and neuropeptides (e.g., thyrotropin-releasing hormone) (24) are secreted by granular glands, and the first group represents an important defense against pathogens (25). Antimicrobial peptides are clustered in at least seven transcription units at >350 kbp on scaffold 811, with no intervening genes.

* X. tropicalis occupies a key phylogenetic position among previously sequenced vertebrate genomes, namely amniotes and teleost fish. Given the utility of the frog as a genetic and developmental biology system and the large and increasing amounts of cDNA sequence from the pseudo-tetraploid X. laevis, the *X. tropicalis* reference sequence is well poised to advance our understanding of genome and proteome evolution in general, and vertebrate evolution in particular.

References and Notes

4. Supporting material is available on Science Online.
14. Dataset S1 is available on Science Online.

Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing

Jared C. Roach,1a **Gustavo Glusman,**1a **Arian F. A. Smit,**1a **Chad D. Huff, 1,2a** **Robert Hubley,**1
Paul T. Shannon, 1 Lee Rowen, 1 Krishna P. Pant, 1 Nathan Goodman, 1 Michael Bamshad, 4
Jay Shendure, 2 Radoje Drmanac, 3 Lynn B. Jorde, 2 Leroy Hood, 1†

We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify single-nucleotide polymorphisms (SNPs), and sharply reduce the search space for disease-causing variants. These analyses would be far less powerful in studies that had fewer markers (such as standard genotype or exome data sets) or that had sequences from fewer family members.

DNA from each family member was extracted from peripheral blood cells and sequenced at CGI (Mountain View, California) with a nanofluid-based short-read sequencing-by-ligation technology (1), including an adaptation of the pairwise end-sequencing strategy (2). Reads were mapped to the National Center for Biotechnology Information (NCBI) reference genome (fig. S1 and tables S1 and S2). Polymorphic markers used for this analysis were single-nucleotide polymorphisms (SNPs) with at least two variants among the four genotypes of the family, averaging 802 base pairs (bp) between markers. We observed 4,471,510 positions at which at least one family member had an allele that varied from the reference genome. This corresponds to a Watterson’s theta (θW) of 9.5 × 10−8 per site for the two parents and the reference sequence (3), given the fraction of the genome successfully genotyped in each parent (fig. S1). This is a close match to the estimate of θW = 9.3 × 10−8 that we obtained by combining two previously published European genomes and the reference sequence (4). Of the 4.5 million variant positions, 3,665,772 were variable within the family; the rest were homozygous and identical in all four members. Comparisons to known SNPs show that 323,255 of these 3.7 million SNPs are novel.

For each meiosis in a pedigree, each base position in a resulting gamete will have inherited one of two parental alleles. The number of inheritance patterns of the segregation of alleles in
Recombination as inferred from HapMap data, in crossover sites was 2.6 kb, with a few sites local-
this estimate. The median resolution of the 155
includes both offspring), which is consistent with
eventually compressed computationally (for ex-
true de novo mutation. Our initial data encom-
that 70 new mutations in each
diploid human genome (95% CI of 6.8 × 10^{-9}
to 1.7 × 10^{-8}) (4). In great apes, CpG sites are

Analysis of the mutation rate, including germ-
and early embryonic somatic mutations, re-
requires highly accurate sequence data. Even with
such data, however, most apparent aberrations in
allele inheritance will be due to errors in the
data and not to mutation. Our data had thou-
sands of such false-positive candidates for each
ture de novo mutation. Our initial data encom-
2.3 billion bases and contained 49,720
candidate MIEs that were consistent with
the presence of a single-nucleotide mutation.
After excluding sites in MIE-prone and compression
blocks, for which they are effectively twins,
errors in sequence calling or assembly or that
have inherited hemizygous deletions. For both of
these patterns, many positions will be observed
as Mendelian inheritance errors (MIEs). Our al-
gorithm identified six states: one for each of the
four Mendelian inheritance states, one for a com-
pression state, and one for a MIE-prone state (4). We
identified 1.5% of the genome in this pedi-
gree as 409 compression blocks and 1.7% as 126
eroerror-prone blocks. Because these blocks are a
source of false positives for recombination pre-
dictions, SNPs, and disease candidate alleles, their
identification is important (Fig. 1). The power to
precisely determine inheritance-state boundaries is
striking in families of at least four and would be
reduced had we sequenced fewer individuals
(Fig. 2). Meiotic gene conversions could in prin-
ciple be recognized in the same way as inheritance
blocks; they would be indistinguishable from a short
region flanked by meiotic recombinations in the
same meiosis. We found that the great majority of
candidate gene-conversion regions were caused
by reads mismapped to repetitive DNA, such as
CNVs or satellites, and did not conclusively
identify gene-conversion regions.

Recombination in maternal meioses is thought to
occur 1.7 times more frequently than in pa-
ternal meioses (8). We inferred 98 crossovers in
maternal and 57 in paternal meioses (count in-
cludes both offspring), which is consistent with
this estimate. The median resolution of the 155
crossover sites was 2.6 kb, with a few sites local-
ized within a 30-bp window (Fig. 1). Crossover
sites were significantly correlated with hotspots
of recombination as inferred from HapMap data, in
which a hotspot is defined as a region with ≥10
centimorgan (cM/Mb; 92 of the 155 recombinations
took place in a hotspot.

By identifying inconsistencies across the 22%
of the genomes of the two children in “identi-
cal” blocks, for which they are effectively twins,
we computed an error rate of 1.0 × 10^{-5}. We also
determined error rate through other methods, in-
cluding resequencing, which gave similar esti-
mates, ranging from 8.1 × 10^{-6} to 1.1 × 10^{-5} (4).
Furthermore, ~70% of the errors in a four-person
pedigree can be detected as apparent MIEs and
inconsistencies in inheritance state blocks, so
the effective basepair error rate in the context of
a pedigree is ~3 × 10^{-6}.

Analysis of the mutation rate, including germ-
line and early embryonic somatic mutations, re-
quires highly accurate sequence data. Even with
such data, however, most apparent aberrations in
allele inheritance will be due to errors in the
data and not to mutation. Our data had thou-
sands of such false-positive candidates for each
ture de novo mutation. Our initial data encom-
2.3 billion bases and contained 49,720
candidate MIEs that were consistent with
the presence of a single-nucleotide mutation.
After excluding sites in MIE-prone and compression
states as well as sites that were unsuitable for
probe design, 33,937 potential mutations among
1.83 billion bases remained. We resequenced
each of these candidates and applied a stringent
base-calling algorithm to confirm 28 candidates
as de novo mutations. In a final confirmation
step, we verified all 28 mutations with mass
spectrometry (table S3) (4), corresponding to a
mutation rate of 3.8 × 10^{-9} per position per
generation per haploid genome.

Because the raw estimate of 3.8 × 10^{-9} does
not account for the true mutations that were not
conclusively identified through resequencing,
we estimated a false-negative rate by applying
the base-calling algorithm to 5 Mb of indepen-
dent resequencing data, divided into 25 random-
ly selected regions of the genome. A comparison
of the resequencing data with the complete
genome sequence for the same regions provided
a de novo mutation false negative rate of 0.662
[95% confidence interval (CI) 0.644 to 0.680].
Adjusting for the false-negative rate produced
an unbiased mutation rate estimate of 1.1 × 10^{-8}
per position per haploid genome, corresponding
to approximately 70 new mutations in each
diploid human genome (95% CI of 6.8 × 10^{-9}
to 1.7 × 10^{-8}) (4). In great apes, CpG sites are

Fig. 1. The landscape of recombination. Each chromosome in this schematic karyotype is used to
represent information abstracted from the four corresponding chromosomes of the two children in
the pedigree. It is vertically split to indicate the inheritance state from the father (left half) and mother (right
half), as shown in the key. The three compound heterozygous (DHODH, DNAHS, and KIAA0556) and one
recessive (CES1) candidate gene, depicted by red bands, lie in “identical” blocks. (Inset) Scatterplot of
HapMap recombinant rates (in centimorgans per megabase) within the predicted crossover regions. The
maximum value of centimorgans per megabase found in each window is shown in red. The left his-
togram shows the size distribution of recombination windows (log_{10} value of ~0.58 ± 0.92). The top
graph shows the centimorgans per megabase distribution for the observed maximal values (red), for
similarly sized windows shifted by 6 kb (orange), and for similarly sized windows randomly chosen from
the entire genome (blue). A shift of 6 kb from the observed locations eliminates the correlation with
hotspots. Of 155 recombination windows, 92 contained a HapMap site with ≥10 cM/Mb. Only five
randomly picked windows are expected to contain such high recombination rates.
reported to mutate at a rate 11 times higher than other sites (9). We observed five CpG mutations, closely matching this estimate. Of the remaining 23 mutations, seven were transversions and 16 were transitions. This yields a transition-to-transversion ratio of 2.3 (table S3), which is once again similar to a previous estimate of 2.2 for non-CpG sites (10).

Although both the observed transition-to-transversion ratio and the proportion of CpG mutations in our data match predictions, our estimated human mutation rate is lower than previous estimates, the most widely cited of which is 2.5×10^{-8} per generation (10) based on three parameters: a human-chimpanzee nucleotide divergence of 0.013, a species divergence time of 5 million years ago, and an ancestral effective population size of 10,000. More recent estimates indicate a nucleotide divergence of 0.012 (9), species divergence time between 6 and 7 million years ago (11–15), and ancestral effective population size between 40,000 and 148,000 (16–19). With these parameters and a generation length of 15 to 25 years, the mutation rate estimate is between 7.6×10^{-8} and 2.2×10^{-8} per generation, which is consistent with our intergenerational estimate of 1.1×10^{-8}. Our estimate is within 1 SD of an earlier estimate of 1.7×10^{-8} (SD of 9×10^{-9}) based on 20 disease-causing loci (20). The rate we report is for autosomes and should be substantially lower than that of the Y chromosome because in the male germ line, more cell divisions occur per generation. Although our rate differs approximately as expected from the recently reported estimate of 3.0×10^{-8} (95% CI, 8.9×10^{-9} to 7.0×10^{-8}) for the Y chromosome, this difference is not significant (21).

Genomic inheritance analysis facilitates the identification of alleles that cause genetic disorders. Because genome sequences from a family of four provide near-exact determination of inheritance-state boundaries, the number of false-positive disease-gene candidates is greatly reduced as compared with those of analyses lacking the context of a pedigree or complete genome sequence (Fig. 3 and tables S3 and S4). Two disorders in this family—Miller syndrome and primary ciliary dyskinesia, which affect both offspring but neither parent—provided an opportunity to test this application. A parsimonious explanation is that each phenotype arises from defects in a single gene or a site regulating a single gene. The inheritance mode is undetermined, but a recessive mode is more consistent with observed data. We therefore examined each candidate variant by testing each of its inheritance modes: dominant, simple recessive, or compound heterozygote (a subcategory of recessive).

The two recessive modes require that both offspring have identical dysfunctional variants for which the parents are heterozygous and which may come either from the same position (simple recessive) or occur at distinct positions within the same gene (compound heterozygote). Genes that are consistent with these two recessive modes must lie in “identical” inheritance blocks because both offspring are affected, limiting the search space to the 22% of the genome in these blocks. Because the phenotypes are rare, they are likely to be encoded by rare variants, which further limits the possibilities. Only two missense SNPs in the CES1 gene matched the simple recessive mode (table S4), whereas three genes fit the compound heterozygote mode: DHODH, DNTAH5, and KIAA0536 (Fig. 1).

A small number of possibly detrimental variants outside exons also matched the simple recessive mode: two in highly conserved regions, one in an intronic sequence near a splice site, five in non–protein-coding transcripts, and one in an untranslated region (UTR). Concurrent with this study, the core exomes of the two affected offspring were sequenced along with those of two unrelated individuals with Miller syndrome (22). Compared with this study of only affected individuals, our analysis of just two affected

Fig. 2. Power of four. Shown are inheritance states for a single chromosome in six scenarios representing restrictions of the data set to the exome (for two siblings only or for the full family) or to subsets of the family (parents and one child, two siblings, or siblings and one parent), as compared with analysis with full data from all four family members. The most supported state for each bin is shown as a color; the height of each histogram bar is proportional to the number of informative markers supporting that state. The father has two regions of homozygosity (bottom, thin red lines) on the short arm of the chromosome, where it is not possible to distinguish the haploidentical maternal from identical states (fig. S2A, panel b). These regions are undetected when the mother’s genotypes are missing because all marker positions in the region are uninformative (second from bottom). A pedigree of two parents and one child has only one inheritance state and so provides no information on recombination. Red, identical; blue, nonidentical; green, haploidentical maternal; yellow, haploidentical paternal. Chromosome structure is annotated as in Fig. 1.

Fig. 3. The power of family genome inheritance analysis. The number of false-positive candidates drops exponentially as the number of family members increases. (A) Number of candidate SNPs that are consistent with a simple recessive inheritance mode. (B) Number of candidate genes that are consistent with a compound heterozygous model. The different groupings of parents (large silhouettes) and children (small silhouettes) are depicted below. Dashed lines join the average values of each grouping. For this figure, “probably detrimental” includes missense, nonsense, splice defect, and non-initiation; “possibly detrimental” also includes UTR, noncoding, and splice region. A block of SNPs so that all SNPs in the block are within 5 kb of another SNP in the block is counted only once because together these are likely to encode at most one phenotype. “A,” all probably detrimental SNPs; “B,” all possibly detrimental SNPs; “C,” rare possibly detrimental SNPs; “D,” rare probably detrimental SNPs.
offspring and their unaffected parents reduced the number of gene candidates in the core exome from nine to four; had we not sequenced the parents, we would have had 34 rather than four candidates (Fig. 3 and table S5). The exome study supported DHODH as the primary gene for Miller syndrome. DNAH5 had been previously identified as a cause of primary ciliary dyskinesia, and so is probably the cause in these offspring as well (23).

Family genome analysis can clearly be effective for finding candidate genes that encode Mendelian traits because sequence accuracy is enhanced. In addition, delineation of recombination sites identifies inherited chromosome segments precisely and reduces the chromosomal search space for candidate genes (in this case to 22% of the genome). The ability to identify large effects of very rare alleles in small pedigrees can complement the power of genome-wide association studies in identifying weak effects of common alleles in large populations. An unknown fraction of important phenotypes in humans are encoded by nonexonic material on www.sciencemag.org.

References and Notes
4. Materials and methods are available as supporting material on Science Online.
26. This study was supported by the University of Luxembourg-Institute for Systems Biology Program and by these NIH grants: Center for Systems Biology GM076547 (L.H. and L.R.), RO1GM081083 (A.F.S. and G.G.), RO1HL094976 and R21HG004749 (J.S.), RC2HG005608 (M.D. and J.S.), and R01HD048895 (M.B.). H. Tabor assisted with ethical review. J. Xing performed the principal components analysis. H. Meyfroid performed CNV analysis. A. Bigham and K. Buckingham evaluated candidate genes in unrelated individuals. D. Ballinger, A. Sparks, A. Halperrn, and G. Nilsen assisted with sequencing and analysis. R. Bressler, S. Dee, and D. Mauldin assisted with bioinformatics. S. Ng and R. Qiu performed the capture array. S. Bloom obtained the resequencing data on the Illumina Genome Analyzer. M. Janer and S. Li performed Sequenom analysis. D. Cox commented on an early version of the manuscript. R. Durbin and D. Altshuler granted permission for our use of 1000 genomes SNP data. CGI employees (R.D. and K.P.) have share options in the company. J.S. has consulted for CGI. L.H. is a scientific advisor to CGI and holds stock in the company. The dbGAP accessions can be found at www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/ study.cgi?study_id=phs000244.v1.p1 (accession phs000244. v1.p1).

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1186802/DC1
Materials and Methods
Figs. S1 to S5
Tables S1 to S5
References
7 January 2010; accepted 5 March 2010
Published online 11 March 2010;
10.1126/science.1186802
Include this information when citing this paper.