switch. The reaction
scheme studied is summarized in Fig. 1, where the bind-
ing/unbinding reactions between RNAp and promoter or
between TF and operator are made explicit. Each distinct
binding status of DNA is associated with a unique tran-
scription initiation rate, and then the overall rate of
mRNA synthesis is a weighted average of the initiation
rates for distinct binding status, where the weights are
given by the relative abundance of each configuration at
equilibrium, determined by the calculation of binding
energy [46]. Note that, neither binding equilibrium nor
empirical Hill-type cooperativity is assumed ad hoc. In
particular, we split the lumped transcription process into
two separate events, (i) isomerization of closed RNAp-
promoter complex to its open form and (ii) transcription
elongation followed by termination. This is to reflect the
availability of the free promoter while the transcription
machinery proceeds along the coding sequence of a gene
as soon as the promoter region is cleared of the RNAp
holoenzyme. Otherwise, the promoter would be inacces-
sible during a whole transcription event, altering the ran-
dom mRNA synthesis dynamics.
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To realize the genetic toggle switch in a stochastic setting,
we keep track of the microscopic origin of cooperativity
that gives rise to bistability. Among various strategies, we
employ multiple operator sites which have the same bind-
ing affinity with the repressor. The resultant circuitry is, in
essence, two autogenous circuits, A and B, which are con-
nected through the active form of their expressed proteins
(the active form being either monomer or dimer). The
connection is implemented by allowing the active form of
proteins A (B) to bind the operator sites of gene B (A). In
order to make the interaction between the two genes
repressive, unlike positive autogenous circuits, K31 and K32
in Fig. 1 are now greater than K30, making the protein tran-
scriptional repressors. For reasons of analytical simplicity,
we have studied the symmetric toggle switch, where the
reaction descriptions of each component follow those of
the autogenous circuit. Again, the quantitative characteris-
tics of macromolecular binding-unbinding are chosen
based on the phage lambda-E. coli system. The only excep-
tion is related to the multiple operator sites, where the sec-
ond repressor binds an operator site with higher binding
affinity when the first site is already occupied by the
repressor protein [47]. We introduce three different
dimerization schemes. Three different dimerization
scheme have been introduced: (i) homodimerization
with monomeric repressor, (ii) homodimerization with
dimeric repressor, and (iii) heterodimerization with mon-
omeric repressor. By solving for the stationary states of the
deterministic rate equations, we could identify the bista-
bility region in parameter space to which all the model
systems under consideration belong.

Stochastic simulation
While the deterministic rate equation approach or Lan-
gevin dynamics explicitly gives the time-evolution of
molecular concentration in the form of ordinary differen-
tial equations, chemical master equation (CME) describes
the evolution of a molecular number state as a continu-
ous-time jump Markov process. To generate the statisti-
cally correct trajectories dictated by CME, we used the
Gillespie direct [48] and Next Reaction (Gibson-Bruck)
[49] algorithms, both based on the exact chemical master
equation. The Dizzy package [50] were used as the core
engine of the simulations. To ensure that calculations
were undertaken in a steady state, we solved the determin-
istic set of equations for steady state using every combina-
tion of parameters investigated. We employed these
deterministic steady-state solutions as initial conditions
for the stochastic simulations. For each model system, we
generated 105 ensemble runs with identical initial condi-
tions and used the instantaneous protein copy number at
a fixed time point t = 5000 sec. To achieve high-quality
power spectra in the low- and high-frequency limits, we
ran time courses (~105 sec) with higher sampling fre-
quency (20 measure points per sec).

To calculate the average switching rate, we generated time
series of minimum length 3·107 sec (approximately cor-
responding to 1 year). We identify a state change in the
toggle switch by monitoring the ratio of the monomer
and dimer abundance for the two protein species. In order
to avoid counting short-time fluctuations that do not cor-
respond to a prolonged change of the toggle state, we a
applied sliding-window average to the time series, using a
window size of 1000 sec.
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