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Analysis of senescent Escherichia coli cells reveals a link
between protein oxidation and the fidelity of the translational
apparatus. This model system has also provided a mechanistic
molecular explanation for a trade-off between reproduction and
survival activities, which may inspire proponents of the disposable
soma theory and antagonistic pleiotropy hypothesis of aging.
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Introduction
Cytokinesis in bacteria such as Escherichia coli proceeds in
an apparently symmetrical fashion. The components of the
cytoplasm are dispersed non-conservatively during fission
and damaged constituents are distributed equally to both
cells produced. As a consequence, E. coli cells do not
exhibit a ‘Hayflick limitation’ (a limitation in the number
of divisions an individual cell can complete; [1]) in their
reproduction or a mandatory replicative aging process.
Moreover, evolutionary biologists have argued that biological
aging is only applicable to organisms with a soma distinct
from the germline [2]. If we accept this definition, then
unicellular bacteria are clearly not members of the exclusive
club of aging creatures. This is not to say that bacteria are
immortal. Bacterial cells entering a non-proliferating state
(stationary phase) because of nutrient depletion gradually
lose their ability to recover and reproduce. These ‘sterile’
cells initially remain intact but may eventually lose their
membrane integrity and life-supporting activities [3•].
This process has been referred to as conditional senescence
elicited by growth arrest [4]. Recent analysis of conditional
senescence in E. coli has revealed interesting similarities
with the aging process of higher organisms and may, in fact,
provide mechanistic support and inspiration for some 
contemporary aging theories, including the free radical
hypothesis of aging and the disposable soma theory.

In this review, results demonstrating that there is a trade-
off between reproduction and maintenance in E. coli are
discussed in the context of aging theories. The molecular
explanation for this trade-off includes sigma factor 
competition for RNA polymerase binding and explains
how the quality of the environment can be sensed and
translated to intracellular signals that control the allocation
of resources between reproductive and maintenance activities.
Furthermore, recent data pointing to a link between 
translational accuracy and protein oxidation in senescent

E. coli cells highlights that there may be lessons to learn
from this model system also in the context of free radical
biology and aging.

Trade–off between reproduction and maintenance
Genes induced early upon cellular growth arrest have been
recognized as the most important ones in the bacterial
fight against stasis-induced senescence (see, for example,
[5–7]). Many of these genes encode proteins with specific
roles in protecting the cell against external stresses, such as
heat, oxidants and osmotic challenge. As a consequence,
growth-arrested cells are highly resistant to a variety of 
secondary stresses, a phenomenon known as stasis-induced
crossprotection [5]. This crossprotection relies, to a large
extent, on one single regulator, the sigma factor σS (see, 
for example, [6]). The σS transcription factor accumulates,
binds and directs the RNA polymerase to more than
50 specific genes upon conditions of cellular starvation and
stress [6]. The members of the regulon are a diverse set of
proteins whose functions overlap significantly with those
of the daf-16-regulated genes of Caenorhabditis elegans (see,
for example, [8–10]). The Daf-16 fork-head transcription
factor is a key regulator in the starvation-induced dauer
formation and, like σS, this regulator directs the transcrip-
tional apparatus to genes involved in protection against
heat shock and oxidative agents (see, for example, [8,9]).
Overexpression of daf-16 extends the life span of adult
nematodes, whereas daf-16 inactivation accelerates aging
and causes an increased oxidative damage of proteins [10].
Similarly, E. coli mutants lacking σS exhibit accelerated
senescence during conditions of growth arrest [6], and 
elevated levels of oxidatively damaged proteins [11,12].
Apart from σS and the primary defense proteins, such as
superoxide dismutases and catalases [11,12], glutaredoxin
2 has recently been shown to be required in the combat
against protein oxidation, particularly in the stationary
phase [13]. In Salmonella, both σS and σE have been shown
to be required for protection against oxidative damage 
in stationary phase. Mutants lacking σE have reduced 
survival during stationary phase as well as increased 
susceptibility to oxidative stress [14•]. Cells of a Salmonella
strain lacking both σE and σS become non-viable after
24 hours in stationary phase, but survival of these mutants
is completely preserved under anaerobic stationary-phase
conditions [14•]. This reinforces the argument that oxidative
injury is one of the major mechanisms of reduced microbial
viability during periods of nutrient deprivation.

Somewhat surprisingly, it has been demonstrated that
mutations in the gene encoding σS are common in many
natural and laboratory E. coli populations. This has recently
been explained, in part, by the fact that there is a selective
advantage of losing σS during growth under non-stressful
conditions [15•]. The loss of σS in populations growing in
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a glucose-limited chemostat is accompanied by an elevated
expression of genes contributing to fitness, such as genes
encoding glucose uptake systems [15•]. Thus, there
appears to be a trade-off between the functions relating to
reproduction and those concerned with maintenance and
stress resistance. There are, in fact, other examples of such
a trade-off. For example, Kurland and Mikkola [16] found
the growth rates of natural and laboratory isolates of E. coli
to differ significantly, and this difference correlated with
altered kinetic properties of the translational apparatus. In
general, isolates exhibiting fast growth and efficient 
ribosomes died more rapidly during starvation-induced
stasis. Continuous cultivation in chemostats effectively
selected for cells with faster growth rates and a concomitant
increased efficiency of translation. However, the pay-off
for this increased rate of reproduction was a reduced ability
to withstand starvation-induced stasis [16].

Trade–off as a consequence of sigma factor competition
The conflict between proliferation activities (primarily
directed by the housekeeping sigma factor, σ70) and 
maintenance (primarily directed by σS) might stem 
from the fact that sigma factors compete for polymerase
binding (Figure 1). Even a subtle overproduction of σ70

effectively shuts down transcription from genes requiring
σS and the cells become stress-sensitive [17]. Also, 
over-expression of rpoS, which encodes σS, attenuates the
expression of genes requiring σ70 [17]. This antagonism
between sigma factors has recently been shown to be highly
regulated and is dictated by the nutritional quality of 
the environment and the hormone-like nucleotide ppGpp 
(see later and [18••]). 

Many genes requiring alternative sigma factors have been
shown to depend on ppGpp for their induction. For example,
the inducers of the σ54-dependent promoters Po and Pu
are effective only when ppGpp levels are elevated [19,20].
Similarly, mutant cells with no or low levels of ppGpp
exhibit an attenuated and sluggish expression of
σ32-dependent heat shock genes [21,22]. In addition,
mutants lacking ppGpp fail to induce σS–dependent genes
upon imposition of stress and starvation [23,24]. The fact
that σS itself requires ppGpp for its production [23–25] 
initially appeared to explain this. However, it was later
demonstrated that σS–dependent genes require ppGpp
even in the presence of wild-type levels of σS [26•]. In
other words, ppGpp exerts a dual control on the RpoS 
regulon by affecting the levels of the required sigma factor
and its activity. A recent report has presented evidence for
a role of ppGpp in facilitating the ability of σS and σ32 to
compete with σ70 for RNA polymerase binding [18••]. The
data suggests that ppGpp-dependent alteration in sigma
factor competition for RNA polymerase binding is an 
integral part of the typical stringent response that allows
alternative sigma factors to operate successfully in concert
with σ70 during increased maintenance requirements. In
other words, ppGpp primes the RNA polymerase in accordance
to environmental signals. As a result, the transcriptional
apparatus is primarily occupied with transcription of
σ70-dependent housekeeping genes as long as the ppGpp
levels are low, which signals that the nutritional status of
the environment is favorable for reproduction. When 
conditions are less favorable for proliferation, elevated
ppGpp levels allow the alternative sigma factors to work in
concert with σ70 by shifting their relative competitiveness.

Figure 1

A model for the trade-off between
reproduction and survival. The model is based
on the argument that RNA polymerase
(RNAP) is limiting for transcription and that
sigma transcription factors, such as σ70 and
σS, compete for binding to RNAP. This
competition is regulated by the nucleotide
ppGpp, which accumulates during conditions,
causing growth arrest. Thus, ppGpp primes
the RNAP in accordance with environmental
signals. As a result, the transcriptional
apparatus is primarily occupied with
transcription of σ70-dependent housekeeping
genes (proliferation) as long as the ppGpp
levels are low, which signals that the
nutritional status of the environment is
favorable for growth. During growth arrest,
elevated ppGpp levels allow the alternative
sigma factor σS, required for expression of
maintenance genes, to work in concert with
σ70 by shifting the relative competitiveness of
the sigma factors. RelA is ppGpp synthetase I
responding to amino acid starvation
(uncharged tRNA in the ribosomal A-site),
whereas SpoT is ppGpp synthetase II
responding to a variety of conditions,
including carbon/energy limitation.
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The results are, in a sense, in line with the disposable soma
theory of aging. This theory of aging was developed from
a molecular theory about the fidelity of macromolecular
synthesis, specifically the process of translation [27].
Originally, the disposable soma theory stated that there is
a trade-off between the energy investments required in
obtaining a given level of accuracy in protein synthesis and
the production of offspring. Later, the theory included all
kinds of macromolecules and maintenance mechanisms,
such as macromolecular repair and stress defence path-
ways, in the trade-off equations. The assumption, which
this theory is based upon, is that the resources are limited
in any one individual and that these resources may be
channeled into two main activities, survival and reproduction.
Furthermore, it is argued that a high level of homeostatic
stress defense activities will promote long survival of the
individual (or soma) but redistribute resources away from
reproduction activities or Darwinian fitness. There is, of
course, no distinction between a soma and a germline in
bacteria but the E. coli sigma-factor-competition model
nevertheless provides one of very few mechanistic molecular
explanations for a trade-off between reproduction and main-
tenance activities, and puts the spotlight on RNA polymerase
as the key player in the allocation of cellular resources.

Caloric restriction and sigma factor competition
One efficient way to increase the life span of rodents,
worms, fruit flies and yeast cells is to subject them to
caloric restriction, a diet in which calories are limited by
30–40% compared with animals fed ad libitum. However,
the mechanism by which caloric restriction retards aging is
unclear. Extension of yeast replicative life span by caloric
restriction depends on the status of the Ras-cAMP-depen-
dent protein kinase A (PKA) pathway [28]. Ras is a key
regulator of this pathway that links nutritional status to
cAMP levels by controlling the activity of adenylate
cyclase. Disruption of RAS reduces cAMP levels and
upregulates genes containing a stress response element
(STRE) in their promoter region (see, for example, [29]).
Caloric restriction, such as glucose limitation, converts Ras
to the inactive, GDP-bound form, which in turn reduces
cAMP levels and elevates the expression of such STRE
element genes (for example, genes encoding heat shock
proteins, catalase and CuZn superoxide dismutase; [30]).
In E. coli, glucose restriction activates, in some as yet
unknown way, the SpoT protein, which then catalyzes the
production of ppGpp. As elaborated above, this allows an
elevated expression of stress defense genes requiring 
alternative sigma factors (Figure 1). In other words, the
ppGpp/sigma factor competition model links the trade-off
between reproduction and maintenance with nutrient
availability and caloric restriction [18••]. Notably, increased
production of stress defense genes (in particular, heat
shock and oxidation defense genes) is accompanied by
increased longevity in many genetic model systems (see
also the Daf-3/Daf-16 story of C. elegans [8–10]) and it is
tempting to speculate that there is a causal link between
the two phenomenon. Possibly, caloric restriction causes a

reallocation of resources via different signal transduction
systems (for example, Ras, Daf-16 or SpoT/RelA/σS) and
hormone (insulin) and alarmone (ppGpp) control, such
that expression of genes required for maintenance is
favored at the expense of reproductive activities. The
question of how SpoT is sensing carbon/energy restriction
is a key question of bacterial molecular biology and 
physiology that remains to be answered.

Another link between the σS regulon and carbon/caloric
availability has recently been discovered by Ueguchi et al.
[31•], who demonstrated that Crr (EIIAGlc) plays an important
role in the translational control of rpoS expression. EIIAGlc
is a component of the phosphoenolpyruvate–carbohydrate
phosphotransferase system and is involved in inducer
exclusion and regulation of adenylate cyclase activity.

The free radical hypothesis of aging and
bacterial senescence
The free radical hypothesis states that aging results from
random deleterious events, and that self-inflicted oxidative
damage is the primary contributor to such a stochastic
degeneration of organisms. The hypothesis has been 
supported by experimental data that demonstrate that
steady-state levels of oxidation-damaged macromolecules
increase with age. Moreover, support for the theory comes
from the identification of alleles causing life extension 
in C. elegans [9] and experiments demonstrating that the 
life-span of fruit flies can be prolonged by overproducing
antioxidants, specifically superoxide dismutase [32–34].

The task of elucidating the mechanism behind the
increased oxidation of macromolecules during aging has
proven difficult. Some attempts have been made to correlate
oxidation with a reduced activity of the oxidative defense
systems. However, these attempts have generated 
conflicting results and catalases have been demonstrated
to either increase or decrease with age, depending on the
tissues or organisms analyzed. Other studies have demon-
strated that the abundance of some antioxidant defense
proteins may actually increase with age in some tissues.
Similarly, in a reproductively arrested population of E. coli
cells, the levels of oxidative defense proteins increase and
the population becomes increasingly resistant to external
oxidative stresses [5,6]. Yet, the levels of oxidation-dam-
aged proteins in such an E. coli population increase [11,12].
In addition, it has been demonstrated that no strict corre-
lation exists between respiratory activity and protein
oxidation (or life-span) in growth-arrested E. coli cells
[35•]. Similar results have been obtained with growth-
arrested G0 cells of the yeast Saccharomyces cerevisiae [36•].
Thus, the rate of respiration in a non-growing aerobic 
system does not, per se, determine the degree of oxidative
damage to the proteins of the system.

Instead, the use of diagnostic proteomics demonstrated
that the sudden increase in protein oxidation during the
early stages of stasis in E. coli is strongly associated to the
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production of aberrant protein isoforms; this is seen as 
protein stuttering on two-dimensional gels [35•]. (The
phenomenon called protein stuttering has been shown to
be the result of erroneous incorporation of amino acids into
proteins and can be detected on autoradiograms of two-
dimensional gels as satellite spots with similar molecular
weights to the authentic protein but separated from it 
in the isoelectric focusing dimension [37].) Moreover, the
level of protein carbonylation has been found to increase
upon treatment of cells with antibiotics, such as strepto-
mycin, causing mistranslation [38••]. Other means of
producing aberrant proteins generated similar increased
oxidation of proteins. The conditions tested include: 
addition of puromycin, which causes premature translation
termination; overproduction of a mutated 16S rRNA,
which, when incorporated into ribosomes, render them
prone to mistranslate; and introduction of a mutation in
mutT, causing decreased transcriptional fidelity [38••].
During these treatments, the rate of superoxide production
and the activity of the superoxide dismutases and catalases
were unchanged and the expression of oxidative stress
defense genes did not increase [38••]. In other words, 
protein oxidation of aberrant proteins is not sensed by the
oxidative defense regulons and does not appear to require
increased generation of reactive oxygen species.

Frameshifting [39,40], missense errors [37] and stop codon
read-through [35•] increase in response to stasis in E. coli
cells. This fact, together with results showing that aberrant
proteins are more susceptible to oxidation, raises the 
possibility that carbonylation in non-proliferating cells may
be caused by an increased mistranslation. This notion was
tested directly by assaying protein oxidation in a mutant
strain (rpsL141) that harbors intrinsically hyperaccurate
ribosomes. Notably, this mutant retains its translational
fidelity during stasis and it was demonstrated that protein
carbonylation is drastically attenuated in the early stages of
stasis in the cells carrying the rpsL141 allele [35•]. Thus,
the elevated oxidation of proteins in non-proliferating cells
may be due to an increased availability of substrates 
(aberrant proteins) available for oxidative attack and 
these substrates surge during stasis, because of a reduced 
fidelity of the translational apparatus (Figure 2). It is not,
at present, clear why aberrant proteins are more susceptible
to carbonylation. Possibly, a slight misfolding of the 
corrupted polypeptide exposes oxidation-sensitive targets
that are normally hidden during the coupled translation-
folding process. This, and other possibilities, awaits
experimental scrutiny.

Protein oxidation and fed-back catastrophe
Orgel [41] presented a conceptual and mathematical
account for how an error feedback loop in macromolecular
synthesis may cause an irreversible and exponential
increase in error levels, leading to an ‘error catastrophe’.
The feedback loop in Orgel’s original model concerned
ribosomes and translational accuracy such that errors in the
sequences of proteins that themselves functioned in 

protein synthesis (such as ribosomal proteins and elongation
factors) might lead to additional errors. Such a positive
feedback loop was argued to lead towards an inexorable
decay of translational accuracy and, as a result, cellular
senescence. The hypothesis is thus based on the assumption
that mistranslated proteins can escape degradation and be
incorporated into functional (but less accurate) ribosomes.
A later model, called the ‘Network theory of aging’, 
integrates the ‘Free radical theory of aging’ with the
‘Protein error theory’ [42]. Briefly, the model is based on a
mathematical simulation aimed at showing how an
increased radical production (or insufficient radical protection)
can destabilize the translation system and give rise to an
error propagation loop. However, several experimental and
theoretical approaches, primarily using E. coli as a model

Figure 2

Activities of potential importance for stasis-induced oxidation of
proteins. Traditionally, increased protein oxidation has been argued to
be an effect of (a) increased production of reactive oxygen species
(ROS), presumably derived from respiratory activity, (b) diminished
activity or abundance of the antioxidant systems, or (c) reduced activity
of the proteolysis or damage repair systems. Work on E. coli has
highlighted the role of some alternative pathways in protein oxidation.
These pathways relate to the production of aberrant proteins, which
are highly susceptible to oxidative modification (carbonylation).
Increased levels of such aberrant, malformed polypeptides can be the
result of (d) reduced translational fidelity, (e) reduced transcriptional
fidelity, or (f) diminished activity of the repair refolding apparatus. In the
early stages of E. coli growth arrest, reduced translational fidelity
appears to be the most important contributing factor to the elevated
levels of oxidatively modified aberrant proteins. E, core RNA
polymerase; PA, aberrant protein; PN, native protein; Pox, oxidized
protein; TA, aberrant transcript; TN, native transcript.
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system, have indicated that increased mistranslation does
not cause a progressive decay in the proof-reading capacity
of the ribosomes (see [43]). The susceptibility of mistrans-
lated proteins to carbonylation may provide a molecular
explanation for this. It has been shown that carbonylated
proteins are more susceptible to proteolytic degradation
than their non-oxidized counterparts (see, for example,
[38••,44]). Thus, the rapid carbonylation of an erroneous
protein may ensure that such a polypeptide is directed to
the proteolysis apparatus. This will effectively reduce the
likelihood of mistranslated proteins being incorporated
into mature machines (for example, ribosomes and RNA
and DNA polymerases) involved in information transfer.
In this context, it should be pointed out that the reduced
translation fidelity of growth-arrested cells is most likely
the result of ribosomes being increasingly starved for
charged tRNAs (empty A-sites are known to be slippery)
rather than being intrinsically error-prone. However, this
notion awaits experimental support.

Conclusions
Recent studies of bacterial physiology during starvation-
induced stasis has raised the question of whether the
free-radical hypothesis of aging is relevant also for explaining
the progressive decline in the culturability of growth-
arrested bacterial cells [4]. Indeed, with respect to protein
oxidation and its targets, growth-arrested E. coli cells show
many of the same signs of senescence as aging eukaryotes
do [11]. Work on this simple prokaryotic model system
implicates a novel culprit in the accumulation of oxidatively
damaged proteins. Elevated levels of oxidized proteins
may not necessarily stem from an increased production of
free radicals or a diminished defense system but may be
caused by an increased production of misfolded or mal-
formed polypeptides. These aberrant proteins are highly
susceptible to oxidative modifications and the number of
such polypeptides surges in senescent E. coli cells because
of a decline in ribosome fidelity. In addition, work on
E. coli has provided a novel mechanistic explanation for a
trade-off between reproduction and survival. Transcription
factors directing functions relating to reproduction, on the
one hand, and stress resistance and survival, on the other,
compete for a limiting amount of RNA polymerases in the
cell. This limitation in transcriptional capacity results in
the antagonism between survival activities and reproduction.
The trade-off between these activities is stringently 
regulated by environmental cues acting through the 
hormone-like second messenger, ppGpp, such that RNA
polymerase is redistributed from proliferating activities to
maintenance when the environment is no longer favorable
for growth. Future research may establish whether the
described features of E. coli senescence are strictly
prokaryotic in nature or if similar mechanisms operate 
during aging of higher eukaryotes.
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