
activating (fig. S10), similar to the previously
identifiedMTOR Ser2215 → Tyr (37). Moreover,
adjacent regions of this recurrence showed hetero-
geneous mTOR complex 1 (mTORC1) activity
(Fig. 3E and fig. S11). Microdissection revealed
that although these adjacent regions shared a
subset of the mutations found in the initial tumor,
MTOR S2215F and other TMZ-associated muta-
tions were present only in the region that stained
strongly for mTORC1 activation, which also had
higher staining of the proliferation marker Ki-67,
implying that the TMZ-associated mutations con-
ferred a proliferative advantage. A distal second
recurrence harbored the same TMZ-associated
mutations and stained strongly and homogeneous-
ly for mTORC1 targets (fig. S12). Although both
regions of the first recurrence were GBM, the
hypermutated subclone underwent in vivo selec-
tion, invaded distally, and seeded the second recur-
rence (figs. S13 and S14). Across our cohort,
Akt-mTORpathwaymutations correspondedwith
elevated phospho-4E-BP1 and RPS6 in vivo, in-
dicating hyperactivated mTORC1 in recurrent
GBMs relative to their initial tumors (fig. S12).

There was no evidence that the mutations in
the RB and Akt-mTOR signaling pathways pre-
ceded TMZ treatment, according to analysis of
additional geographically distinct samples of ini-
tial tumors from four of the six patients with
hypermutated recurrent tumors (table S7). Non-
hypermutated recurrent tumors that progressed to
GBM also acquired genetic changes in these signal-
ing pathways, but through alternative mechanisms.
In contrast, none of the grade II-III recurrences
acquired mutations in these pathways. These data
suggest a connection among TMZ treatment, driver
mutations in oncogenic signaling pathways, and
malignant progression.

Through direct comparison of the genomic
landscape of gliomas at initial diagnosis and re-
currence, we were able to infer the mutational
character of the infiltrating tumor cells that give
rise to recurrence and that adjuvant therapy with
TMZ is intended to eliminate. Recurrences did
not typically arise from cells bearing the full set
of mutations found in the initial tumor, as would
be expected from a local recurrence in the ab-
sence of selective pressure from adjuvant chemo-
therapy. This finding complicates the use of tumor
genomics to design precision therapies targeting
residual disease. We also demonstrated an alter-
native evolutionary path of low-grade glioma that
is largely determined by adjuvant chemotherapy
with TMZ. This extends earlier studies of pri-
mary GBMs (23, 25), unpaired recurrent tumors
(22), and a cell culture model (20). Future basic
and clinical studies must weigh the initial anti-
tumor effects of TMZ against the potential risk of
inducing new driver mutations and malignant
progression. Ultimately, a better understanding of
the invading cells that give rise to recurrent
tumors and the effect of adjuvant therapeutics on
their evolution will facilitate the development of
new strategies to delay or prevent recurrence and
malignant progression.
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Single-Cell RNA-Seq Reveals
Dynamic, Random Monoallelic Gene
Expression in Mammalian Cells
Qiaolin Deng,1* Daniel Ramsköld,1,2* Björn Reinius,1,2 Rickard Sandberg1,2†
Expression from both alleles is generally observed in analyses of diploid cell populations, but studies
addressing allelic expression patterns genome-wide in single cells are lacking. Here, we present global
analyses of allelic expression across individual cells of mouse preimplantation embryos of mixed background
(CAST/EiJ × C57BL/6J). We discovered abundant (12 to 24%)monoallelic expression of autosomal genes and
that expression of the two alleles occurs independently. The monoallelic expression appeared random
and dynamic because there was considerable variation among closely related embryonic cells. Similar
patterns of monoallelic expression were observed in mature cells. Our allelic expression analysis also
demonstrates the de novo inactivation of the paternal X chromosome. We conclude that independent and
stochastic allelic transcription generates abundant random monoallelic expression in the mammalian cell.

In diploid organisms, the zygote inherits one
set of autosomal chromosomes from each
parent. Although it is widely believed that

transcription of autosomal genes occurs from
both parental alleles, specific classes of genes
have been shown to express only one, randomly
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selected, allele (allelic exclusion) (1–3). Analyses
of clonally amplified lymphocytes by using single-
nucleotide polymorphism (SNP)–sensitivemicro-
arrays revealed that 8% of human autosomal
genes and 16% of mouse genes showed a type of
random, monoallelic expression that was stably
maintained during clonal expansion (4, 5). Further-
more, parental-specific (imprinted) expression has
been demonstrated for 1% of autosomal genes
(6, 7) and, perhaps most strikingly, in the inac-
tivation of one X chromosome in female cells (8).
Although RNA fluorescent in situ hybridization
(RNA-FISH) has been used to study a few indi-
vidual genes (9, 10), little is known about general
patterns of allelic expression in single cells.

To investigate allele-specific gene expression
at single-cell resolution, we isolated 269 individ-
ual cells dissociated from in vivo F1 embryos
(CAST/EiJ × C57BL/6J, hereafter abbreviated
as CASTand C57, respectively) from oocyte to
blastocyst stages of mouse preimplantation de-
velopment (PD) (11). We generated transcrip-
tome profiles with Smart-seq (12) or Smart-seq2
(13) from each individual cell (table S1 and fig.
S1, A and B). Principal component analysis
(PCA) clustered the cells by developmental stage
and embryo, effectively reconstructing the dy-
namics of PD (Fig. 1A). Next, using strain-specific
SNPs (14) to distinguish transcription from the
maternal and paternal chromosomes (15) we ob-
served that 82% of all genes expressed during PD
contained ≥1 informative SNP (fig. S1C) and that
different SNPs within the same gene gave co-
herent allelic calls (fig. S2). Because maternal
RNA lingers from the oocyte (16), we expected
the maternal genotype to dominate the zygotic

transcriptome. Indeed, the zygote, and also the
early two-cell, contained essentially only mater-
nal RNA, but in the subsequent stages, the ma-
ternal fraction gradually declined to reach parity
with paternal transcripts at the four-cell stage
(Fig. 1B), which is consistent with rapid maternal
transcript clearance and zygotic genome activa-
tion. As a control for the accuracy in alignments
and SNP annotation, we analyzed individual cells
of pure C57 or CAST background and found
99.4 and 99.7% correctly classified reads, respec-
tively (Fig. 1B).

We next investigated the gene activation across
paternal chromosomes. We found that genes on
the paternal X chromosome (Xp) of female em-
bryos were indeed transcriptionally activated sim-
ilarly to those on paternal autosomes during a
defined time window of the PD. Subsequent re-
inactivation occurred first beyond the four-cell stage
(Fig. 2A), demonstrating de novoXp inactivation
(17, 18) rather than inheritance and propagation
of a pre-inactivated Xp (19). X chromosome in-
activation initiates from the X-inactivation center
(Xic), from which Xist is transcribed, and spreads
in cis (18). Our data provided a high-resolution
map of silencing over Xp at the four-cell, 16-cell,
and early blastocyst stages (Fig. 2B) that sub-
stantiates the observation of a silencing gradient
(19) and demonstrated that the spread of Xp
silencing is not a simple function of the distance to
Xic (Fig. 2B, and escapee genes in fig. S3 and
table S2).

These findings gave us confidence in infer-
ring biological signals from the allelic informa-
tion in single-cell RNA sequencing (RNA-seq).
To further explore allelic expression of autosomal
genes, we classified their expression as biallelic,
maternal monoallelic, or paternal monoallelic ac-
cording to SNP-containing reads. Surprisingly,
this revealed a great degree of monoallelic ex-
pression (on average, 54% of genes) across all
stages of PD (figs. S4 to S24). The monoallelic

calls were similar or more abundant than in avail-
able RNA-FISH data (fig. S25) (9, 10). Because
single-cell transcriptome methods suffer from
stochastic losses of RNA species, it was neces-
sary to determine to what extent random sampling
effects inflate observedmonoallelic calls.We there-
fore lysed individual cells (from 8- or 16-cell em-
bryos) and split the lysate into two equal volume
fractions that were independently processed into
sequencing libraries. Using the allelic calls from
the split-pairs, we modeled the stochastic losses
and inferred the underlying levels of biallelic and
monoallelic expression in sets of genes binned
by expression level (figs. S26 and S27). We esti-
mated that 60% of all polyadenylated [poly (A)+]
RNAmolecules are lost in the Smart-seq2 protocol
(Fig. 3A) (13) because inferred losses stabilized at
levels equal to a single RNA molecule. This
analysis uncovered coherent monoallelic expres-
sion estimates across independent split-cell ex-
perimentswith amedian of 17%of genes (Fig. 3B).
Although technical losses of RNA contributed as
much as 66% of observed monoallelic expres-
sion, this strategy allowed us to determine the
underlying amount of biological monoallelic ex-
pression in single cells.

In subsequent analyses of monoallelic expres-
sion, we focused only on transcripts expressed at
sufficient abundances to be little influenced by
random sampling, as determined in our control
experiments (fig. S28). Exploring the levels of
monoallelic expression among cells from the four-
cell stage to the late blastocyst stage, we observed
similar levels throughout the PD, with an average
of 12 to 24% monoallelic expression for mRNAs
(Fig. 3D) and 19 to 26% for noncoding poly(A)+

RNAs. In contrast, consistent biallelic expression
was observed for only a few hundred genes (table
S3), often with housekeeping functions (4, 9).
Allele classification of single-cell data of pure
C57 and CAST background gave 97.3 and 99.5%
correct monoallelic calls, respectively (Fig. 3D).

1Ludwig Institute for Cancer Research, Box 240, 171 77
Stockholm, Sweden. 2Department of Cell and Molecular
Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
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Pooling cells by embryo removed essentially all
monoallelic expression (Fig. 3E), demonstrating
a high degree of cell-specific randomness inmono-

allelic expressions. We therefore concluded that a
dynamic type of random monoallelic expression
is abundant in blastomeres.

Pioneer studies on interleukin-4 (20, 21) found
transcription of the two alleles to occur indepen-
dently, but it remained unknown whether such
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independence applies on the genomic scale. Using
our comprehensive allelic expression data for
thousands of genes, we therefore investigated
whether expression from the two alleles occurred
independently of one another. Independent allelic
expression would yield a specific relationship
between the fraction of cells with biallelic, mono-
allelic, or no expression (10), which is different
from scenarios of coordinated allelic expression.
Markedly, the observed fraction of cells with bi-
allelic expression followed the fraction expected
under the independence model (Fig. 3F, eight-
cell stage data, and fig. S29, all stages), demon-
strating independent allelic transcription for genes
across all expression levels, substantially extend-
ing results on individual genes (20, 21) to a
global principle. Under independent allelic ex-
pression, biallelic expression of a particular gene
would on average result in twofold higher RNA
copy numbers than would the same gene in cells
in which the gene is monoallelically expressed
because cells with biallelic expression have tran-
scriptional output from two alleles. To test this
hypothesis, we analyzed mean gene expression
levels in cells with biallelic expression and in-
deed observed them to be 2.0 T 0.1 times higher
[95% confidence interval (CI), bootstrap] than
the levels in cells with monoallelic expression at
all developmental stages (Fig. 3G). Thus, both
the allelic expression patterns and the expression
levels point to independent allelic transcription.

Because embryonic cells are uncommitted pro-
genitors, it was important to determine whether
abundant random monoallelic expression also
occurs inmature cells. To this end, we investigated
single-cell transcriptomes of in vivo liver cells
(C57 × CAST), together with a control dilution
series of RNA extracted from liver tissue (C57 ×
CAST) (Fig. 4A and fig. S30). The monoallelic
expression levels in single liver cells were higher
than sampling effects measured in control dilu-
tions across all expression levels (Fig. 4B), and
the fraction of true monoallelic calls increased
with the expression threshold. We also profiled
10 individual adult mouse fibroblasts (five from
each reciprocal cross) and detected similar ran-
dom monoallelic expression, on average 24% of

expressed genes per cell. We therefore conclude
that randommonoallelic expression is abundant in
both embryonic and mature cells.

In this study, we uncovered a stochastic pat-
tern of monoallelic expression that differs from
the stable allelic regulation of genomic imprint-
ing and allelic exclusion (22, 23). It also differs
from the stably maintained monoallelic expres-
sion observed in clonal lymphoid cell populations
(4, 5). Instead, the rapid expression dynamics that
we uncovered in individual cells are consistent
with models of transcriptional bursting (24). In
each cell, independent bursts of transcription
occur from both alleles over time, but RNA from
only one allele is often present at any given time.
Because stochastic losses of RNA substantially
inflates naive estimates of allelic expressions,
stringent controls such as split-cells and dilution
series are of critical importance for accurate al-
lelic expression analyses in single cells. It is likely
that stochastic transcription of heterozygous alleles
contributes to variable expressivity—phenotypic
variation among cells and individuals of identical
genotypes—which may have fundamental impli-
cations for variable disease penetrance and se-
verity (25–28).
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Fig. 4. Monoallelic expression in different ma-
ture cell types. (A) The cumulative fraction of
monoallelic expression as a function of the expres-
sion levels for individual liver cells and at different
dilutions. (B) Percentage of genes with monoallelic
expression in individual cultured adult fibroblasts
(C57 × CAST and CAST × C57) for genes with mean
expression ≥20 RPKM per stage (fig. S28).
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