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Abstract

This paper investigates a general coupled noisy system for a cell-cell communication in a multi-
cell system. The main conclusion is that appropriate noise intensity and coupling strength are
capable of driving the coupled system to synchrony, which may be exploited by biological organisms
to actively facilitate mutual communication. A multi-cell system with a synthetic gene network with
both noises and delays is adopted to demonstrate the effect of noises on cellular communication.
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1 Introduction

Cell communication has been shown to be essential for coordinated responses resulting from an in-
tegrated exchange of information in both prokaryotes and eukaryotes [12, 15, 19]. Generally, in-
tercellular communication is accomplished, by transmitting individual cell reactions via intercellular
signals to neighboring cells and further integrating to generate a global cellular response at the level of
molecules, tissues, organ and body. In particular, gene regulation is an inherently noisy process, from
transcriptional control, alternative splicing, translation, diffusion to chemical modification reactions
of transcriptional factors, which all involve stochastic fluctuations owing to low copy numbers of many
species per cell. Such stochastic noises may not only affect the dynamics of the entire system but
also be exploited by living organisms to actively facilitate certain functions, such as synchronization
or communication.

To understand the basic mechanism of cell-cell cooperative dynamics, a few theoretical models
have been successfully developed so far for both natural and synthetic gene networks [3, 10, 15, 19].
In particular, when ignoring effects of noise and diffusion, McMillen et al. proposed a synchronization
scheme based on mechanism of relaxation oscillation or “fast threshold modulation” in a synthetic
system [10], which fulfills the communication by producing and responding to a small intercell signal-
ing molecules known as autoinducers in the quorum sensing apparatus of the marine bacterium Vibrio
fischeri. In this paper, we aim to develop a general synchronization model by further considering the
effects of stochastic fluctuations and signal diffusion processes or time delays. Specifically, we first
present a theoretical framework to equivalently transform a stochastic multi-cell system into a multiple
coupled deterministic system by the first and second cumulants when the Gaussian distributions are
assumed, and provide sufficient conditions for stochastic synchronization even with time delays based
on “global Hopf bifurcation”. Then we design and construct a synthetic gene regulatory network by
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using an operon with genes LuxR and LuxI and promoter PlacLux0. Intercellular communication is
facilitated between cells by diffusing a small protein, autoinducer (AI) produced by a protein LuxI,
which results in a synchronization behavior of all cells even with time delays and stochastic perturba-
tions. From the viewpoint of stochastic dynamics, such synchronization is a phase-locking behavior of
the probability distributions for all species. As shown both analytically and numerically in this paper,
the cells with the constructed gene network can be synchronized with random fluctuations, which
actually enhance synchronization by introducing extra dynamics or energy originated from noises. In
contrast to couplings that play a dominant role to coordinate the synchronization, noise acts rather
as a compensated force to induce the synchronous oscillation but also constantly perturbs the system
in an unpredicted manner. The results of this paper establish a theoretical foundation that can be di-
rectly applied to model, analyze or even predict synchronous behaviors of a coupled bio-system at the
level of molecules. The numerical example also confirms that interplay between noises and couplings
induces regular or collective dynamics and actively mediates synchrony of the multi-cell system.

2 Gene Regulatory Network with Stochastic Noises

Due to low copy numbers for many species in living cells, the origin of stochasticity can be traced to
the random transitions among the discrete chemical states. Generally, the master equation is adopted
to present such a random and discrete nature of biochemical reactions [16], which inherently exist in
all life processes. The gene regulatory network in a cell is generally expressed by a master equation,
which can be approximated by a set of Langevin equations or stochastic differential equations:

dx(t)
dt

= f(x(t), η(t)), (1)

where x = (x1, · · · , xm) is the concentrations of the species, e.g. proteins and mRNAs or other
chemical complexes, and m is the total number of species in the cell. η = (η1, · · · , ηm) is Gaussian
noises with zero means and covariances Kij, i.e. 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = Kij(x(t))δ(t − t′).
f = (f1, · · · , fm) is the synthetic rates of each species. Gaussian noises η called intracellular noises
are interior noises inside the cell and derived from the random and discrete chemical reactions.

Assume that there are n identical cells, which are coupled with the common environment. Then,
the corresponding Langevin equations of the entire system are for k = 1, · · · , n

dxk(t)
dt

= f(xk(t), ηk(t)) + Dk(y − xk(t)) + ξk(t) (2)

where the matrix Dk = diag(dk1, · · · , dkm) is coupling coefficients from the environment y to cell-k,
and the variable y is the concentration of x in the environment.

The vector ξk = (ξk
1 , · · · , ξk

m) called extracellular noises represents external noises originated
outside the cells due to environment perturbations, and are assumed as independent Gaussian white
noises with zero means and covariances V , i.e., 〈ξk

i (t)〉 = 0 and 〈ξk(t), ξj(t′)〉 = V δkjδ(t − t′). V =
diag(σ2

1 , · · · ,σ2
m) is an extracellular noise covariance matrix, where σ2

i = 0 if xj
i is not a coupling

variable. Obviously, there are two different type of noises in our model, i.e. intracellular noises
derived from the master equation due to the low copy numbers of species inside a cell, and extracellular
noises originated from the environment perturbations, such as temperature fluctuations or imperfect
culture mixing. Different from the intracellular noises η that are generally correlated each other, it is
reasonably to assume that ξk

i (t) are independent each other and are uncorrelated with ηj
i (t) (1 ≤ j, k ≤

n) since the intracellular noises in a cell are generally irrelative to the extracellular noises and vice versa.
Assume that the concentration of signal molecules in the environment is approximately expressed by
y =

∑n
i=1 xi

t/n, where xi
t = (xi

1(t−τ1), · · · , xi
m(t−τm)), and τj represents the extracellular time delay

of xj due to diffusion or transport processes of the molecule among cells. Intracellular time delays
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are omitted for the sake of simplicity, although all theoretical results in this paper hold even with the
intracellular time delays in eqn.(2).

When the system is sufficiently large, we assume that the stochastic variables obey Gaussian distri-
bution. Then, it can be proven that eqn.(2) is equivalently expressed by the first and second cumulant
evolution equations, which means that we can actually examine the dynamics by deterministic cumu-
lants instead of the complicated stochastic variables. Actually, the numerical simulation also verified
that such an assumption is reasonable by a synthetic gene network. Let the first cumulants or means
of x be X, and the second cumulants or covariances of x be M . Then, by integrating over all x, the
cumulant evolution equations of eqn.(2) are

{
dXk(t)

dt = F (Xk(t),Mk(t)) + Dk( 1
n

∑n
i=1 Xi

t − Xk)
dMk(t)

dt = G(Xk(t),Mk(t)).
(3)

The vector Xk clearly has m elements. Let the number of elements for the covariance vector Mk be
s. Then s is at most m(m + 1)/2 but more than m because any two species in a cell are not generally
independent of each other. Since species among cells are not necessarily all coupled, most of diagonal
elements of Di are generally zero.

By examining deterministic eqn.(3), we can figure out the qualitative dynamics of the original
stochastic eqn.(2), including the stochastic synchronization from the viewpoint of probability distri-
bution. In particular, the synchrony of eqn.(3) corresponds to that of eqn.(2), because the original
stochastic dynamics x can be fully reconstructed from deterministic mean X and covariance M due
to assumption of Gaussian distributions.

To study synchronization solutions or phase-locked solutions of eqn.(3) is a challenging problem. In
Appendix A, we extend the previous works and further derive the sufficient conditions of synchroniza-
tion. Clearly, if couplings between cells are sufficiently strong, dynamics of all cells are synchronized
in an identical phase, or called in-phase synchronization. However, for a general coupled system, a
phase-locked solution is usually expected to exist, and is of greater interest in biology. Without loss
of generality, let the phase of the first cell be zero, i.e. α1 = 0, and the phase of the kth cell be αkT
where T is the least period of the oscillation. From the analysis of Appendix A based on global Hopf
bifurcation theory, we can prove that there is a phase-locked solution bifurcated from the steady state
for system (3) under the conditions of Theorem A.1, and that the corresponding phase of the k-th cell
is determined by

αk =
k − 1

n
, 1 ≤ k ≤ n , (4)

where time delays are ignored for the sake of simplicity. Eqn.(4) indicates that the phase-locked
solution has the uniform phase difference between cells. Notice that all species in the same cell,
however, move at the same phase. Due to the symmetry of eqn.(2) or eqn.(3) for identical cells, there
are formally n solutions with the phase in the same form of eqn.(4). When there are time delays,
we can still prove existence of a phase-locked solution in which the phases have similar expression as
eqn.(4) but in an implicit function form of time delays. Since the synchronization mechanism is based
on global Hopf bifurcation that is also a restricted Hopf bifurcation depending on the symmetry of
the system, it is also easy to use for designing the bio-circuits or predicting synchronous dynamics
by perturbing a set of parameters according to the conditions of Theorem A.1 of Appendix A. From
eqns.(1) and (3), apparently noises exert their effects by the second cumulants or covariances. In
other words, without the second cumulants, the cumulant evolution equations (3) simply degenerate
to a deterministic system or an averaging dynamics. It can also be proven that there is a in-phase
synchronization solution when the couplings are sufficient strong or the cell number is large enough.

Instead of random variables, eqn.(4) indicates a synchronized solution in the phase space for
the probability distribution (means and covariances) of each cell. This means that the probability
distributions of all variables in each cell moves at the same phase, whereas those between arbitrary
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two cells have a fixed phase difference. However, provided that random variables follow the Gaussian
distributions, the stochastic dynamics of the original cellular system eqn.(2) can be exactly recovered
from such probability distributions, which implies that eqn.(4) also corresponds to the solution of the
stochastic synchronization for eqn.(2). Next, we will show that noises actually play an active role to
induce such cellular synchronization.

3 Implementation by a Synthetic System

Recent progress in genetic engineering has made the design and implementation of de novo synthetic
gene networks realistic from both theoretical and experimental viewpoints [3, 5, 4, 9, 18, 6, 17], in
particular for simple organisms, such as E.coli and yeast. Designing and implementing synthetic gene
networks provide a natural framework for reducing the complexity of gene regulation. Actually, from
the theoretical prediction, several simple gene networks have been experimentally constructed, e.g.,
genetic toggle switch [8], repressilator [7] and other bio-circuits [3, 1, 11]. Next, we adopt an artificial
gene network as an implementation example to demonstrate noise-mediated communication.

3.1 Model

In this work, we design a synthetic gene regulatory network by using a simple two-gene model, i.e.
LuxI and LuxR with a promoter PlacLux0, as shown in Figure 1. Genes LuxI and LuxR coordinating
the behavior of bacteria, such as quorum sensing, were initially discovered from the marine bacterium,
Vibrio fischeri. In Figure 1, genes LuxI and LuxR are constructed as an operon and are both under
the control of the promoter PlacLux0. Cell to cell coupling is accomplished by diffusing a small signal
molecule into the extracellular environment, i.e. autoinducer (AI), which plays a major role in the
cell to cell communication or quorum-sensing in Vibrio fischeri. Such a circuit can be engineered on
plasmids [19], and then be cloned to multiple copies, e.g. by PCR. The engineered plasmids are further
assumed to grow in E. coli.

Figure 1: A two-gene model of a gene regulatory network. Gene LuxR produces the protein LuxR,
which is dimerized. Protein LuxI synthesizes AI, which forms a dimer and further a hetero-tetramer
by binding to a LuxR dimer. The AI-LuxR tetramer binds to the promoter PlacLux0 to inhibit the
transcription of the genes LuxR and LuxI. Cell communication or synchronization is accomplished by
diffusing AIs to the extracellular environment, which further enter cells as signal molecules to regulate
gene expression.

Let AI2 and LuxR2 indicate AI and LuxR dimers, and AL and ALD represent AI2-LuxR2 and
AI2-LuxR2-DNA complexes, respectively. Then, in a cell, the multimerization reactions of proteins
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and binding reaction on the operator or regulatory region of DNA are described as

LuxI
ka⇀ AI (5)

AI + AI
k1⇀↽

k−1

AI2 (6)

LuxR + LuxR
k2⇀↽

k−2

LuxR2 (7)

AI2 + LuxR2
k3⇀↽

k−3

AL (8)

AL + DNA
k4⇀↽

k−4

ALD (9)

Let the copy number of plasmids with the operon LuxI and LuxR be nD.
On the other hand, the reactions involving transcription and translation, autoinducer synthesis,

and degradation in a cell are expressed as

DNA
km⇀ mRNALuxI + mRNALuxR + DNA (10)

ALD
αkm⇀ mRNALuxI + mRNALuxR + ALD (11)

mRNALuxI
kpi
⇀ LuxI + mRNALuxI (12)

mRNALuxR
kpr
⇀ LuxR + mRNALuxR (13)

LuxI
ei⇀ Ø; LuxR

er⇀ Ø (14)

mRNALuxI
emi⇀ Ø; mRNALuxR

emr⇀ Ø (15)
AI

ea⇀ Ø (16)

where the last five reactions are degradation reactions, and α (0 < α < 1) is a repression coefficient.
As shown in eqns.(10)-(11), mRNALuxI and mRNALuxR are produced by the same reactions due to
the operon.

Among cells, AI freely diffuses between cell membranes, and such diffusion process is modelled by
linear coupling with time delays that are mainly due to diffusion process. We assume that all intracel-
lular transportation and diffusion processes of chemical complexes are expressed by the corresponding
time delays. Then from eqns.(5)-(16), we first derive the master equation, and then transform into the
Langevin equations. By considering cell coupling or the diffusion of AI, the system is finally expressed
by the first and second cumulant evolution equations with time delays. When the system is sufficiently
large, the fluctuations of variables for the system are assumed to approach to the Guassian distribution,
which can be exactly described by the first and second cumulants (means and covariances). Param-
eter values are set as follows: ka = 3.0min−1; ei = er = 1

6 × 10−1min−1,ea = 1
6 × 10−2min−1

and emi = emr = 1.0min−1; k1 = k2 = k4 = 0.6/(nM · min), k3 = 6.0 × 10−5/(nM · min),
k−1 = k−2 = k−4 = 6.0/(nM · min), k−3 = 0.6/(nM · min); km = 3.4min−1; kpi = kpr = 4.2min−1;
α = 0.36; time delay for AI τ = 9.3min; and nD = 10, which are mainly from [2] with slight
modification.

3.2 Implementation Results
We use three identical cells with the gene network of Figure 1 for simulation although our theoretical
model has no limitation for the number of cells. Figure 2 shows mean values or the first cumulants of
intracellular AI concentrations in three cells, whereas Figure 2 indicates the variances or the second
cumulants of intracellular AI concentrations. Therefore, Figure 2 actually represent time evolution
of the probability distributions of AIs. When coupling strengths are dii = −152.5 min−1, dij =
76.25 min−1 for i, j = 1, 2, 3 and i &= j, and the extracellular noise deviation is σ = 24.6 nM ,
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it is easy to check from Theorem A.1 of Appendix A that the sufficient conditions for the phase-
locking synchronization are satisfied for the system (3), which is numerically confirmed from the
probability distributions of figure 2 (left and middle). Since intracellular noises are determined by the
chemical reactions as indicated from master and Langevin equations, we only take the extracellular
noise deviation σ as a parameter to examine the effect of stochastic fluctuations on synchronous
oscillation.
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Figure 2: Synchronization for means and variances of intracellular AI concentrations in three noisy cells
with the time-delay couplings. Coupling coefficients are dii = −152.5, dij = 76.25 for i, j = 1, 2, 3 and
i &= j. (Left): means of AI, (middle): variances of AI, (right): time evolution of AI. The extracellular
noise deviation is σ = 24.6, which is imposed on extracellular AIs.

From Figure 2 (left and middle), obviously the phases of dynamics in three cells differ almost
with an one-third period, which verifies our theoretical prediction of eqn.(4). The slight large gap
between each period is due to time delay τ . Figure 2 (right) is a time evolution for intracellular AI
concentrations x(t) of (2) corresponding to the means X(t) of Figure 2 (left), which clearly shows that
dynamics are affected by the stochastic fluctuations around the means X but still kept in synchrony
with the same phase as Figure 2 due to small noise ratio. Comparing with Figure 2 (left and middle),
Figure 2 (right) also indicates that the synchronized probability distributions or cumulants correspond
to stochastic synchronization of the system.

Next, we examine the effects of extracellular noise intensity and coupling strength on the syn-
chronous oscillation. Without extracellular noise σ = 0 or small noise σ = 11.8, the system converges
to a stable equilibrium or a stationary probability distribution that has constant means and covari-
ances. However, with a stronger noise σ = 29.2, the multi-cell system is synchronously oscillated,
which implies that noise actually enhances the synchronized oscillation. From such numerical sim-
ulation, deterministic dynamics of each single cell are not sufficiently active for inducing oscillation
even with couplings. However, for such a system, noise provides extra dynamics, e.g. dynamics of
the second cumulants that are originated from intrinsic fluctuations or other unknown energy sources
beyond the coupled system, so that a cooperative but fluctuating behavior is stimulated among cells.

On the other hand, the coupling strengths also induce or promote the synchronous oscillation in
a much similar but strong way to noises. To an extreme case, when the couplings are sufficiently
strong, as shown in Figure 3, three cells reach complete synchronization or in-phase synchronization
even with noises, i.e., the phase difference between cells is zero [20].

Figure 3 (right) is a bifurcation diagram on the noise deviation, which shows that the noise actually
induces the synchronized oscillation by the Hopf bifurcation. Due to global Hopf bifurcation, a stable
equilibrium corresponds to a stationary probability distribution, whereas a bifurcated periodic solution
is a synchronous oscillation of the coupled system. Notice that different from the local Hopf bifurcation
that simply generates a periodic oscillation, the global Hopf bifurcation creates a phase-locked solution
among cells, as proven in Theorem A.1. In other words, the oscillation amplitudes and period T change
with the noise deviation, but the phase difference between any two cells is kept to be constant.

In this model, we examine the effects of noise-induced synchronization by using one signal molecule
AI in identical cells. Recent research shows that chemical communication among living organisms is
widespread, and many bacteria have two or more sensing systems to monitor their environment and
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Figure 3: In-phase synchronization with strong couplings and a bifurcation diagram on noise deviation.
(Left): In-phase synchronization with strong couplings for means of intracellular AI concentrations
where he noise deviation is σ = 41.7, and the coupling strengths are dii = −460., dij = 230. for i, j =
1, 2, 3 and i &= j. (right): a bifurcation diagram on noise deviation where the coupling dii = −131.7,
dij = 65.85 for i, j = 1, 2, 3 and i &= j.

respond to fluctuations for the presence of other bacteria or even other species [15]. Therefore, by
adding multiple species-specific AIs in the model, we may also expect diverse and complex cooperative
behaviors among different species in the similar manner as shown in this work.

4 Discussion

We both analytically and numerically examined effects of both noise and coupling on synchronization
with the consideration of diffusion processes or time delays, and provide the sufficient conditions of
phase-locked solution. We show that both noises and couplings enhance the synchronous oscillation,
and play a major role in dynamical behaviors of the coupled system. Our analytical results enable
us to predict, by assessing a set of parameter values including noise, whether or not the intercellular
couplings and the noises synchronize the cells so as to fulfill the intercellular communication or attain
concerted biological behavior in a population. Such dynamical analysis can also be used to design a
robust experimental implementation with potential implications for biotechnological applications.

Although we aim to treat cellular dynamics in a more exact manner, e.g. from master equation
to Langevin equations to cumulant evolution equations including the derivation of intracellular noises
from the chemical reactions, there are still several approximations in our model, such as Langevin
equations that approximate discrete numbers of molecules by continuous concentrations, cumulant
equations that requires the assumption of Gaussian distributions for random variables, and time
delays for diffusion processes.

Generally, noise promotes oscillation by introducing extra dynamics, which are originated from
random fluctuations or the second cumulants. Such extra dynamics under certain conditions may play
a crucial role as an energy source to excite cooperative behavior or lead to more order among cells,
as indicated in this paper. Actually, it is well known that noise plays a significant role in stochastic
resonance of a non-autonomous system (with a periodic driving force) and coherence resonance of an
autonomous system. In particular, coherence resonance phenomenon shows that noise enhances the
temporal regularity of a dynamical system, which was first noticed by Sigeti and Horsthemke [14] and
then theoretically analyzed by Pikovsky and Kurths [13] with the activation and the excursion times.
Since then, a plethora of theoretical and experimental works including coupled coherence resonance
oscillators and coupled chaotic systems has appeared mainly based on analysis of resonance behaviors.

When considering a well mixed homogenous culture, instead of eqn.(3), a mixing dynamics should
be adopted, such as mean field or linear diffusion-mixing dynamics for y. Furthermore, the stochastic
simulation for the master equation is also necessary to evaluate the numerical results of the proposed
model in a accurate manner.
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Although effects of coupling on synchronization across a population of oscillators have been ex-
tensively studied, it is not well understood or still unclear for the role of noises. We show that noises
can induce nontrivial synchronous oscillatory behavior or ‘order’, which seems to contradict to our
intuitive predictions based on a ‘negative’ meaning of the word ‘noise’ or random. Our theoretical
and numerical results suggest that perhaps just such an essential and constructive role played by noise
and coupling may make living organisms harmoniously organize their various apparatuses and actively
accomplish mutual communications.
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A Sufficient Conditions of Synchronization

Eqn.(3) can be regarded as a system of n identical cells coupled in a linear way with the time delays.
Each cell will be considered as a system with m + s distinct deterministic variables. Suppose that its
steady state satisfies: F (X̄, M̄) = 0, G(X̄, M̄) = 0.

Let a steady state of the coupled system (3) for the n cells be

Ū =
(
X̄, M̄ ; X̄, M̄ ; · · · ; X̄, M̄

)
. (17)

We now study synchronization solutions of Eqn.(3), i.e., phase-locked solutions with the nonzero
phase difference. Suppose that the system Eqn.(3) has a periodic solution of the form

Xj(t) = P (t − αjT ), M j(t) = Q(t − αjT ), 1 ≤ j ≤ n, (18)

where P (t) and Q(t) are nontrivial, vector-valued functions with the least period T > 0, and α1 = 0.
Such a solution is called a phase-locked solution of Eqn.(3). Essentially, the oscillation in each cell
is described by functions P (t) and Q(t). Other cells, however, may be out of phase with the phase
difference, Tβj = T (αj+1 − αj). Here and henceforth we shall index the cells by j mod n.

When (18) is a solution of Eqn.(3), certain compatibility conditions must hold. To derive those
conditions, consider the behavior of the jth and (j +1)th variables at times t and t+βjT , respectively.
From (18) and (3) one sees that

dP (t − αjT )
dt

=
n∑

l=1,l #=1

D1lP (t − (αl + αj)T ) + D11P (t − αjT ) + F (P (t − αjT ), Q(t − αjT ))

and
dP (t − αjT )

dt
=

n∑

l=1,l #=j

DjlP (t − αlT ) + DjjP (t − αjT ) + F (P (t − αjT ), Q(t − αjT ))

due to coupling only on X. Subtracting the two equations, we have
n∑

l=1
[D1lP (t − (αl + αj)T ) − DjlP (t − αlT )] + (D11 − DjjP (t − αjT ))

−D11P (t − (α1 + αj)T ) + DjjP (t − αjT ) = 0.
(19)

Let

P (t) =
∞∑

k=−∞
ξke

2πikt/T (20)
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be the Fourier expansion of P (t), where i =
√
−1. Then ξk = ξ̄k, and ξk = 1

T

T∫

0
P (t)e−2πikt/T dt.

Substituting eqn.(20) into (19), using orthogonality and multiplying through e−2πikαj , we find that
basic compatibility conditions are

det

{[
n∑

l=1

e2πikαl

(
D1l − Djle

2πikαj

)
− D11e

−2πikα1 + Djj

]
+ D11 − Djj

}
= 0 (21)

for all k for which ξk &= 0 and for 2 ≤ j ≤ n, where det{·} means the determinant.
For convenience, we consider a special coupling, called as the circulation coupling, that is,

Dll ≡ D1 (1 ≤ l ≤ n), D1j = Dj (2 ≤ j ≤ n), Dj1 = Dn−(j−2), Dj2 = Dn−(j−3), · · · , Dj(j−1) = Dn,
Dj(j+1) = D2, · · · , Djn = Dn−(j−1), as illustrated in Figure 4. Note that the identical coupling of
eqn.(2) is a special case of the circulation coupling.

                                        Cell 1 

                               D2                  D6        

                                    D3         D5 

                     D6                    D4                  D6 

                        D5                              D5 

                Cell 2                                           Cell 6 

              D2    D3   D4                             D4         D2  

                                                              D3 

                D5  D6   D3                              D6       D2   

                Cell 3                                   D5      Cell 5 

                         D2                              D4 

                     D4                                      D3 

                                      D5    D6  D2 

                                  D4               D3 

                                          Cell 4 

Figure 4: A circulation coupling network for n = 6, where Dj nearing a cell represent couplings of the
cell with other cells.

For the circulation coupling, (21) becomes:

det
[
D2

(
e−2πikα2 − e2πik(αj−αj+1)

)
+ D3

(
e−2πikα3 − e2πik(αj−αj+2)

)
+ · · ·

+Dn−1
(
e−2πikαn−1 − e2πik(αj−αj−2)

)
+ Dn

(
e−2πikαn − e2πik(αj−αj−1)

)]
= 0.

(22)

Observe that for any Dj (1 ≤ j ≤ n), one solution of (22) is (4). Clearly the solution corresponding
to such a phase has the uniform phase difference. When considering time delays, we can still derive
the form of phase-locked solutions, the phases of which have similar expression as eqn.(4) but in an
implicit function form of time delays.

An interesting phenomenon is in the case that n identical cells are coupled in a ring in which each
cell is connected to its nearest neighbors. In such a case, we have n ≡ 0 (mod 4). Next, we give
existence conditions of such a periodic solution with period T for Eqn.(3), which are used to describe
synchronization mechanism through cell-cell communication. We show that the conditions required
are quite straightforward and is easy to verify for any particular example. These conditions strongly
depend on the couplings, the time delay, the variances of the noises and the kinetics.

For system (3) with the circulation coupling, consider a question: finding a phase-locked solution
of the form (18). By (18) and (3), we see that






dP (t)
dt =

n∑
l=2

DlP (t − αlT ) + D1P (t) + F (P (t), Q(t))
dQ(t)

dt = G(P (t), Q(t))
(23)
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and the oscillation in the jth (2 ≤ j ≤ n) cell is given by
{

Xj(t) = P (t − αjT )
M j(t) = Q(t − αjT ). (24)

Thus, the existence of synchronous solution of Eqn.(3) is converted to finding a periodic solution of
system (23). By Global Hopf Bifurcation Theorem, we only need to examine some algebraic
conditions. To be specific, let t′ = ω0t (where ω0 = 2π/T ). Then, (23) may be rewritten as





ω0

dP (t′)
dt′ =

n∑
l=2

DlP (t′ − 2παl) + D1P (t′) + F (P (t′), Q(t′))

ω0
dQ(t′)

dt′ = G(P (t′), Q(t′)).
(25)

Considering the linearization equation of (25) evaluated at (X̄, M̄), we then have

ω0

(
dP (t)

dt
dQ(t)

dt

)

=




n∑

l=2
DlP (t − 2παl) + D1P (t)

0



 + A
(

P (t)
Q(t)

)

,

(26)

where A =
(

a11 a12

a21 a22

)
≡

(
∂F (X̄,M̄)

∂X
∂F (X̄,M̄)

∂M
∂G(X̄,M̄)

∂X
∂G(X̄,M̄)

∂M

)

. Let

Bk(µ) =




n∑

l=2
Dle−2πikπαl + D1 + a11 a12

a21 a22



 (27)

for k = 0, ±1, ±2, · · · . In addition, because our main interest is in effects of noises on synchronization
oscillation, we take a parameter µ = σ. Finally we reach the following theorem to conclude the
existence conditions of phase-locked solutions.

Theorem A.1 Suppose F and G are differentiable with respect to arguments, and the system is in
the form of the circulation coupling. If for some µ = µ0 and αj = (j − 1)/n (mod 1), the following
conditions are satisfied:

1. B0(µ0) of eqn.(27) is non-singular;

2. B1(µ0) of eqn.(27) has a simple purely complex eigenvalue iω0 with the corresponding left and
right eigenvectors VL and VR respectively;

3. ikω0 is not an eigenvalue of Bk(µ0) for k ≥ 2;

4. *
(
VL

dA(µ0)
dµ VR

)
&= 0 where * is an operator taking the real part of a complex number,

then there is a global branch of 2π-periodic solutions of (25) bifurcating from (Ū , µ0, ω0), or equiva-
lently, the original coupled system (3) has a phase-locked solution with uniform phase difference.

If these conditions in Theorem A.1 are satisfied, then the system (3) definitely has a synchronous
solution, and the corresponding synchronization mechanism is based on “global Hopf bifurcation”.


