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Reliable Noise

MOLECULAR BIOLOGY

David Levens 1 and Ashutosh Gupta 1, 2

Assessing how the noise created in

transcription factor regulatory circuits affects 

gene expression is essential to understanding 

network operation and output.

        M
ost measurements of gene expres-

sion assess large numbers of cells 

to improve precision and reduce 

the “standard error” (the standard deviation 

of the mean). Yet, the standard deviation of 

the fl uctuations of a measured property, such 

as cell proliferation, over time in a single cell 

(in a system at equilibrium or steady state) or 

across a cell population, scaled to the mean of 

the measured property, is defi ned as “noise.” 

Despite this pejorative, a full accounting of 

noise provides insights into the pathways and 

mechanisms controlling a measured property. 

On page 1142 of this issue, To and Maheshri 

demonstrate that noise itself can generate a 

system that switches spontaneously between 

high and low gene expression ( 1). This fi nd-

ing implies that fl uctuation in the numbers of 

regulatory molecules may drive physiological 

transitions without having to precisely spec-

ify the numbers of other molecules needed to 

prepare chromatin and make RNA. However, 

these same fluctuations might initiate and 

sustain pathological states, so mechanisms to 

suppress such fl uctuations must also exist.

The basic experimental scheme used by To 

and Maheshri involves expressing TetVP16, a 

recombinant transcription factor, from a weak 

minimal promoter bearing either one or seven 

binding sites for TetVP16 itself. This positive 

feedback arrangement mimics a commonly 

occurring biological regulatory motif ( 2). 

Reporter genes encoding fluorescent pro-

teins that are driven by either promoter are 

then used to monitor transcriptional output 

in cells. Upon the graded removal of doxycy-

cline, a compound that inhibits the binding of 

TetVP16 to DNA, a cell population can tran-

sition from low to high reporter gene expres-

sion in this system.

To and Maheshri observed that with a sin-

gle TetVP16 binding site in the promoter, the 

entire cell population increased reporter gene 

expression gradually and coherently. How-

ever, with seven TetVP16 binding sites, even 

at low doxycycline concentrations, a single 

burst of transcription could drive enough 

TetVP16 expression to enable visualization 

by sustained high reporter expression, the 

result of a high transcription output state in 

individual cells that sporadically relaxed to 

low output. The high-output state was associ-

ated with bursts of transcription that were less 

frequent, and either of longer duration or of 

higher intensity compared to bursts observed 

in the low-output state. Because only a sin-

gle polymerase can initiate transcription at a 

promoter at one time, prolonging a burst to 

include more successive rounds of transcrip-

tion initiation will increase output relative to 

more frequent, but short bursts.

The same bimodal pattern of low and high 

gene expression was also observed with a 

stronger promoter bearing just one TetVP16 

binding site. Thus, cooperative binding of 

TetVP16 was excluded as the cause of the 

switch from low to high transcription out-

put. This two-state system is distinct from 

the monotonic curve defi ned by calculations 

based solely upon the binding constants and 

concentrations of interacting molecular spe-

cies in the absence of cooperativity. The study 

of To and Maheshri also reveals the diffi culty 

of rigorously accounting for the biologically 

relevant species of macromolecules. To con-

struct a working mathematical model, the 

authors had to correct for a cytoplasmic res-

ervoir of inactive TetVP16 molecules and for 
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structure can be thought of as a long “green” 

tail distribution of many small savings that add 

up to a major opportunity for reducing energy 

consumption, while also improving a building’s 

responsiveness to its occupants. This presents 

corresponding challenges that are at the fron-

tiers of distributed computing and communi-

cations; rather than replicating the history of 

their development, today’s best practices can 

be extended to this largest of all programming 

environments—the built environment. 
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Dynamic system stability. The fracton of cells 
expressing a gene is a function of the concentra-
tion of an effector molecule (as in the system used 
by To and Maheshri). At very low or high effector 
concentrations, the expression system is often off 
(gray) or on (green). At intermediate concentra-
tions, the system is bimodal, fl ipping between both 
states (region with lines). Nevertheless, the overall 
system is stable. C

R
E

D
IT

: 
N

.K
E

V
IT

IY
A

G
A

L
A

/S
C

IE
N

C
E

Published by AAAS

 o
n 

A
pr

il 
7,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


www.sciencemag.org    SCIENCE    VOL 327    26 FEBRUARY 2010 1089

PERSPECTIVES

the ubiquitination of TetVP16, a modifi cation 

that generates the most transcriptionally rel-

evant species, but a species that is unstable 

(marked for proteolysis).

Cross-regulating and self-regulating tran-

scription factor regulatory circuits are com-

mon, and describing how noise is suppressed 

or amplifi ed as it is transmitted through these 

networks may be essential to understanding 

their operation. The inherent statistical fl uc-

tuations around the mean output of a weak 

promoter [about one transcript per cell ( 3)] 

generate intrinsic noise. For long-lived gene 

products, this noise can be averaged away 

over time. But if the gene product is a short-

lived transcription factor, then this intrinsic 

noise is amplifi ed and propagated onto each 

of the transcription factor’s target genes as 

extrinsic noise ( 4– 6). Depending on the qual-

ity and number of transcription factor bind-

ing sites, as well as on the architecture, con-

text, and strength of their associated promoters, 

different target genes may be tuned to switch 

to high output at different concentrations of 

transcription factor ( 7). Positive feedback 

onto the gene encoding the transcription fac-

tor itself, fi xes the stochastic switch in the 

“on” position.

Such stochastic switching in a uniform 

population of unicellular organisms generates 

a range of responses to a defi ned stress and 

increases the likelihood of survival. This sort 

of switching may also be critical during meta-

zoan development. Whereas the nematode 

Caenorhabditis elegans hardwires the fate of 

each of its 959 cells ( 8), the 1013 cells of the 

human body are unlikely to be explicitly pro-

grammed, and so some form of probabilisitic 

specifi cation is required. When the number of 

cells in a developmental fi eld is suffi ciently 

large, precise stochastic switching may be 

guaranteed by chance. This would seem to 

be especially appropriate for genes encoding 

effectors whose synthesis and release from a 

small number of cells elicit a cell nonautono-

mous response, ultimately recruiting a cohort 

of cells to the same switched fate. Thus, a 

defi ned physiological or developmental state 

may be viewed as an “attractor” ( 9), generat-

ing a stable system, despite the fl uctuations of 

individual cells (see the fi gure).

However, for some genes, even a pulse 

of inappropriate expression may provoke 

untoward consequences, and so unsched-

uled stochastic switching may need to be 

suppressed in some cases. For example, 

even a brief increase in the concentration of 

the transcription factor Myc in some cells 

provokes programmed cell death ( 10). The 

problem becomes how to suppress stochas-

tic pulses that might put the system into an 

unfavorable state, while ensuring that proper 

switching, driven by bona fi de signaling, is 

allowed ( 11). End-product feedback regu-

lation would be inherently too slow to con-

trol noise in this situation. Indeed, in the 

case of human Myc, transcription gener-

ates dynamic DNA supercoiling that when 

suffi ciently intense, provokes a change in 

DNA conformation. This threshold-depen-

dent change in DNA conformation serves as 

a real-time sensor of the intensity of ongo-

ing transcription, enabling the effector com-

ponents of this system to intercept incipient 

fl uctuations and suppress noise, while trans-

mitting true signals ( 12– 14). Similar adapta-

tions might be anticipated for genes that are 

required at uniform, low levels of expres-

sion, whereas other mechanisms are likely to 

expand the dynamic ranges of genes, prob-

ing the limits of expression space.  
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Changing Views of the 
San Andreas Fault

GEOPHYSICS

Katherine Scharer

A combination of high-resolution laser imaging with improved radiocarbon dating techniques is 

providing new ways to view earthquake behavior.

          T
he magnitude 7.0 earthquake that 

struck Haiti on 12 January 2010 is a 

reminder of the devastation caused 

by large earthquakes. Because recurrence 

of large (M 7–8) earthquakes is rare, on the 

order of centuries, studying the past behavior 

of a fault guides future expectations. Paleo-

seismologists examine the stratigraphic and 

geomorphic history of deposits and land-

forms along a fault for evidence of past rup-

tures. Such observations provide information 

on when earthquakes happened, what parts 

of the fault failed, and the size of the earth-

quakes. The collected geologic data form 

the backbone of probabilistic seismic hazard 

analyses ( 1) used by the insurance and engi-

neering industries and are increasingly used 

to explore models of lithosphere rheology 

and fault interaction ( 2,  3). Because of sparse 

data, however, inferences about patterns of 

strain accumulation and release are a com-

mon occurrence. On pages 1119 and 1117 of 

this issue, Zielke et al. ( 4) and Grant Ludwig 

et al. ( 5) present data and interpretations pro-

viding an exciting new view that questions 

fault behavior models that have been applied 

to the south central San Andreas Fault for 

decades, highlighting the value of revisiting 

old problems with new techniques.

Fault behavior models describe the amount 

of slip (the relative displacement of points on 

opposite sides of a fault), length, and loca-

tion of ground-rupturing earthquakes along a 

fault (see the fi gure, panels A and B). In the 

1980s, observations of 8 to 10 m of slip mea-

sured for the most recent large earthquake 

(in 1857) and inferred for the two preceding 

earthquakes along the Carrizo Plain section of 

the southern San Andreas Fault contributed to 

the development of the characteristic and uni-

form slip models ( 6,  7). A fundamental prem-

ise of both models was that every rupture that 

crossed a specifi c region of the fault produced 

similarly large slip, and thus controlled the 

frequency of earthquakes along that segment. 

If correct, then the timing of large ruptures 

like the M7.9 in 1857 seemed to be controlled 

by properties of the fault in the Carrizo Plain 

( 8). In comparison, the variable-slip model 

allows the slip, rupture location, and length to 

change with each earthquake ( 6).
Department of Geology, Appalachian State University, 
Boone, NC 28608, USA. E-mail: scharerkm@appstate.edu

Published by AAAS

 o
n 

A
pr

il 
7,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org

