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Structural Sources of Robustness in
Biochemical Reaction Networks
Guy Shinar1 and Martin Feinberg2*

In vivo variations in the concentrations of biomolecular species are inevitable. These variations in
turn propagate along networks of chemical reactions and modify the concentrations of still other
species, which influence biological activity. Because excessive variations in the amounts of certain
active species might hamper cell function, regulation systems have evolved that act to maintain
concentrations within tight bounds. We identify simple yet subtle structural attributes that impart
concentration robustness to any mass-action network possessing them. We thereby describe a large
class of robustness-inducing networks that already embraces two quite different biochemical
modules for which concentration robustness has been observed experimentally: the Escherichia coli
osmoregulation system EnvZ-OmpR and the glyoxylate bypass control system isocitrate
dehydrogenase kinase-phosphatase–isocitrate dehydrogenase. The structural attributes identified
here might confer robustness far more broadly.

Biological systems require robustness, that
is, the capacity for sustained and precise
function even in the presence of structural

or environmental disruption (1–11). Examples of
robustness exist overmultiple scales of biological
organization, from the biochemical circuit level
[robust exact adaptation in bacterial chemotaxis
(2–4)] to the cellular level [robustness of meta-
bolic functions to changes caused by mutations
(12)].

A biological system shows absolute concentra-
tion robustness (ACR) for an active molecular
species if the concentration of that species is iden-
tical in every positive steady state the systemmight
admit. The function of an ACR-possessing system
is thereby protected even against large changes in
the overall supply of the system’s components.

We identify simple yet subtle structural at-
tributes that will impart ACR to any mass-
action network that includes them. We provide
a mathematical theorem that precisely delin-
eates a very large class of ACR-possessing
systems, a class that embraces networks that
differ in size, detail, and complexity. This class
contains different ACR-possessing models (9, 11)
of known examples for which approximate con-
centration robustness has been verified experimen-
tally. We thus uncover an underlying mathematical
unity found at the heart of robustness-producing
mechanisms that are biochemically quite different.

To elucidate the concept of ACR, we first
consider the toy two-species mass-action system

Aþ B a�! 2B

B b�!A
ð1Þ

where A is the active form of a protein, B is the
inactive form, and a and b are rate constants.
Suppose the protein is synthesized and degraded
over long time scales, so that the total protein
concentration can be regarded as constant over

the system's equilibration time scale. Under this
assumption, the differential equations governing
the time evolution of the molar concentrations of
A and B, denoted cA and cB, are

ċA ¼ −acAcB þ bcB
ċB ¼ acAcB − bcB

ð2Þ

The positive steady states of Eq. 2 are given by

cA ¼ b
a

cB ¼ Q −
b
a

ð3Þ

where Q is the conserved total protein concen-
tration: Q ¼ cA þ cB ¼ cAð0Þ þ cBð0Þ. Eq. 3
shows that system (1) has ACR: There is a
positive steady state for each value of Q ex-
ceedingb=a; and in each of these steady states cA
has precisely the same value.

In contrast, consider the simple module

A
a�!
 �
b

B ð4Þ

Here, the positive steady states are given by

cA ¼ bQ
aþ b

cB ¼ aQ
aþ b

ð5Þ

The steady state values of both cA and cB are
proportional to the conserved total concentration
Q ¼ cA þ cB. Thus, as Q varies, both cA and cB
vary in step. The system does not have ACR.

To state our main result, we require some
terminology from chemical reaction network
theory (13–16). The display in Fig. 1A is an
example of a standard reaction diagram, that is, a
directed graph whose nodes (17) are the distinct
linear combinations of chemical species that sit at
the heads and tails of the reaction arrows. In Fig.
1A, the chemical species are A, B, C, D, E, and F,
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and the nodes are 2A, B, C, B+C, D, 2B, A + E,
and F. Note that in a standard reaction diagram
each node appears precisely once.

The standard reaction diagram in Fig. 1A is
made of two disconnected pieces, one contain-
ing the mutually linked nodes 2A, B, and C and
the other containing the mutually linked nodes
B + C, D, 2B, A + E, and F (Fig. 1B). Such sets
of mutually linked nodes are called the link-
age classes of the network. The number of
linkage classes is identical to the number of
pieces of which the standard reaction diagram
is composed.

We say that two nodes are strongly linked if
there is a directed arrow path from one to the
other and also a directed arrow path from the
second back to the first. Thus, the nodes A + E
and F in Fig. 1A are strongly linked because there
is a directed arrow path from A + E to F, namely
A + E → F, and also a directed arrow path from
F back to A + E, namely F→ 2B→ A + E.We
adopt the convention that each node is strongly
linked to itself.

A strong-linkage class of a reaction net-
work is a maximal subset of its nodes that are
strongly linked to each other. The parts of

Fig. 1B that are surrounded by dashed out-
lines correspond to the strong-linkage classes
in our example network. A terminal strong-
linkage class is a strong-linkage class in which
no node reacts to a node in another strong-
linkage class. (We say that one node reacts to
another node whenever the first sits at the tail
and the second sits at the head of the same re-
action arrow.) Nodes belonging to terminal strong-
linkage classes are called terminal (pink in Fig.
1B). Nodes that are not terminal are called non-
terminal (blue in Fig. 1B).

By the rank of a reaction network we mean
the maximum number of linearly independent
reactions that the network contains.We can make
this precise in the following way: With each
reaction, we associate a reaction vector (18)
obtained by subtracting the reactant node from
the product node. Thus, we associate with reac-
tion 2A → B the reaction vector B – 2A; with
B→ 2Awe associate the reaction vector 2A –B;
and so on. The five reaction vectors, B – 2A, D –
B – C, 2B – D, A + E – 2B, and F – A – E,
constitute a linearly independent set, and every
other reaction vector for the network of Fig. 1A
can be written as a linear combination of these.
Thus, the rank of the network is five.

In formulating the reaction vector for a given
reaction, we have subtracted the reactant node
from the product node. In fact, we shall be in-
terested in the difference of any two nodes, even
those that belong to different reactions. For
example, the difference of the nodes B + C and
B is B + C – B = C. If, as in this example, the
difference of two nodes is a nonzero multiple of a
single species S, we say that the nodes “differ
only in species S.”

Next, we introduce the important concept of
deficiency. The deficiency of a network is an
integer index obtained by subtracting both the
number of linkage classes and the rank from
the number of nodes. For the network of Fig. 1
the deficiency is one, because there are eight
nodes, two linkage classes, and its rank is five.
The deficiency of a network will invariably be a
nonnegative integer (13). The relationship be-
tween the size and the deficiency of a network is
at best weak; very large networks often have very
low deficiency.

Lastly, a mass-action system is said to have
“absolute concentration robustness in species S”
if the system admits a positive steady state and if
in all positive steady states the concentration of S
is the same.

We now have the vocabulary required for stat-
ing our main result, which is proved (section S3)
in the supporting online material (SOM). Moti-
vation for the proof (section S2) and general-
izations (section S4) of the theorem are discussed
there as well. A software implementation of the
theorem is available for download (19).

Theorem: Consider a mass-action system
that admits a positive steady state and suppose
that the deficiency of the underlying reaction
network is one. If, in the network, there are two

A B

Fig. 1. Some concepts from chemical reaction
network theory. (A) A standard reaction diagram. The
nodes of the diagram are shaded yellow. (B) Graph-
theoretical properties of standard reaction diagrams.
The connected pieces of the diagram, corresponding
to linkage classes, are surrounded by solid outlines.
Parts of the diagram corresponding to strong-linkage
classes are surrounded by dashed outlines. Terminal
nodes are colored pink, and nonterminal nodes are
colored blue.

A

B

C

D

Fig. 2. The EnvZ-OmpR system. (A) A schematic diagram of an EnvZ-OmpR model in which ATP is the
cofactor in phospho-OmpR dephosphorylation. Pi denotes phosphate ion. (B) The mass-action model
underlying (A). [T ] denotes the ATP concentration, assumed fixed. Terminal nodes are colored pink,
and nonterminal nodes are colored blue. (C) A schematic diagram of an EnvZ-OmpR model in which
ADP is the cofactor in phospho-OmpR dephosphorylation. (D) The mass-action model underlying (C).
[D] denotes the ADP concentration, assumed fixed.
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nonterminal nodes that differ only in species S,
then the systemhas absolute concentration robust-
ness in S.

The theorem becomes false if the requirement
that the deficiency be one is dropped. In fact,
there are networks with a deficiency of two that
otherwise satisfy all the conditions of the theorem
for which ACR obtains and still others for which
ACR does not obtain. Moreover, no mass-action
systemwith a deficiency of zero that is consistent
with mass conservation can exhibit ACR relative
to any species (20).

We now turn to applications of the theorem,
beginning with a model of a prototypical two-
component signaling system (21, 22), for which
approximate concentration robustness has been
observed experimentally (7). The Escherichia
coli EnvZ-OmpR system consists of the sensor
kinase EnvZ, denoted X in Fig. 2A, and the
response-regulator OmpR, denoted Y. Both the
sensor and the response-regulator have phos-
phorylated forms, denoted Xp and Yp. X phos-
phorylates itself by binding and breaking down
adenosine triphosphate (ATP) (T in Fig. 2) (21, 22),
Xp catalyzes the transfer of a phosphoryl group to
free Y (21, 22), and X, together with ATP (23, 24)
or adenosine diphosphate (ADP) (D in Fig. 2) (25)
as a cofactor, dephosphorylates Yp. The crucial
chemical species in the system is Yp, a transcrip-
tion factor that regulates the expression of various
protein pores.

The EnvZ-OmpR module has been modeled
(9) by using the differential equations derived
from the mass-action kinetic system of Fig. 2B,
where the effects of ADP as a dephosphorylation
cofactor have been neglected. Note that the
underlying network and its corresponding differ-
ential equations conserve the total concentrations
QX and QY of X-containing and Y-containing
species. Analysis (9) of the mass-action equations
indicates that, in all positive steady states
(corresponding to various combinations of the
parameters QX and QY), the concentration of Yp

depends solely on rate constants (9). Thus, the
mass-actionmodel of Fig. 2B exhibits ACR in Yp.

To apply the theorem to Fig. 2B, we note that
the network has nine nodes and three linkage
classes. It is not difficult to verify that the rank of
the network is five. Therefore, the deficiency of
the network is 9 – 3 – 5 = 1. Moreover, the nodes
XT + Yp and XTare nonterminal, and they differ
only in the species Yp. Thus, the theorem asserts
that, if the mass-action model shown in Fig. 2B
admits a positive steady state (as it does), then the

model has ACR in Yp. This is consistent with the
earlier ad hoc analysis (9). The theorem also
ensures ACR for a network model, displayed in
Fig. 2D (25, 26), in which ADP, rather then ATP,
is the dominant cofactor (27, 28) for Yp de-
phosphorylation. This and other model variants
are treated in the SOM (Section S5).

ACR also obtains in the mass-action model
of Fig. 3 (11), which lies at the core of more
elaborate models for the E. coli IDHKP-IDH
glyoxylate bypass regulation system. [Approxi-
mate concentration robustness has been ob-
served experimentally (1) in this system.] Here,
I denotes the active, unphosphorylated TCA cy-
cle enzyme isocitrate dehydrogenase (IDH). The
inactive, phosphorylated form is denoted Ip. E
denotes the bifunctional enzyme IDH kinase-
phosphatase (IDHKP). The deficiency is again
one: The network has six nodes, two linkage
classes, and a rank of three, and there are two
nonterminal nodes, EIp + I and EIp, that differ
only in the species I. Thus, the theorem asserts
that, if a positive steady state exists (as it does),
then the model has ACR in I.

The EnvZ-OmpR and IDHKP-IDH systems
both use bifunctional enzymes that act simulta-
neously as a kinase and a phosphatase. This ob-
servation highlights the connection between the
biological implementation of ACR-possessing
modules and the theorem's requirement for two
nonterminal nodes that differ only in a species. If
the dephosphorylation reaction in Fig. 2B were
catalyzed by some phosphatase Z and not by XT,
we would replace the third piece in the network of
Fig. 2B with Zþ Yp ⇄ ZYp → Zþ Y. The
resulting network would cease to have two
nonterminal nodes that differ only in a species,
and the theorem would not apply. In fact, ACR
would be lost.

The mass-action models discussed here freely
invoke irreversible reactions. The omitted reverse
reactions generally have rate constants so small
that, for practical purposes, the reactions them-
selves can be safely ignored. In such instances,
the reduced model is deemed to be an approxi-
mate but reliable guide to the behavior of a fuller
mass-action system with some or all of the re-
verse reactions included. In particular, it is rea-
sonable to expect that the fuller model would
exhibit strong but imperfect robustness. These
considerations are discussed more fully in the
SOM (section S6).

Lastly, we emphasize that the ideal of ab-
solute concentration robustness is unlikely to be
attained exactly for in vivo experimental systems,
where biochemical modules do not exist by them-
selves and often interact with the intracellular
environment. Therefore, complete reaction net-
work models for experimental systems should
not be expected to exhibit ACR exactly. Never-
theless, the theorem presented here describes a
general class of core subnetworks, which, taken
by themselves, do give rise to ACR and which, to
the extent that they approximate their more
completely articulated parent networks, may

confer on the fuller systems imperfect yet strong
robustness.
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Fig. 3. A core ACR module in a model of the
IDHKP-IDH system. Terminal nodes are colored
pink, and nonterminal nodes are colored blue.
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