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The deduction of phenotypic cellular responses from the structure
and behavior of complex gene regulatory networks is one of the
defining challenges of systems biology. This goal will require a
quantitative understanding of the modular components that con-
stitute such networks. We pursued an integrated approach, com-
bining theory and experiment, to analyze and describe the dynam-
ics of an isolated genetic module, an in vivo autoregulatory gene
network. As predicted by the model, temperature-induced protein
destabilization led to the existence of two expression states, thus
elucidating the trademark bistability of the positive feedback-
network architecture. After sweeping the temperature, observed
population distributions and coefficients of variation were in
quantitative agreement with those predicted by a stochastic ver-
sion of the model. Because model fluctuations originated from
small molecule-number effects, the experimental validation un-
derscores the importance of internal noise in gene expression. This
work demonstrates that isolated gene networks, coupled with
proper quantitative descriptions, can elucidate key properties of
functional genetic modules. Such an approach could lead to the
modular dissection of naturally occurring gene regulatory net-
works, the deduction of cellular processes such as differentiation,
and the development of engineered cellular control.

gene regulation � quantitative modeling � noise � systems
biology � biocomputation

Most cellular functions result from various interactions
among genes, RNAs, proteins, and metabolites. These

interactions are controlled by complex regulatory networks, and
it has been proposed that these systems can be dissected into
smaller functional modules (1, 2). Importantly, such modules can
be carefully extracted from natural networks and studied from
both theoretical and experimental perspectives as isolated sub-
systems. The ultimate goal of such an approach would be to
couple well characterized modules together, thereby increasing
network complexity, to better understand cellular behavior.
Specific network building blocks, or motifs (3, 4), have been
identified in many biological systems, and detailed studies of
these networks may establish a framework for logical cellular
control.

Feedback loops, present in many cellular networks, use their
output as a regulatory input to perform a number of functions.
These functions can include the regulation of output to a
required precision (5), the rapid switching between two or more
outputs (6), and even the suppression or amplification of noise
(7, 8). With regard to biological networks, feedback plays a
central role in diverse processes from pattern formation to
development, and it is commonly found in the network diagrams
that describe the coordination of the precise behavior of cells (9).
Theoretical models of protein–DNA feedback loops and gene
regulatory networks have long been proposed (7, 10, 11), and
certain qualitative features of such models have been experi-
mentally corroborated recently (8, 12–15). However, to make
further progress toward understanding how sets of modules
interact in large-scale networks (16, 17), one needs to quanti-
tatively characterize the functionality of individual modules.

Here we studied an in vivo autoregulatory genetic module that
was motivated by our theoretical studies (18, 19) predicting the
trademark bistability of the positive feedback-network architec-
ture (18, 20–23). To quantitatively understand the key properties
of the positive feedback module, we chose to isolate an auto-
regulatory network (Fig. 1A) from the genetic switch of bacte-
riophage � (5, 24, 25). This network was chosen for two
important reasons. First, because activation is a common mode
of gene regulation (26), positive feedback plays a significant role
in the pathways that govern the behavior of many organisms (3,
4). Second, because we seek to quantitatively describe the
module, it is of utmost importance that the biochemical param-
eters describing relative protein production, protein dimer for-
mation, dimer–operator site binding affinity, and protein coop-
erativity are known (5, 25, 27–29). Thus, our approach, which
incorporates these biochemical parameters, provides a system-
specific quantitative model tailored for detailed comparison
with experimental observation.

Methods
Plasmid Construction, Cell Strains, and Reagents. Standard molec-
ular biology techniques were implemented to construct network
plasmids (30). All plasmids contained the ColE1 origin of
replication and the bla gene as the selective marker rendering
ampicillin resistance. The autoregulatory system was con-
structed on a high copy number [50–70 copies per cell (31)]
Escherichia coli plasmid (pT2002b) (Fig. 5, which is published as
supporting information on the PNAS web site, www.pnas.org).
Oligonucleotide primers were purchased from Operon Technol-
ogies (Alameda, CA) and Integrated DNA Technologies (Cor-
alville, IA). All genes and promoters were PCR-amplified by
using the PTC-100 PCR machine (MJ Research, Cambridge,
MA) with PfuTurbo DNA polymerase (Stratagene). DNA se-
quences were obtained as follows: the cI857 gene and the right
operator (OR) of the � phage were obtained from pGW7 (ATCC
no. 40166), the cI gene was obtained from pCS19 (ATCC no.
77409), the gfpmut3 gene (32) was obtained from pTAK117 (13),
and gfp(asv) was obtained from pJBA113 (33).

All plasmids were constructed by using restriction endonucle-
ases and T4 DNA ligase from New England Biolabs. Plasmids
were introduced into E. coli by using standard heat shock,
transformation and storage solution, transformation protocols
(30). The E. coli 2.300 strain (E. coli Genetic Stock Center no.
5002, �-, lacI22, rpsL135, and thi-1) was used for all experiments.
All cells were grown in the selective medium: LB (Difco) and 100
�g�ml ampicillin (Sigma). Plasmid isolation was performed by
using Eppendorf’s miniprep kit. Subcloning was confirmed by
restriction analysis. Plasmid modifications were verified by se-
quencing with the PE Biosystems ABI Prism 377 sequencer.

Abbreviation: OR, right operator.
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Gene-Expression Experiments. Experiments involved growth of E.
coli in the temperature range of 36–43°C � 0.5°C. Growth curves
of the E. coli strain were performed over the range of temper-
atures used to normalize growth rate across samples at different
temperatures. The expression state of the cells was determined
during logarithmic growth at an OD600 of 0.1–0.3. A negative
control, pTOR2G (plasmid lacking the activating cI857 gene),
was constructed such that the PRM promoter drives the expres-
sion of gfpmut3. Low expression levels from cells containing
pTOR2G were used to determine the basal rate of expression
from PRM. An additional control plasmid, pT202b, was con-
structed where transcription from the PRM promoter drives the
expression of the wild-type cI gene and gfpmut3. pT202b consists
of the same positive feedback network as pT2002b with the
exception of the wild-type cI gene subcloned in place of the
mutant cI857 gene. GFP expression from cells containing
pT202b were in an activated monostable state throughout the
entire temperature range (36–43°C) and not subject to temper-
ature-induced protein destabilization (Fig. 1D). At low temper-
ature, expression levels from pT202b were 3-fold lower than
expression from cells containing pT2002b (6- to 7-fold above that
of cells containing pTOR2G), and pT202b maintained the
activated level of expression throughout the temperature sweep.
Differences in the level of expression between the wild-type cI
and mutant cI857 genes warrant further exploration. A positive
control (pMTRCG) consisting of the Ptrc constitutive promoter
driving the expression of the gfpmut3 gene was used to monitor
the expression state of a strong constitutive promoter.

GFP Quantification by Using the Flow Cytometer. All expression data
were collected by using a Becton Dickinson FACSCalibur flow
cytometer with a 488-nm argon laser and a 515- to 545-nm
emission filter (FL1) at a low flow rate. Before analysis, cells
were pelleted and resuspended in filtered PBS (pH 7.2; Life
Technologies, Grand Island, NY) immediately after each time
point. Calibrite beads (Becton Dickinson) were used to calibrate
the flow cytometer. InSpeck green fluorescent beads (Molecular
Probes) were used to determine fluorescence sensitivity and size
measurements. Each fluorescent measurement of gene expres-
sion was obtained from three independent cultures exposed to
identical conditions. Two measurements were made for each
culture: 500,000 unfiltered cells and 50,000 cells filtered in a
narrow band of forward- and side-scattering space. The intro-
duction of a scattering filter normalizes the cellular size and
morphology variability, thereby providing a better basis of
comparison with simulations (34). Flow-cytometry standard
data files were converted to ASCII format by using MFI software
(E. Martz, University of Massachusetts, Amherst) and analyzed
with software written in FORTRAN and MATLAB (Mathworks,
Natick, MA).

Results and Discussion
Experimental Characterization of the Autoregulatory Module. The
autoregulatory network was extracted from the OR of phage �,
which controls its own viral life cycle by coordinately regulating
the expression of the cI and cro genes transcribed by the
promoters PRM and PR, respectively. Isolation of OR and the cI
gene provides the autoregulatory network (Fig. 1 A). The OR

Fig. 1. Autoregulatory network, theoretical predictions, and GFP-expression results. (A) The promoter region contains three operator sites, known as OR1–OR3.
The cI857 gene expresses � repressor (�), which in turn dimerizes and binds to one of the three binding sites, OR1, OR2 [10-fold activation (29)], or OR3 (repression).
(B) The nonlinearity of the governing model equation (see Modeling the Autoregulatory Module) leads to a bistable regime of the steady-state repressor
concentration [cI] at specific model destabilization rates (�x). (C and D) Contour plots obtained from flow cytometry depict fluorescence in log-binned arbitrary
units (A.U.) at varying temperatures. (C) Bistability is detected at 39 and 40°C in cultures of the autoregulatory network (pT2002b) containing the temperature-
sensitive repressor (cI857). Bistability can be distinguished in the illustrated contour plots, whereas in GFP fluorescence distributions of the whole population
we observed blurring between the high and low states. (D) Cultures containing the autoregulatory system (pT202b) with the wild-type cI gene maintain an
activated monostable state.
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was positioned upstream of the cI857 gene, which codes for the
temperature-sensitive � repressor protein such that the PRM
promoter regulates its expression. The gfpmut3 (32) gene was
positioned as the second cistron downstream of the PRM pro-
moter, ensuring that transcription from PRM results in the
expression of � repressor (cI857 gene) and GFP (gfpmut3 gene).
By varying temperature (35), one can tune the stability of the �
repressor protein and thus vary the degree of activation to
examine the expression dynamics of the positive feedback loop.
Cultures of E. coli cells containing the autoregulatory pT2002b
plasmids (Fig. 5) were initially grown at low temperatures
(30–36°C) to confirm a high monostable steady state (data not
shown). To probe for conditions of bistability, three identical cell
cultures were grown independently at 36°C, and the temperature
was gradually increased in 1°C increments to 43°C. Cultures
were maintained in logarithmic growth for five to six cell
divisions to reach steady state at each temperature condition.

Flow-cytometric measurements of GFP expression from single
cells containing pT2002b are shown in Figs. 1C and 2A. From 36
to 38°C, there was a single population of cells in a high
monostable state. Then, as the temperature was increased to
39°C (temperature-sensitive � repressor undergoes increased
destabilization, see Fig. 3B), the high monostable state split into
two coexisting stable populations and remained in two states
through 40°C. Finally, as the temperature was increased �40°C,
the high state vanished, leaving only a single low state. Figs. 1C
and 2 A depict typical unimodal and bimodal populations
throughout the temperature sweep in contour plots and fluo-
rescence histograms, respectively. Cells possessing an additional
plasmid, pT2002bsv [containing gfp(asv), which reduces the
half-life of gfpmut3 (33)] and grown under the same conditions
displayed similar qualitative features (Fig. 6, which is published
as supporting information on the PNAS web site). Cultures
containing a control plasmid (pT202b), which consists of the
same positive feedback network as pT2002b with the wild-type
cI gene subcloned in place of the cI857 gene, demonstrate an
activated high monostable state throughout the entire temper-
ature range (Fig. 1D), indicating that protein destabilization in
the pT2002b network is responsible for the observed bimodality.

Modeling the Autoregulatory Module. Experiments were designed
to quantitatively describe simulation results from a previously
reported deterministic model of an autoregulatory single-gene
network (19). The model is derived from a straightforward
application of the chemical kinetics describing the processes

depicted in Fig. 1 A. In Supporting Text, which is published as
supporting information on the PNAS web site, we provide a
detailed description of the derivation of the governing equations.
The result is the following set of equations governing the
temporal evolution of the number of cI (x) and GFP (g)
monomers,

ẋ �
1

h�x, v�
��f�x, v� � �x x�

ġ � ��f�x, v� � �g g

v � eln�2�t,

Fig. 2. Comparison of model and experiment over entire temperature and �x ranges. (A) GFP-expression histograms (green) expressed as linear values [in
arbititrary units (A.U.)] from autoregulatory network cultures were filtered across narrow forward and side scatter to normalize for cell size and morphology
and thus permit direct comparison to model. The simulations for GFP (B) and repressor (CI) (C) at increasing �x values are shown in blue.

Fig. 3. (A) Model results for the time evolution of the fluorescence at an
intermediate protein-destabilization value (�x � 3,750). The corresponding
probability distribution is depicted at the end of the time series. A.U., arbiti-
trary units. (B) Relationship between �x (model) and temperature (experi-
ment). The best-fit exponential curve (solid line) for the data [�x�e0.55(T � 32)] is
in close agreement with an exponential fit (broken line) obtained in a previous
study (35) [�x�e0.58(T � 32)] (see Table 1 for parameter list).
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where the cell volume v and the time t are scaled by the volume
of an E. coli cell and the cell-division time, respectively; i.e., just
after cell division the volume is 1 and the time is 0, and we let
the volume increase exponentially to 2 at t � 1. At division, the
volume halves, and we let x 3 x�2 and g 3 g�2. Likewise, the
destabilization rates �x and �g of cI and GFP are scaled by
the cell-division time, and � and � represent the basal production
rate of cI and relative efficiency of GFP production, respectively.
The ‘‘synthesis function’’ f(x, v) represents the net effect of
transcription and translation, whereas h(x, v) arises from the vast
separation of time scales set by the transcription and protein-
dimerization rates (36). A detailed analysis leads to their func-
tional form (see Supporting Text),

f�x, v� �
m�1 	 cx2�v2 	 �
1c2x4�v4�

1 	 cx2�v2 	 
1c2x4�v4 	 
1
2c3x6�v6

h�x, v� � 1 	
4c1x

v
	

4cxd0�x, v�

v2 	
16
1c2x3d0�x, v�

v4

	
36
1
2c3x5d0�x, v�

v6

d0�x, v� �
m

1 	 cx2�v2 	 
1c2x4�v4 	 
1
2c3x6�v6 .

The form of the synthesis term f(x,v) dictates the equilibrium
number of repressor monomers, and its functional dependence
on x along with the coefficients can be understood as follows. The
even polynomials in x occur due to dimerization and subsequent
binding to the promoter region. As depicted in Fig. 1 A, the 
i
prefactors denote the relative affinities for dimer binding to OR1
versus that of binding to OR2 (
1) and OR3 (
2). The prefactor
� � 1 on the x4 term is present because transcription is enhanced
when the two operator sites OR1 and OR2 are occupied (x2x2).
The x6 term represents the occupation of all three operator sites
and arises in the denominator, because dimer occupation of OR3
inhibits polymerase binding and shuts off transcription.

Importantly, because our focus is on an autoregulatory system
derived from � phage, most of the parameters are known,
enabling the derivation of a quantitative model. For the operator
region of � phage (5, 24, 27–29), we have 
1 � 2, 
2 � 0.08, � �
11, c1 � 0.05, and c2 � 0.33 so that the destabilization rate �x and
plasmid copy number m determine the steady-state number of
repressor molecules. Finally, to compare model results with
experiment directly, we needed to convert the GFP molecule
number g to a corresponding fluorescence value F. It is known
that GFP fluorescence is temperature-dependent (37); therefore
we assumed a destabilization-dependent proportionality be-
tween the number of GFP molecules and the corresponding
fluorescence, letting F � c(�x)(g � b0), where b0 is a fixed
constant and c(�x) is chosen for each destabilization (i.e., �x)
value (Fig. 7, which is published as supporting information on the
PNAS web site). We refer the reader to the Supporting Text for
a complete tabulation of the parameters used in the simulations
(Table 1, which is published as supporting information on the
PNAS web site).

Because the experimental results revealed significant fluctu-
ations (see Figs. 1C and 2A), we generalized the formulation to
include stochastic terms. Provided the dynamics of the deter-
ministic system reduces to equations as shown above, the fluc-
tuations arising from small molecule-number effects can be
incorporated into the deterministic picture (36, 38). The result
is the following Langevin equations,

ẋ �
1

h�x, v�
	�f�x, v� � �x x
 	 � 1

h�x, v�
	�f�x, v� 	 �x x
�x�t�

ġ � ��f�x, v� � �g g 	 ���f�x, v� 	 �g g�g�t�,

where the �i(t) are rapidly fluctuating random terms with zero
mean (��i(t)� � 0), and the statistics of the �i(t) are such that
��i(t)�j(t)� � �i,j(t � t). It is important to note that the noise
arises from the small number of reactant molecules, and in this
regard there is no external ‘‘noise parameter’’ tuned to a
particular value. This type of noise is always present in chemical
reactions but is typically ignored in other contexts when the
number of molecules is large.

In this model (19), transcriptional activation and protein
multimerization yield nonlinearities in the governing equations,
and for sufficient activation and � repressor protein destabili-
zation these nonlinearities lead to a multistable regime in the
steady-state protein concentration. In Fig. 1B we plot the
theoretical steady state of � repressor protein concentration as
a function of the destabilization parameter �x (correlated to
temperature). At low temperature (low destabilization rate), the
system is predicted to be in a monostable state characterized by
a high � repressor protein concentration. As the temperature is
increased, the system undergoes a transition, and three possible
steady-state concentrations emerge. Then, at high temperature
(high destabilization rate), the concentration returns to a monos-
table state, which is now characterized by a low protein concen-
tration. Within the region of multistability (intermediate desta-
bilization rates), the top and bottom branches are stable, so that
concentrations near these values will remain nearby despite
fluctuations. The middle branch, on the other hand, is unstable
so that tiny fluctuations will drive the protein concentration
toward one of the stable states. Hence, within the multistable
region, the system is predicted to have two experimentally
accessible states and thus is bistable.

Comparison of Experiment and Model. The experimental data (Figs.
1C and 2 A) agree quite favorably with the simulation results
(Fig. 2 B and C). Following the histograms from left to right (Fig.
2) corresponds to an increase in the destabilization rate for the
model and temperature-induced destabilization of � repressor in
the experiment (Fig. 1B shows the corresponding values of the
mean concentration on the theoretical bifurcation curve). In the
monostable regimes, both the experimental and theoretical
populations demonstrate a positive skewness manifest in distri-
butions with a steep rise and a long tail. The bistable regime
appears as overlapping distributions, indicating that relatively
rapid transitions are occurring between the two states. This is
predicted by the model: The temporal evolution of a single cell
elicits transitions between states on time scales less than the
cell-division time (Fig. 3A). In generating the model results of
Fig. 2, the destabilization rate, �x, was adjusted to give good
agreement between the theoretical and experimental distribu-
tions over the entire temperature regime. Using the obtained
model parameters for � repressor destabilization, we plotted �x
as a function of temperature (Fig. 3B). The resulting best-fit
exponential rise is in excellent agreement with previously re-
ported results (35) characterizing the graded enzymatic activity
of the temperature-sensitive � repressor protein.

Theoretical and experimental results for mean GFP values
from the distributions in Fig. 2 are plotted in Fig. 4 (see Fig. 6
for pT2002bsv results). Both experiment and theory show an
initial increase in the mean GFP concentration, which can be
understood with the aid of the model as follows. In the steady
state, the proportionality between the concentrations of GFP
and repressor is given by [GFP] � (�x��g)[cI] (see Supporting
Text), and because the destabilization rate �x is an increasing
function of temperature, there is an initial rise in GFP relative
to repressor. In addition, the initial rise in GFP between 36 and
37°C might be due to a loss of � repressor protein repression at
OR3. The initial rise is followed by the bistable regime. This
regime is characterized by a steep upper branch and a relatively
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f lat lower branch. Finally, for large destabilization rates, both
model and experiment are again monostable, characteristic of a
low basal rate (unactivated) of protein production. In an attempt
to demonstrate hysteresis in the mean GFP expression, the
experiment was repeated in the reverse direction from 43 to
36°C. We observed the same bimodal populations regardless of
the direction of the temperature sweep, and thus no hysteresis in
gene expression was apparent. The absence of hysteresis suggests
that noise-induced transitions between states may occur on time
scales less than the incubation time for each temperature (five to
six cell divisions). Importantly, hysteresis was a prediction gen-
erated from the deterministic model (18), and our failure to
observe hysteresis can be viewed as a rejection of this model,
which led to its refinement. The observed expression dynamics
and large fluctuations were captured only when noise terms were
incorporated into the deterministic model.

Along these lines, our results underscore the importance of
noise (34, 36, 38–41) in gene regulation and support the premise
(39) that differing cellular states can be accessed by way of
noise-induced transitions. In this regard, state transitions were
only observed once the system was destabilized by tuning to a
temperature corresponding to the bistable regime of the auto-
regulatory module. This bistable regime is distinct from the
bistable regime that exists in phage �, where in addition to the
autoregulatory module there is a second gene (cro) that re-
presses cI. In natural lysogenic studies, if wild-type cI was
replaced with cI857, then transitions are likely to occur more
frequently at high temperatures (38, 42). Furthermore, studies of
genetic modules at differing plasmid copy numbers, including
single-copy systems, will be critical in assessing the stability and
switching dynamics of low copy-number genomic networks.

To compare the distributions of Fig. 2 quantitatively, we
explored the coefficient of variation (CV) to assess the relative
dispersion defined as the variance normalized by the square of
the mean. The experimental results presented in Fig. 4B depict

an S-shaped curve: We observed an initially low and slowly
decreasing CV followed by a transition zone marking the bistable
regime and increasing CV and finally a relatively high and slowly
decreasing CV denoting the low state of the system. The simu-
lation results presented in Fig. 4D compare quite well with the
experiment. Initially, with the system in a high stable state the
CV is low and slowly decreasing. Because in the simulations
the source of the fluctuations is small molecule numbers, the
relatively low CV results from the relatively large number of
molecules in the high state. After entering the region of bist-
ability, the CV begins to transition to a higher value. The
transition zone is a signature of the bistable regime, because the
relatively low CV marks the high state, and a high CV is
characteristic of the low state, so that the CV in the transition
zone correlates with a weighted average over the two states.
Once the system enters the low stable state, the CV reaches a high
value and begins to slowly decrease. Taken together, the exper-
iments and simulations suggest that a significant source of noise
in gene expression is due to fluctuations in the absolute number
of molecules caused by random variation in the timing of
individual biochemical reaction events (34, 36, 39, 40).

These results demonstrate that the incorporation of fluctua-
tions in the model is required to capture the essence of the
autoregulatory module. More specifically, our theoretical and
experimental results show that with lower strengths of activation,
the positive feedback module can switch between states spon-
taneously. Such variability in gene expression has phenotypic
consequences that may affect cellular processes such as differ-
entiation and may lead to disease (9, 43). For instance, the
transformed phenotype identified in some cases of tumor for-
mation can be attributed to the instability of autocrine positive
feedback loops (44). In contrast, our model shows that with
higher activation a positive feedback loop is resistant to noise-
induced transitions and maintains discrete stable states with
inherited patterns of gene expression. Such differences in phe-
notype are not subtle and thus require quantitative descriptions,
particularly in light of the important role that positive feedback
loops play in complex signaling outcomes (9).

This study highlights the importance of assessing the stability
of states and its potential implications on the resulting pheno-
type. We have integrated model predictions and experiments to
provide insight into biomolecular processes that affect the
stability of gene-expression states. Although model simulations
predict (Fig. 3A) relatively rapid switching between high and low
states, direct experimental verification is necessary. A comple-
mentary microscopic study might permit temporal measurement
of transitions occurring on time scales less than the cell-division
time and enable direct model–experiment comparison at the
single-cell level, whereas flow cytometry (used in this study)
provides single-cell statistics across a population of cells. Addi-
tionally, it is important to note that maturation time and turnover
rate of the GFP protein may pose additional temporal con-
straints of experimentally determining rapid switching times.
Advances in new fluorescent proteins and imaging systems (45)
might enable direct experimental measurement of switching
rates and nicely complement existing computational and exper-
imental techniques that investigate complex cellular processes.

In this study we demonstrated how an integrated approach,
which combines an isolated autoregulatory gene network and a
quantitative model, can be used to elucidate key properties of a
common functional module. A combined theoretical and exper-
imental approach of this sort can be a valuable tool in resolving
the complexity of large-scale gene regulatory networks. The
top-down approaches, which are used by many investigators to
analyze the expression states of thousands of genes, have con-
tributed toward understanding the global patterns of gene
expression and assessing gene lethality. Our bottom-up ap-

Fig. 4. Quantitative comparisons of experiment (A and B) and model (C and
D). (A) Mean GFP expression versus temperature of three independent cul-
tures of population distributions from Fig. 2A. Cultures were initially grown
at either a high (36°C, solid green line) or low (43°C, dotted green line) state
and swept through a bistable regime to the alternate stable state. (B) The
coefficient of variation (CV) as a function of temperature for three typical
independent cultures is in agreement with the CV calculations obtained from
the model (D). (Inset) CV for a strong constitutive promoter [positive control
(see Methods)] is consistently low and distinct from the bistable autoregula-
tory network.
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proach, which reduces the complexity of these gene networks to
their essential components, will lead to the modular dissection
of network architectures (1, 2) and refined descriptions of
gene-expression dynamics. The combination of these two com-
plementary approaches will eventually lead to the elucidation of
the organization and functioning of gene regulatory networks.
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