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We studied the impact of stochasticity on gene regulation networks, using the

cell-to-cell communication mechanism in Escherichia coli as an example.

First we explored signal mediated positive autoregulation networks and their

stochastic bistability, in the presence of which an initially homogeneous cell popula-

tion would evolve into two distinct subpopulations. We proposed the simplification

of the full network into one that can be theoretically studied. Simulation results

indicate the simplifications retain the bistability and the distribution shapes so that

the simplified network can be used to predict the bistable behavior of the full net-

work. Moreover, it was shown that the bistability can be influenced by the signal

molecule number, and that stochastic simulation is necessary for bistable systems.

The self-promotion network for SdiA protein, with the autoinducer-2 (AI-2) sig-

nal molecule, was used as an example. The results further motivate the need for

modeling of the AI-2 uptake mechanism.

We next explored cell age distribution in the case where the number of a key



protein for cell division has a stochastic bifurcation. With this bifurcation, the alive

probability function (the probability that the cell has not divided) can be written in

a double-exponential form. This analytical form allow the use of Laplace transform

to calculate an analytical cell age distribution from the population balance model.

The computation results indicate that if the key division protein number has a

bifurcation, there is likely to be a significant fraction of first-generation cells in the

cell population.

Finally, we developed deterministic and stochastic models for the regulation

network of the AI-2 uptake in Escherichia coli. This network is regulated by a set

of lsr genes, and we proposed that the LsrD protein needs to reach a threshold for

uptake to take place. Based on the deterministic model, kinetic parameter values

were estimated by fitting to experimental data from the literature. During the step-

by-step fitting procedure, data for mutant cells and effective data for wild type cells

were used to avoid the complexity of the full wild-type network. With the estimated

parameters, the deterministic simulation results matched experimental data well,

except for a steep change and spike. A stochastic model was also developed and

simulation results showed a mild change and no spike for the population means.

The difference between stochastic means and deterministic paths is due to the LsrD

protein number threshold and indicates that stochastic simulation may be necessary

for a monostable system if it has a threshold mechanism.
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Chapter 1

General Introduction

1.1 Stochastic Modeling of Gene Regulation Networks

1.1.1 Stochasticity in Gene Regulation Networks

A gene regulation network is a network with interactions between a set of

genes and transcription factors. Transcription factors are proteins that can regulate

transcription rates. Transcription is initiated by RNA polymerase (RNAp) binding

to the promoter, the regulation region preceding genes on the DNA sequence. When

a transcription factor binds the corresponding operator, the binding of RNAp on the

promoter may become easier or more difficult, and thus the transcription rate may

be increased or decreased. If it is increased, the transcription factor functions as an

activator; while the factor acts as a repressor if the transcription rate is decreased.

Sometimes signal molecules, small molecules which usually carry environmental in-

formation, are necessary for the effectiveness of a transcription factor. Transcription

factors are also expressed from their genes and those genes can be affected by other

transcription factors or their own gene products. Therefore the interactions be-

tween transcription factors and genes can form a network [1, 2]. This network is

gene regulation network.

Gene regulation networks have been studied by many researchers and can be

1



simulated with deterministic ordinary differential equations (ODEs) [3]. However,

activities of gene regulation networks are basically stochastic. In a cell, almost all

activities involve chemical reactions between molecules, and the chemical reactions

are subject to thermal fluctuations. In regular chemical reactions, the molecule

numbers are usually around the scale of Avogadro number. The molecule numbers

are so large that the effects of fluctuations are not apparent. However, in gene

regulation networks, the numbers of related molecules may be just around several

hundreds or less. Thus, the effects of fluctuations may be significant. Therefore we

should view the activities of gene regulation networks, like transcription, translation,

protein binding and other molecular reactions, as stochastic processes [4, 5].

The stochasticity in gene regulation networks may cause behavior that cannot

be explained with deterministic models. For example, in a stochastic cell popula-

tion the experimental data for single cells may differ significantly from each other,

although the data measuring population are regular [6]. Also an initially homoge-

neous stochastic cell population can develop into two distinct subpopulations [7, 8].

Therefore, often stochastic models are necessary to simulate the behavior of gene

regulation networks.

1.1.2 Stochastic Models

Before the introduction of stochastic models, let us briefly review deterministic

models, because stochastic models can be developed from them. A deterministic

model describes how concentrations of the various species change with time and is

2



composed of a set of ODEs:

dx(t)

dt
= A(x) (1.1)

where t is time. The vector x represents the concentrations or molecule numbers of

the species. In a cell, the species can be DNA, mRNA, protein and other molecules;

and in a biochemical process they can be biomass and substrates. The functions

A(x) are the dynamics from rate laws of biochemical reactions. They can be written

in the form of first or higher order chemical reaction kinetics, and can also be written

as Michaelis-Menten kinetics. The deterministic model may be very detailed and

complex and contain many parameters. If all the parameters and initial conditions

are known, quantitatively precise prediction can be made for the future evolution

of the biochemical system. Some models of this kind can accurately simulate a real

system (for example a cell), and match the experimental data well [9].

The Langevin equation considers molecular fluctuations by adding a noise term

to the equation (1.1) as follows [10]:

dx(t)

dt
= A(x) +

√

B(x)ξ(t) (1.2)

where A(x) and B(x) are the functions of drift and diffusion coefficients. ξ(t) is

the noise term, which ideally represents white noise. White noise has infinite vari-

ance and thus does not really exist. However some real systems can be approxi-

mated by this ideal form. The solution of Langevin equation is obtained by solving

the stochastic differential equations above. From the equation above we could see

that the variables x(t) must be continuous variables. Each time we solve the same

Langevin equation, we may have a different result. To know the probability distri-
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bution at a specific time, we need to solve the Langevin equation many times and

then statistically average the results.

The Fokker-Planck equation analytically describes the evolution of the prob-

ability density function, which avoids the time-consuming repetition of solving the

Langevin equation. Fokker-Planck equation is a set of partial differential equations

(PDEs) [10]:

dp(x, t)

dt
= −▽ ·[A(x)p(x, t)] +

1

2

∑

i,j

∂2

∂xi∂xj
[B(x)p(x, t)] (1.3)

Here p(x, t) denotes the probability density function of x at time t. The value for

p(x, t)∂x is the probability that the values for stochastic variables reside between x

and x + ∂x at time t. When Fokker-Planck and Langevin equations describe the

same system, they should share the same functions of A(x) and B(x). In Fokker-

Planck equation, the stochastic variable x is continuous and the probability density

function p(x, t) can be obtained by solving the Fokker-Planck equation above.

To describe discrete biochemical networks, the master equation can be ob-

tained. Both the Langevin and Fokker-Planck equations are used to describe con-

tinuous systems, thus the stochastic variables in those equations are continuous.

However, when we consider activities in a cell, for example gene expression, the

numbers of DNA, mRNA and proteins are often very limited. In that case it is not

appropriate to consider the numbers as continuous. They should be considered as

discrete variables instead. The master equation is developed to calculate the evolu-

tion of the probability density function of discrete stochastic variables. The general

4



form of the master equation can be described as [11]:

dPk

dt
=

∑

l

TklPl (1.4)

where Pk is the probability of state k; Tkl is the transition rate constant from state

l to state k. To illustrate the master equation more clearly, an example is raised [5].

Suppose there is a protein with two states A or B. k1 and k2 represent the likelihood

of A-to-B and B-to-A transitions. Then the master equation is:

dp(na, nb; t)

dt
= −(k1na+k2nb)p(na, nb; t)+k1(na+1)p(na+1, nb−1; t)+k2(nb+1)p(na−1, nb+1; t)

(1.5)

In the equation, p(na, nb; t) is the probability at time t that na proteins are in state

A and nb proteins are in state B. Usually, master equations are too difficult to solve

analytically, so they are converted to Fokker-Planck equation with some assumptions

[12], or to the Langevin type equation [13], or solved with Monte Carlo simulation

[14].

1.1.3 Stochastic Petri Nets

The methods we introduced before are not very appropriate to describe a

complex stochastic and discrete system. The Langevin and Fokker-Planck equations

are continuous models. Master equations are discrete models but usually too difficult

to solve. An efficient representation and simulation approach is based on Stochastic

Petri nets (SPN), which is a mathematical formalism that can realize a simulation of

stochastic and discrete events. Hence it is a good tool for the stochastic simulation

of molecular biological systems [15]. SPN is based on Petri nets, a graphics-oriented
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formalism to analyze discrete events [16].

The structure of an SPN is composed of tokens, transitions and input and

output gates. A simple SPN model is shown in Fig. 1.1. The tokens (circles) repre-

sent the chemical species such as DNA, mRNA, proteins and other molecules. Each

token has a number, which represents the concentration or molecular number of

the species. The transitions (vertical lines) represent the chemical reactions, with

arrows pointing away from reactant and into products. Here we can consider cell

activities like gene expression, molecular binding and unbinding as well as chemical

reactions. The input and output gates (triangles) indicate the precondition and

effect of the transition firing. If there is no precondition for transition firing and

the effect of transition firing on the reactant token is just the token number mi-

nus one, the input gate can be canceled. If the effect of transition firing on the

product token is just the token number plus one, the output gate can be canceled.

The Mobius software is designed to simulate the SPN. This software is available

from Performability Engineering Research Group (PERFORM) at the University of

Illinois at Urbana-Champaign [17].

In SPN the transition fires in a stochastic manner. The time when the tran-

sition fires is determined by a distribution function of ffire(t), which is a negative

exponential function [17]:

ffire(t) = λexp(−λt) (1.6)

where λ is the rate parameter. When the transition represents a chemical reaction,
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Figure 1.1: A simple example for SPN.

λ can be written in the terms of kinetics:

λ = βn (1.7)

λ = βn(n − 1) (1.8)

λ = βnAnB (1.9)

where n is molecule number. Eq. (1.7) represents a reaction of one molecule, Eq.

(1.8) represents a reaction between two molecules of the same kind, Eq. 1.9 repre-

sents a reaction between two different kinds of molecules. Here β is the stochastic

rate constant. The relation between β and the deterministic rate constant k depends

on the situation. When k is in terms of molar concentration and the transition is a

first-order reaction, β is equal to k. When k is still in terms of molar concentration

and the reaction is second-order, the relation between stochastic and deterministic

rates is [18]:

β =
k

V NA
(1.10)
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where V is the cell volume and NA is Avogadro’s number. When k is in terms of

molecule number, for both the first-order and second-order reactions, the stochastic

rate constant β has the same value and unit as the deterministic rate constant k.

1.1.4 Summary of Models

The stochastic models introduced above can be classified into four categories

as shown in Table 1.1. Master equations and stochastic Petri nets are discrete

models, in which the variable values are in terms of actual integer molecule num-

bers. Langevin and Fokker-Planck equations are continuous models, meaning that

molecule numbers are considered as continuous variables. Discrete models are more

accurate than continuous models, but are also more difficult to deal with. In similar

manner, master equations and Fokker-Planck equations are probability distribution

models. The solutions from these models are the probability distribution of molecule

numbers. Langevin equations and stochastic Petri nets are Monte Carlo models. To

obtain probability distribution, stochastic simulations need to be repeated many

times. The probability distribution of relatively simple systems can be quickly ob-

tained with probability distribution models. However the probability distribution

models describing very complex models are difficult to solve, and sometimes even

to be written in the explicit forms. Monte Carlo models will be applied in these

systems.

The stochastic models are also interchangeable. For continuous models, Langevin

and Fokker-Planck equations can be transformed to each other because they have
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Monte Carlo Model Probability Distribution Model

Continuous Model Langevin Equation Fokker-Planck Equation

Discrete Model Stochastic Petri Nets Master Equation

Table 1.1: Summary of Stochastic Models.

the same functions A(x) and B(x) when representing the same system [10]. For dis-

crete models, master equations for molecule interactions can be obtained by writing

the Kolmogorov equations for stochastic Petri nets [15]. Discrete models can also

be changed into continuous models when the molecule numbers are very large. It

is possible to obtain Langevin equations and Fokker-Planck equations from mas-

ter equations with large molecule numbers [13]. If there are some steps which are

much faster than others, quasi-equilibrium can be assumed. Then the Fokker-Planck

equation derived from master equations can have low dimension and be solvable [12].

1.2 Quorum Sensing as Case Study

1.2.1 What is Quorum Sensing

In this study we choose the quorum sensing system in Escherichia coli as an im-

portant application. Quorum sensing is a fairly innovative concept which overthrows

our notion that bacterial cells are isolated each other. On the contrary, quorum sens-

ing describes how cells communicate with each other and form a cooperating society.

Quorum sensing has industrial value because it can influence intracellular gene ex-

pression and affect cell growth. Then in biochemical processes, quorum sensing can
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influence the productivity of products. There are still many open questions in this

field. How cells signal each other still has many unclear points, which make quorum

sensing a very active topic and attract many researchers’ attention.

Quorum sensing is a phenomenon which relates the cell activities to the density

of cell population. The most typical quorum sensing system is the bioluminescence

system in Vibrio fischeri. When this kind of bacteria accumulate together and the

density of bacterial population becomes higher than a specific threshold, light is

emitted from the bacteria [19]. Some eukaryotic hosts provide nutrient-rich en-

vironment in which V. fischeri can grow to high density, and then achieve their

own purpose with light from the parasites. The reason we use the term of quo-

rum sensing here, is that the bioluminescence activity depends on whether the cell

density reaches the threshold. Quorum sensing indicates that cells are not isolated

individuals, but able to perform cooperatively [20].

Quorum sensing is realized by a system that enables cells to communicate with

each other through signal molecules. A quorum sensing system is composed of three

steps: First signal molecules are synthesized and then sent out of the cell. When the

concentration of the signal molecules reaches a threshold, cells detect the molecules

and uptake them through a mechanism. Finally proteins bind the molecules and

regulate the expression of target genes, such as letting V. fischeri emit light. [21, 22]

There are three different kinds of quorum sensing systems. In gram-negative

bacteria, the signal molecules, autoinducers, are acylated homoserine lactone (AHL).

The autoinducers are synthesized by LuxI-type enzymes. The LuxR-type protein

binds the autoinducers and controls the transcription of target genes [21]. In gram-
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positive bacteria, the signal molecules are oligopeptides. The oligopeptides are syn-

thesized by processing and secreting precursor peptides [23]. Signal molecules are

transduced by a two-component system to regulate target gene transcription [24].

There is also a kind of hybrid quorum sensing system. The signal molecules are

AHL autoinducers, which are synthesized by a system like in gram-negative bacte-

ria. But a two-component system, similar to that in gram-positive bacteria, make

signal molecules able to regulate gene expression [22].

Signal molecules for interspecies bacterial communication can be involved in

quorum sensing. In the quorum sensing system of Vibrio harveyi, there are two kinds

of signal molecules, i.e., autoinducers [25]. Only when these two kinds of autoin-

ducers, AI-1 and AI-2, are present together, the target gene can be expressed after

a series of regulation [26]. AI-1 is a normal AHL and is only used in introspecies

communication [27, 28]. However, AI-2 is suggested to be used in interspecies com-

munication, because its synthase, LuxS, exists in many kinds of bacteria, and AI-2

can be detected by many different bacteria [22, 28, 29]. Therefore bacterial activity

is possible to be affected by other species through quorum sensing.

1.2.2 Quorum Sensing in Escherichia coli

Quorum sensing in E.coli can be described in Fig. 1.2. AI-2, an important

type of signal molecule in E.coli, is synthesized from S-adenosylmethionine (SAM).

As a methyl donor, SAM can be converted to S-adenosylhomocysteine (SAH) with

methyl transferase enzymes. SAH is toxic to the cell so it is degraded into S-
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Figure 1.2: Quorum sensing system in E.coli. Adapted and revised from [36].

12



ribosylhomocysteine (SRH) with pfs enzyme. Then LuxS can convert SRH into AI-2

and other materials [30]. The regulation of AI-2 production is still not very clear.

It was found that AI-2 is produced during the exponential phase and is eliminated

from culture during the stationary phase [31, 32], and that the AI-2 production

prefers low pH, high osmolarity and presence of glucose [31, 33, 34, 35]. However,

the details about how these factors affect AI-2 production are still unknown. Recent

study discovered that glucose influence AI-2 production and uptake through cylic

AMP and cAMP receptor protein [32].

The uptake of AI-2 into E.coli cells at least involves two pathways [32, 36].

One pathway is the uptake mediated by lsr gene products. In this pathway, AI-2 is

first transported into cells by the transporter apparatus encoded by lsrACDB. Then

AI-2 is phosphorylated by the kinase LsrK. LsrR can repress the transcription of

lsr genes but the LsrR repression can be derepressed by the phospho-AI-2. LsrR

and phospho-AI-2 can regulate the lsr-mediated uptake. Finally, the protein LsrF

and LsrG involve the degradation of AI-2. The detail for another pathway is still

unknown.

SdiA, the only LuxR-type receptor in E. coli, is involved in three independent

gene regulation cases [37]. The first regulation is the positive effect of SdiA on

cell division. Overexpression of SdiA can directly or indirectly activate the PQ2

promoter, which is located in the upstream of the cell division gene ftsQAZ. The

products from ftsQAZ are necessary for cell division. FtsZ is used during the Z-ring

formation and FtsA is required for the formation of cross wall [38]. The second

regulation is that SdiA can result in resistance to mitomycin C (MMC) [39]. The
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third regulation is that SdiA also has an effect of resistance to quinolones [40]. These

regulations suggest the potential role of quorum sensing in E. coli.

AI-2 can be involved in SdiA-regulated gene expression. First, it was reported

that the PQ2 promoter is activated in a high cell density environment [41], which

suggests a relation between the SdiA-activated gene expression and quorum sens-

ing. Second, the molecular structures are similar to the LuxI-LuxR quorum sensing

system in gram-negative bacteria. LuxS, the final synthase of AI-2, is a LuxI-type

protein in that it is responsible for synthesizing an autoinducer [30]. SdiA is a

LuxR-type protein [37]. It was also found that the N-terminal domain of SdiA can

bind to an autoinducer [42]. Third, experiment results show that gene expression

from PQ2 can be enhanced in the condition medium with AI-2, compared with that

in the condition medium without AI-2. It was recently discovered that in chemo-

stat culture the signaling of AI-2 to SdiA is independently of cell density, glucose

concentration and growth rate [34]. All the facts above suggest that AI-2 molecules

regulate gene expression through SdiA protein.

AI-2 and SdiA may regulate the production of SidA itself. In V. fischeri, the

R protein LuxR is involved in the down-regulation of its own expression by the

extracellular factor [43, 44], suggesting that LuxR-type protein can regulate its own

expression with signal molecules. As for SdiA, it was reported that an extracellular

factor, the derivative of homoserine lactone (HSL), can down-regulate expression of

sdiA. But it seems that the down-regulation by this signal molecule is not mediated

by SdiA itself [45]. Appearance of AI-2 can increase the expression of sdiA [46].

Although it is still unknown whether SdiA itself is related to this regulation, self-
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regulation of LuxR suggests it is very possible that with the extracellular signal

molecule AI-2, SdiA up-regulates its own expression.

1.3 Outline of the Thesis

The research in this thesis studies the impact of stochasticity on gene regula-

tion networks, with networks involved in the quorum sensing mechanism of E.coli

used as a case study. Chopp [47] and Viretta and Fussenegger [48] used determin-

istic models to study the quorum sensing of Pseudomodas aeruginosa. Work on

stochastic modeling of quorum sensing is still rare and in previous work the value

for stochastic models is not apparent because stochastic means follow deterministic

results [49, 50, 51]. Therefore further work on stochastic modeling is still needed.

In Chap. 2 we study positive autoregulation in gene regulation networks, which

has been shown in the past to exhibit stochastic behavior, including stochastic bista-

bility, in which an initially uniform cell population develops into two disctinct sub-

populations. However, positive autoregulation is often mediated by signal molecules,

which have not been considered in prior stochastic analysis of these networks. Here

we propose both a full model of such a network that includes a signal molecule, and

a simplified model in which the signal molecules have been eliminated through the

use of two simplifications. The simplified model is amenable to direct mathematical

analysis that shows that stochastic bistability is possible. We use stochastic Petri

networks for simulating both types of models. The simulation results show that

(i) the stochastic behavior of the two models is similar, and (ii) that the analytical
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steady state distribution of the simplified model matches well the transient results

at times equal to that of a cell generation. A discussion of the simplifications we

used in the context of the results, indicates the importance of the signal molecule

number as a factor determining the presence of bistability. This is further supported

from a deterministic steady state analysis of the full model that is shown to be a

useful indicator of potential stochastic bistability. We use the regulation of SdiA

in Escherichia coli as an example, due to the importance of this protein and of the

signal molecule, AI-2, that is involved. However, the use of kinetic parameter val-

ues representing typical cellular activities make the conclusions applicable to other

signal-mediated positive autoregulation networks as well.

In Chap. 3 cell age distribution is mathematically explored in the case that the

number of key proteins for cell division exhibit stochastic bifurcation. It is proposed

that in this case the alive probability functions from both Fokker-Planck equations

and Stochastic Petri nets can be written in the form of a double-exponential function.

The double-exponential function can be used in a population balance model, from

which analytical forms of age distribution for this cell population can be obtained

from the population balance model by using Laplace transformation. The calculated

results show that if the number of the key proteins for cell division has a bifurcation,

even after a relatively long time there would still be a significant fraction of first-

generation cells in the population.

In Chap. 4 we focus on the uptake of autoinducer-2 (AI-2) molecules into

Escherichia coli, which is regulated by a gene regulation network. Deterministic

and stochastic models for this network are developed. Based on the deterministic
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model, parameters in the network are estimated by fitting to experimental data

from the literature. The full network in wild-type cells is very complex, and thus

the network is simplified by considering mutant cells, in which the networks are

relatively simple, and by using effective transcription levels and AI-2 uptake rates.

With these simplified networks, parameter values for the regulation network of AI-2

uptake are obtained step by step from experimental data. These parameter values

are used for the model for the full network and the simulation results match well with

experimental data of wild-type cells, except for a steep drop of external AI-2 activity

and spikes in transcription level, which one does not expect to see in experimental

data. A stochastic model is also developed, and the simulation results indicate that

when there is threshold mechanism inside the cells, deterministic and stochastic

simulations show significant differences. Deterministic simulation predicts a step

change at the time a threshold is reached, while in stochastic simulation each cell

reaches threshold at different time so that the overall change is mild. Hence the

stochastic model better represents the type of measurements we can expect from a

cell population.

Chap. 5 provides the conclusion to this thesis.
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Chapter 2

Stochastic Modeling of Gene Positive Autoregulation Networks

Involving Signal Molecules

2.1 Introduction

Gene expression is subject to intrinsic noise [52], which may come from ther-

mal fluctuations of molecular events that constitute the process of gene expression

[5]. When the numbers of some molecules in a cell are relatively low, the effect of

fluctuations can be apparent and then even cloned cells in the same environments

can evolve into different phenotypes [4]. In such situations, gene regulation networks

should be viewed as stochastic processes. Several gene regulation networks have been

stochastically modeled. MacAdams and Arkin [7] performed stochastic simulation

for a simple regulation link of two genes. The expression of pyelonephritis-associated

pili in uropathogenic E. coli has been modeled as a Markov chain [53]. A stochastic

model for the quorum sensing mechanism in E.coli was developed and used to obtain

new insights on synthesis pathways of autoinducer-2 (AI-2) [51].

Gene regulation networks with positive autoregulation are strong candidates

for consideration of stochastic behavior because positive autoregulation may cause

bistability and let an initially homogeneous cell population develop into two distinct

subpopulations. Arkin et al. [8] developed a stochastic model for the developmental
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pathway in phage λ-infected E.coli and simulation results predicted a bifurcation in

the cell population, which was experimentally verified. In this model, although the λ

switch is essential for the selection for lysis/lysogeny pathways, the positive autoreg-

ulation of CI expression is necessary for the bifurcation. Positive feedback modules

are present in E.coli cells and experimental results indicate bistability of protein

amounts, consistent with predictions from a stochastic model [54]. In another ex-

periment, stochastic bifurcation can even be directly observed under the microscope

[55]. Positive autoregulation networks have also been mathematically analyzed to

obtain insight in bistability. Ferrell [56] discussed how cellular systems with positive

feedback loops can exhibit bistability and reviewed some typical bistable systems.

Kepler and Elston [12] analytically obtained the bistable probability distribution of

protein number in a simple self-promotion network.

However, positive autoregulation in gene regulation networks is often mediated

through signal molecules. Let us consider two examples in quorum sensing systems,

a cell-to-cell communication mechanism, in which extracellular factors function as

signal molecules. In Vibrio fischeri, when DNA sequences in operonR are deleted

or autoinducers (AI) are at low levels, LsrR protein can have a positive regulation

on lsrR gene in the presence of AI [44]. In E.coli, the appearance of another kind

of extracellular factor, autoinducer-2 (AI-2), can increase the expression of sdiA

gene [46]. Although it is still uncertain that the SdiA protein is related to this

regulation, there are some supporting facts. First, SdiA has a LuxR-type sequence

[21, 37] and its N-terminal domain can bind to a factor [42], which suggests that

SdiA may regulate genes by binding some factor. Second, AI-2 can enhance some
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SdiA-regulated gene expression [34], which suggests that AI-2 may be the factor.

Therefore, it is likely that SdiA protein upregulates its own expression by binding

AI-2 molecules [49].

Work on the stochastic modeling of such signal-mediated networks has been

limited. Through the study of the mathematical relation between the signal-mediated

networks and the pure positive autoregulation networks that have been more exten-

sively studied, conclusions from the latter networks, such as the property of bistabil-

ity, may be carried to the signal-mediated networks. Here we present one network,

in which positive autoregulation is mediated through signal molecules, as the full

model, and another network, in which there is only pure positive autoregulation, as

the simplified model. With some assumptions the simplified model can be obtained

from the full model. Mathematical analysis and simulations for both models are

performed stochastically and deterministically, so that the bistable properties of the

two models can be studied in relation to each other, in order to explore under what

circumstances the conclusions from the simplified model can be applied to the full

model.

2.2 Network Models

We have selected the regulation of SdiA in E.coli as our example network. As

discussed in the previous section, it is considered likely that the signal molecule AI-2

may be involved in the SdiA protein upregulation of its own expression by binding

to it. It should be noted, however, that the network structures that we study are
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Figure 2.1: Full model with signal-mediated positive autoregulation.

more general and several kinetic parameters in the simulations are assigned values

representing typical cellular activities. Therefore we expect that conclusions reached

from this study on the stochastic behavior of the network can be applicable to other

signal-mediated positive autoregulation networks in other bacteria.

2.2.1 Full Model

The signal-mediated positive autoregulation network, termed the full model,

is shown in Fig. 2.1. The gene (DNA) has two states. Transcription rates under

the two states are different, so mRNA can accumulate at different rates. After

transcription, protein monomers (SdiA) are translated from mRNA and then form

activated protein complexes (SdiAact) by binding signal molecules (AI2). Two

activated complexes bind each other and become a dimer. The dimers determine

which state the gene is in. When the dimer binds to the gene, the gene is in occupied

state (DNA1) and the transcription is much faster than that of the unoccupied

gene (DNA0). So we have a positive autoregulation which is dependent on signal
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Parameters Values References

αtrc
0 1.2 min−1 based on transcription rate range: 10−4-1 s−1 [58]

αtrc
1 60 min−1 set to maximum rate 1 transcription per sec [58]

δm 0.36 min−1 based on mRNA half life range: 40 s - 20 min [59]

αtrl 6 min−1 same order of magnitude as Chen et al. [61]

β 28 same order of magnitude as Kepler and Elston [12]

K 1 min−1 same order of magnitude as Kepler and Elston [12]

δ 2.5 min−1 corresponds to half life of 17 s within the range for proteins [60]

θa 1000 selected to be higher than θd

Λa 1 min−1 adjusted based on Kepler and Elston [12] within same order

of magnitude

θd 250 adjusted based on Kepler and Elston [12]

Λd 1 min−1 adjusted based on Kepler and Elston [12] within same order

of magnitude

Table 2.1: Parameters of full model.

molecules. Here we assume it is the dimer that binds to the gene because the

regulatory proteins often function as dimers or higher-order oligomers [12, 57].

The parameter values for Fig. 2.1, i.e., the rate constants of the reactions, are

listed in Table 2.1. The transcription rate, αtrc
0 , for the unoccupied gene is selected

near the middle point on a logarithmic range for E. coli [58] and it corresponds

to 200 transcripts per generation. The rate for the occupied gene, αtrc
1 , is set to

the maximum of the range. The mRNA decay rate, δm, corresponds to a half-life

22



of 2 minutes, which is within the range of mRNA half lives in E. coli [59]. The

protein decay rate, δ, corresponds to a half life of 17 s (half lives of proteins in

cells vary widely [60]). The translation rate, αtrl, is based on Chen et al. [61], and

β, K on Kepler and Elston [12] with some adjustments within the same order of

magnitude. The parameters for the formation of the complex and the dimerization

were selected to result in parameter values for the simplified model, developed in

the next section, close to those used in Kepler and Elston [12], while keeping the

rate for the formation of the complex higher than the dimerization rate.

There are two physical meanings for these rate constants. In the deterministic

model (ODE model), the constants are kinetic rate constants. In the stochastic

model, they are stochastic rate constants, which denote the probability of the re-

action occurrence [5]. When the deterministic rate constants are in terms of con-

centrations, the stochastic rate constants are equal to them for first-order reactions.

For second-order reactions, the relation between stochastic rate and deterministic

rate is [15]:

β =
k

V NA

(2.1)

Here β is the stochastic rate constant, k is the deterministic rate constant in terms

of concentrations, V is the cell volume, NA is Avogadro’s number. In the case

where the deterministic rate constants are in terms of molecule numbers, for both

the first-order and second-order reactions, the deterministic rate constants have the

same values and units as the stochastic rate constants. Therefore the values in Table

2.1 can be used in both cases.
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Figure 2.2: Simplified model with positive autoregulation.

2.2.2 Simplified Model

The simplified model is shown in Fig. 2.2. This model is a network in which

positive autoregulation does not involve signal molecules. To obtain it from the full

model, two simplifications are involved: First, transcription and translation, the two

steps of gene expression in the full model, are merged into one reaction:

DNA0
α0→ SdiA (2.2)

DNA1
α1→ SdiA (2.3)

In the simplified model, mRNA is eliminated so we do not need to consider its

activity. The second simplification is that activation and dimerization of protein

monomers (SdiA) are simplified into a single reversible reaction:

2SdiA
Λ∗

⇀↽
θ∗Λ∗

Dimer (2.4)

After this simplification, the activated protein complex (SdiAact) and signal molecules

(AI2) are eliminated from the equations. The simplified model has the same struc-

ture as the general model examined by Kepler and Elston [12], where an analytical

expression for the probability distribution was obtained.
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These two simplifications are based on three assumptions: (i) The mRNA

number is assumed at steady state. (ii) The number of free signal molecules is

considered constant; (iii) Activation of protein is much faster than dimerization of

the activated complex. Next we show how to derive the model from the assumptions.

The first simplification is based on the first assumption. In the full model from

Fig. 2.1 the translation kinetics are:

rSdiA = αtrl[mRNA] (2.5)

The notation [X] represents the molecule number of species X in the cell. With the

assumption that mRNA is always at steady state, the mRNA number in the full

model (Fig. 2.1) is obtained:

[mRNA] =
αtrc

0

δm

[DNA0] +
αtrc

1

δm

[DNA1] (2.6)

By applying eq. (2.6) into (2.5) a simplified rate function for protein monomer (SdiA)

production is obtained:

rSdiA = α0[DNA0] + α1[DNA1] (2.7)

where

α0 = αtrl
0 αtrc/δm (2.8)

α1 = αtrl
1 αtrc/δm (2.9)

Equation (2.7) is just the kinetic rate function for reactions (2.2) and (2.3).

The second simplification is obtained from the last two assumptions. It is

assumed that activation is much faster than dimerization. Hence, compared with
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dimerization, activation can be considered at quasi-equilibrium:

[SdiAact] =
[SdiA][AI2]

θa

(2.10)

On the other hand, in those two steps dimerization is the determining step. Then

for the overall reaction, the forward reaction rate is

rf = Λd[SdiAact]2 = Λ∗[SdiA]2 (2.11)

where

Λ∗ =
Λd[AI2]2

θ2
a

(2.12)

The overall reverse reaction rate is:

rr = θdΛd[Dimer] = θ∗Λ∗[Dimer] (2.13)

where

θ∗ =
θ2

aθd

[AI2]2
(2.14)

Equations (2.11) and (2.13) describe the kinetics for the overall reaction (2.4) for

the simplified model. Hence the second simplification is realized. From eqs. (2.12)

and (2.14) it can be conluded that θ∗ and Λ∗ can be used as effective rate constants

because of the second assumption that the free signal molecule (AI2) number is

constant.

Equations (2.8), (2.9), (2.12) and (2.14) indicate the relation between the

parameters of the simplified and full models. With these equations and the constant

signal molecule (AI2) number equal to 500, values for parameters of the simplified

model are calculated and shown in Table 2.2.
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Parameters Values

α1 1000min−1

α0 20min−1

δ 2.5min−1

β 28

K 1min−1

θ∗ 1000

Λ∗ 0.25min−1

Table 2.2: Parameters of simplified model.

2.3 Analysis of Simplified Model

2.3.1 Steady-State Distribution from Mathematical formula

For networks with the structure of the simplified model, an analytical expres-

sion for the stochastic distribution under steady state has been obtained by Kepler

and Elston [12]. This distribution is based on two approximations. The first approx-

imation is the small noise approximation. When the protein abundance is large, the

number of protein monomer (SdiA) molecules can be expressed by defining a contin-

uous variable instead of a discrete one. The second is the fast noise approximation,

which means the transitions between the two gene states (DNA0 and DNA1) are

fast but finite.

With these approximations, the steady-state density function of protein monomer
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Parameters Values

a0 0.02

b 0.175

κ 64

mo 400

Table 2.3: Values for Rescaled Parameters.

number is:

ρ(x) =
λ

B(x)
exp(2

∫ x

0

A(x′)

B(x′)
dx′) (2.15)

where

A(x) =
ba0 + x2

b + x2
− x −

2xb(a0 − 1)[((a0 − 2) + x)x2 + b(x − a0)]

κ(b + x2)4
(2.16)

B(x) =
1

mo
(
b(a0 + x) + x2(1 + x)

b + x2
) +

2bx2(a0 − 1)2

κ(b + x2)3
(2.17)

(Note that there are a number of typographical errors in the equations in Kepler

and Elston [12] corresponding to (2.15) and (2.17) above. Results shown in Fig.

6 in Kepler and Elston [12] match eqs. (2.15) and (2.17).) There are four dimen-

sionless rescaled parameters in the equations above: a0 = α0/α1, b = βθδ2/α2
1,

κ = Kα2
1/(θδ3), mo = α1/δ. With the parameter values in Table 2.2, the values for

the rescaled parameters are calculated as shown in Table 2.3. x is the stochastic

variable denoting the number of protein monomer. x is also dimensionless with the

relation x = [SdiA]/mo. The parameter λ is used to normalize the distribution ρ(x).

The distribution of protein monomer number obtained from eq. 2.15 is shown

in Fig. 2.3. In this figure the plot of the density function (solid curve) is a two-peak
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curve, which means the pathway of protein production has a bifurcation. The bifur-

cation separates the bacterial cells into two subpopulations. In one subpopulation,

cells produce protein in a slower rate. There is a lower number of protein monomers

in the cells and thus a lower number of activated protein complexes and the dimers.

Then, in most of the time, the gene is in the unoccupied state and protein produc-

tion rate becomes even slower. As time goes on, this group of cells is now at steady

state with a lower protein number. The other subpopulation is the opposite. Faster

protein production causes higher number of dimers and puts the gene in the occu-

pied state more frequently, resulting in much faster protein production rate. Cells

in this group are at steady state with a higher protein number. The distribution

discussed here is a steady-state distribution.

2.3.2 Stochastic Simulation

In this work, stochastic simulation is realized with stochastic Petri networks

(SPN). An SPN is a mathematical formalism for representing and simulating events

that are stochastic and discrete. Goss and Peccoud [15] showed that they are a very

good tool for the stochastic simulation of molecular biological systems and since then

they have been used more extensively for this purpose. The SPN for the simplified

model is constructed and shown in Fig. 2.4. Cell activities like gene expression,

molecular binding and unbinding are all described as chemical reactions. In the

SPN the tokens (circles) represent the chemical species including DNA, mRNA,

proteins and signal molecules. The transitions (vertical lines) represent the chem-
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Figure 2.3: Distribution of protein monomer (free SdiA) number for the simplified
model. Solid curve: analytical steady-state distribution of monomer number. Bar
graph: distribution obtained from SPN simulation after 50-minutes.
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Figure 2.4: SPN for simplified model.

ical reactions, with arrows pointing from reactants and into products. For second

order reactions, there are input and output gates (triangles) in Fig. 2.4, indicating

preconditions and effects of the transition firing, because reactants and products of

the corresponding reactions involve two molecules. The Mobius software package is

used to simulate the SPN as we mentioned in Chap. 1.

The result of the SPN stochastic simulation after 50 minutes is the bar graphic

in Fig. 2.3, which matches the analytically obtained steady state distribution (solid

curve) very well. The analytical steady-state distribution is derived from master

equations with the two approximations mentioned above [12]. Both master equations

and SPN suppose that the reactions are Markov chains in which the probability of

reaction depends on current molecule numbers [5, 15]. Hence, since the two methods
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are based on the same stochastic foundations, one would expect the results to match

well.

The analytical steady-state distribution can predict the long-run trend of

stochastic simulation. The distribution from the stochastic simulation is not a

steady-state distribution. Unlike the steady-state distribution, which is indepen-

dent of initial condition, stochastic simulations with different initial conditions may

result in different distributions. However, as long as the system evolves for long

enough time, stochastic simulation can reach the same steady-state distribution

from any initial condition. In Fig. 2.3 the two distributions match very well because

we choose a proper initial condition. From this initial condition the cell can almost

reach steady state within generation time. (The time length of 50 minutes is an

approximate generation time of E. coli cells.)

2.3.3 Deterministic Simulation

With small-noise and fast-noise approximations, the deterministic ODE for

the simplified model is [12]:

dx

d(δt)
=

ba0 + x2

b + x2
− x (2.18)

Note that “scaled time” δt should be used here, while in Kepler and Elston [12] the

corresponding equation uses t. The ODE solution is shown in Fig. 2.5.

Comparison between the deterministic and the stochastic simulation indicates

the existence of bifurcation. For monostable systems, the stochastic mean is close to

the deterministic path, so such systems can be adequately described in deterministic
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Figure 2.5: Protein monomer (free SdiA) number versus time for the simplified
model. Circles: mean of stochastic simulation; bar graphs show the standard devia-
tion. Bold solid curve: deterministic path from 56 initial protein monomers, which
is the same initial condition as that of stochastic simulation. Thin solid curves:
deterministic paths from the initial conditions above and below the switch point.

33



form. However, the system we are examining is a bistable system. Therefore, from

the same initial condition with protein monomer number equal to 56, the stochastic

mean (circles in Fig. 2.5) does not match the deterministic path (bold solid curve in

Fig. 2.5). We can also see that the standard deviation for the stochastic simulation

(bar graph in Fig. 2.5) is very large relative to noise, which indicates the bifurcation

of the cell population.

The deterministic model has a switch point between 78 and 79 molecules in Fig.

2.5. The two deterministic paths starting above and below the switch point (thin

solid curves) verify the existence of bifurcation. Initial number of protein monomer

higher than the switch point leads to the higher stable steady state. And lower

initial protein monomer number leads to the lower stable steady state. Of course,

for the stochastic simulation, although the initial condition is below the deterministic

switch point, a cell subpopulation at high SdiA number is also obtained, as clearly

shown in Fig. 2.3.

2.4 Analysis of Full Model

2.4.1 Stochastic Simulation

The SPN of the full model is shown in Fig. 2.6. As we mentioned before,

gene expression is separated into transcription and translation. Activation and

dimerization are not considered as one step here. The result shown in Fig. 2.7 is

the distribution of protein monomer number in cells with 50-minute age for the full

model.
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Figure 2.6: SPN for full model.

The distribution in Fig. 2.7 is very similar to that of the simplified model. First,

like the stochastic simulation result for the simplified model, there is bistability in

the distribution for the full model. So the full model also predicts the stochastic

bifurcation for the positive autoregulation network, which verifies the conclusions

from the simplified model. Second, the shapes of the distributions from the two

models are quite similar. For both the simplified and the full model, the peaks at

the lower number of protein monomer are tall and thin, which indicates that in this

group of cells the fluctuations of protein number are small. The peaks at the higher

protein number are more flat, so the fluctuations in those cells are relatively large.

The higher-number peaks in Figs. 2.3 and 2.7 are not in exactly the same

position. This is because of the second assumption for the simplification from the
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Figure 2.7: Distribution of protein monomer (free SdiA) number for the full model.
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full model to the simplified model. In the simplified model, the free signal molecule

number is assumed to be equal to 500. In the full model, we assume the total

number of all forms of signal molecules, including free signal molecules and signal

molecules in the form of activated protein complexes and dimers, to be a constant

equal to 600. However the difference between the two peak values is not significant

(around 50). Therefore the simplification of the full model does not change the peak

positions much.

An important reason for using the simplification is that for the full model we

cannot obtain an analytical distribution as we did for the simplified model. We

have to simplify the full model first, and obtain a mathematical description for the

simplified model. Such a description of the distribution allows a detailed analysis

of the effect of different parameters on the presence or not of stochastic bistability

[12].

As we discussed earlier, the analytical distribution matches the simulation

distribution for the simplified model very well, and the stochastic simulation distri-

butions of the full and the simplified models are very similar. The result obtained

from mathematical analysis of the simplified model can be expected to be applicable

to the full model.

2.4.2 Deterministic Steady-State Analysis

In the previous section, we determined that the analytical distribution for

the simplified model can suggest the steady-state distribution for the full model.
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SPN simulation can further provide distributions for the full model at finite times.

However, the direct mathematical analysis for the full model is very difficult. Often

a deterministic analysis can indicate a pathway bifurcation that may also present

for the stochastic system. Here we examine the use of deterministic analysis as an

indicator for the bistable distribution of the full model.

First, for simplicity of notation, a variable z is defined as equal to the number

of dimers:

z = [Dimer] (2.19)

At the deterministic steady states, protein production and degradation in Fig.

2.1 are in balance:

α0[DNA0] + α1[DNA1] − δ[SdiA] = 0 (2.20)

In eq. 2.20 the third term is the degradation rate of protein. The summation of the

first two terms is the production rate of protein, in eq. 2.7. Eq. 2.7 is used for the

simplified model, but at the deterministic steady states it can also be used for the

full model, because the simplification was based on the assumption that [mRNA] is

at steady-state.

In Fig. 2.1, the transition of gene states of the full model is at equilibrium:

[DNA0]

[DNA1]
=

β

z
(2.21)

Furthermore, the gene states can be normalized to a single gene. Then we

have

[DNA0] + [DNA1] = 1 (2.22)
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From eqs. 2.20, 2.21 and 2.22, the steady-state protein monomer number is

obtained as

[SdiA] =
α0

δ

β

β + z
+

α1

δ

z

β + z
(2.23)

At steady state, activation and dimerization in Fig. 2.1 are in equilibrium. So

we obtain

θa =
[SdiA][AI2]

[SdiAact]
(2.24)

θd =
[SdiAact]2

[Dimer]
(2.25)

Multiply eq. 2.25 by the square of eq. 2.24, and use eq. 2.19 to obtain:

[AI2] = (θz)1/2[SdiA]−1 = (θz)1/2 δ(β + z)

α0β + α1z
(2.26)

where θ = θ2
a θd

From eq. 2.25, the number of activated protein complex is expressed as

[SdiAact] = (θdz)1/2 (2.27)

From eqs. 2.21 and 2.22, the number of DNA binding dimer is

[DNA1] =
z

β + z
(2.28)

When we consider the total signal molecule number, we must count free signal

molecules, signal molecules binding to the activated protein complex, and those

binding to dimers (including the dimer binding DNA). Therefore the total number

of signal molecules is:

[AI2total] = [AI2] + [SdiAact] + 2[Dimer] + 2[DNA1]

= (θz)1/2 δ(β + z)

α0β + α1z
+ (θdz)1/2 + 2z +

2z

β + z
(2.29)
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Figure 2.8: Total signal molecule number ([AI2total]) vs. z([Dimer]).

Eq. 2.29 is used to obtain a plot of [AI2total] as a function of z, shown in Fig.

2.8. The full model assumes that the total number of signal molecules is a constant.

It can be found from Fig. 2.8 that when this constant is within a certain range, the

curve has more than one intersection point with the horizontal line, which means

that the deterministic model has multiple steady states. In these cases, pathway

bifurcation is possible and the stochastic distribution may also be bistable. Therefore

the curve for [AI2total] vs. z can indicate the existence of bistability.

Let us suppose that the total AI-2 number is equal to 600, as it was in the

stochastic simulation. Then the points A, B and C in Fig. 2.8 represent three steady
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Steady states A B C

[Dimer] 0.1394 3.8215 39.9287

[SdiA] 9.9422 55.0765 238.4189

Table 2.4: Steady states when [AI2total]=600.

states. The protein monomer number at each steady state is calculated from eq.

2.23 and shown in Table 2.4. Consider a point between A and B. In that case the

steady-state total signal number is higher than the actual total signal number. This

means there are not enough signal molecules, so the dimers and activated complexes

will disassociate and their number will decrease. The system goes to point A. As for

a state between B and C, the actual signal number is higher than the steady-state

total signal number. This means there is a surplus of signal molecules, so more

activated complexes and dimers will form and the state goes to point C. Therefore

A and C are stable states for the deterministic model and B is a switch point. The

protein monomer numbers for A and C are close to the peaks in Fig. 2.7.

2.5 Discussion

We present two gene regulation network models, both of which contain positive

autoregulation. In the full model, shown in Fig. 2.1, the positive autoregulation is

mediated through signal molecules. The gene product protein binds signal molecules

first, then forms dimers which subsequently bind the gene and improve its expression.

In the simplified model, shown in Fig. 2.2, no signal molecule is involved. The
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gene product protein forms a dimer directly, then the dimers up-regulate the gene

expression. The simplified model can be obtained from the full model with two

simplifications.

Both models exhibit bistable distributions of protein numbers as shown in

Figs. 2.3 and 2.7, which means that an initially uniform cell population can evolve

into two subpopulations. Cells in one population have low protein numbers, while

cells in the other have high protein numbers. The bistability of the two models

is the result of the positive autoregulation mechanism and their stochastic nature.

However, obtaining the bistable protein number distributions for the two models

involves different levels of difficulty. For comparison purposes, on a standard single

processor, our SPN simulation takes more than ten hours for the full model, when

one thousand batches (single path simulations) are used to obtain the distribution.

For the simplified model, the same type of simulation takes less than one hour. The

calculation of the analytical steady state distribution for the simplified model is

essentially instantaneous, but it requires the additional small-noise approximation,

which requires large protein number, and the fast-transition approximation, which

needs fast but finite transition between the gene states.

Let us further discuss the meaning and effect of the two simplifications we

introduced. The first is that the transcription and translation steps are merged into

one single step of gene expression, which assumes the mRNA number is always at

steady state and can be calculated from eq. 2.6. This assumption has two effects.

One is that the dynamic simulation is faster because the time it takes for mRNA

number to reach steady state is ignored. This effect is not important though when
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considering steady state or long times in simulation. The second effect is caused by

ignoring the fluctuation of mRNA number, because with this assumption, when the

full model is at steady state and the state of the gene does not change, the mRNA

number is fixed. The mRNA fluctuation does not play an important role in the

presence or not of bistability. In the simplified model, the fluctuation in the gene

states can induce bistability while the fluctuation of monomer number can reduce

bistability [12], suggesting that the fluctuation in gene states is the main source of

bistability. The fact that the distributions in Fig. 2.3 and Fig. 2.7 are both bistable

and have similar shapes, indicates that mRNA fluctuation is mostly unrelated to

bistability and does not have a significant influence. The peaks in Fig. 2.3 are a little

thinner and higher than in Fig. 2.7, indicating that ignoring the mRNA fluctuation

only causes a slight reduction of the protein number fluctuation. Therefore, the

second effect is also not important and the assumption behind this simplification is

reasonable.

The second simplification is that the activation and dimerization of protein

monomers are combined into one step. Here it is assumed that the number of

unbound signal molecules is a constant. This assumption can influence molecule

numbers at steady state. This is why the position of the peak for the higher protein

number in Fig. 2.3 has an observable difference from the position of the correspond-

ing peak in Fig. 2.7. To avoid unacceptable differences, the steady state free signal

number for the full model cannot be too far away from the assigned constant value

in the simplified model. For this simplification, there is an additional assumption

that activation is much faster than dimerization so that it can be considered at
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quasi-equilibrium. However, usually even dimerization is fast enough to be thought

at equilibrium [12]. This assumption is expected to be reasonably satisfied.

The discussion above indicates that the number of signal molecules present

can be a determining factor on the presence or not of stochastic bistability. The

difficulty involved in the direct mathematical analysis of the full stochastic model led

us to consider the use of the corresponding deterministic model. We saw that such

an analysis can be a very useful indicator of stochastic bistability. Furthermore,

we were able to directly focus on the effect of the number of signal molecules as

shown in Fig. 2.8. This supports that further work is needed in connecting the

signal mediated positive autoregulation model with uptake models for the signal

molecules. We have such work under way for the AI-2 uptake in E. coli.

Finally, we note that the transient simulation results in Fig. 2.5 indicate that

stochastic simulation is essential for a bistable system. For a monostable system, the

mean for the stochastic simulation usually matches the deterministic path and the

standard deviations are relatively small. Therefore deterministic simulation is usu-

ally sufficient and the time-consuming stochastic simulation may not be necessary.

However, for a bistable system, the mean path for the stochastic simulation lies be-

tween the two deterministic stable steady states, while the deterministic simulation

only goes to one of the two stable steady states depending on the initial condition.

As for the standard deviations, they are very large as a result of the development

of two distinct cell subpopulations.
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Chapter 3

Cell Age Distribution in Relation to Stochastic Bifurcation of Key

Protein Number

3.1 Introduction

Stochastic fluctuations in gene regulation networks may lead to bifurcation of

protein number, which can cause an initially homogeneus population to partition

into two subpopulations [8]. Often the bifurcation can be directly observed from

experiment. For example, to emulate the two states of HIV-1, a vector can be

constructed with GFP and selected HIV-1 genes. Then bright infected cells have

high transcription level of those genes and thus are in active state. Dark cells have

low transcription level and are in latent state [62].

The bifurcation of some proteins plays an important role in cell division. For

example, the cyclin-dependent kinase is in low activity state while the cell is not di-

viding, and it has a high activity when the cell is dividing [63]. In Xenopus oocytes

cells, the p42 mitogen-activated protein kinase (MAPK) and the cell-division cy-

cle protein kinase Cdc2 form a “positive-feedback-based bistable memory module”,

which can regulate cell division [64]. In Escherichia coli, SdiA protein, which may

have a bistability is involved in the cell division. Overexpresssion of SdiA can ac-

tivate PQ2, a promoter upstream of ftsQAZ gene, and then initiate the expression
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of ftsQAZ [38]. Protein FtsQAZ is necessary for cell division. FtsZ is used dur-

ing the Z-ring formation and FtsA is required for the formation of cross wall [38].

Thus a high number of those proteins is required during cell division. In E.coli,

there are about 5,000-20,000 FtsZ monomers in one cell during exponential growth

[65, 66, 67]. These proteins above can be considered as “key proteins” for cell divi-

sion. As a simplification, we assume that a cell divides once the key protein number

inside reaches a threshold value.

The pattern of key protein number evolution can influence the age distribution

of cell population. Because the cellular activities are often stochastic [5], key protein

numbers in different cells would take different times to reach the threshold for cell

division, although they have the same initial values. Then cells would divide at

different times and form a specific age distribution. Age distribution is experimen-

tally measurable [68, 69, 70, 71]. Therefore if we can calculate age distribution from

the pattern of key protein number evolution, the calculated results can be compared

with experimental results and the bifurcation of key protein number can be testified.

Mathematical analysis of cell age distribution has a long history. As early

as in the 1930s, it was discovered that under identical condition, two sister cells

have different generation time, i.e. the length of the duration from birth to division

completion [72, 73]. Much work has been done to interpret the variability of the

generation time and simulate the age distribution. Some work used deterministic

models for biochemical processes inside cells [73, 74, 75, 76, 77]. In these models a

particular variable, such as the age, size and mass of the cell, is assumed to be able

to trigger cell division. This variable is deterministic. However its value when cell
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division begins is not a fixed value but has a distribution, which therefore causes the

variability of the generation time. Other work proposed stochastic models, in which

biochemical processes are stochastic. At first it was proposed that cell division is

composed of several successive steps and each step is a stochastic process [78, 79].

However this model does not reflect a real cell very well and was questioned by Koch

and Schaechter [75]. Another type of model was later developed, in which consider

the cell cycle is composed of several phases. Some of these phases are stochastic

processes and others are deterministic [80, 81]. However all these models do not link

molecular events inside cells to age distribution.

Recently, a stochastic model was suggested, which considers molecular events

inside the cell [82]. In this model chromosome replication plays a key role in cell

division and the formation of age distribution. However, with the development of

molecular biology, current research focuses on particular genes rather than on the

whole chromosome. These genes can form gene regulation networks, which may

cause the bifurcation of key protein number. Then the amount of key component

for cell division may have a bifurcation, which cannot happen while just considering

the whole chromosomes. Therefore work needs to be done to relate age distribution

with the possible bifurcation of a key protein number.

Here we present mathematical analysis to obtain age distribution of cell pop-

ulation, with the supposition that the bottleneck for cell division is the key protein

number and the protein number can evolve into bistable distribution. The work has

two parts. In the first part alive probability will be obtained from the Fokker-Planck

equation and Stochastic Petri nets, and the relation between alive probability and
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protein number distribution will be analyzed. In the second part age distribution

will be obtained from alive probability function, based on balance population model.

We mainly work on analytical results so that the effects of parameter values can be

studied directly.

3.2 Methods for Obtaining the Alive Probability Function

3.2.1 Alive Probability Function

Alive probability function is important because it is an intermediate function

for obtaining age distribution of cell population from key protein number distri-

bution. In this section, we will study how protein number distribution relates to

alive probability function. In the next section, we will discuss how to obtain age

distribution from this function.

Suppose initially at time 0, a group of cells were just born. Then alive proba-

bility function F (t) can be defined to be:

F (t) = 1 −
no. of cells which have divided at time t

initial cell no.
(3.1)

Hence the function is actually the probability that a cell, which is born at time 0,

has not divided by the time t. The value for this function starts from 1 at t = 0,

because the cell is of course alive when it is just born. Then the value decreases

monotonically as time t increases. Finally, the value approaches 0 when t goes to

infinity, which means the cell will eventually divide after long enough time.

Alive probability function is not a new concept. Function F (τ) proposed
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by Powell [74] and α-plot by Smith and Martin [80] have the same meaning as

the function F (t). However it seems that this function does not have a commonly

accepted name. Here we suppose that after cell division two daughter cells are born

and the mother cell is “dead”. Therefore the cells which “have not divided” can be

considered as “still alive” and the function F (t) can be called the “alive probability

function”.

3.2.2 Computation from the Fokker-Planck Equation

Fokker-Planck equation is used to describe continuous Markov processes [10].

Recently it has been applied into cellular events [12, 5]. If the evolution of a protein

number can be described with the Fokker-Planck equations [12]:

∂(δt)ρ(x, t) = −∂xA(x)ρ(x, t) +
1

2
∂2

xB(x)ρ(x, t) (3.2)

The steady state distribution of the protein number is [10, 12]:

ρ(x) =
λ

B(x)
exp(2

∫ x

0

A(x′)

B(x′)
dx′) (3.3)

where x represents the protein number. The functions A(x) and B(x) depend on

the system. Steady state distribution is important because it indicates the direction

of protein number evolution.

The evolution of protein number follows Fokker-Planck equation (3.2) and cell

divides once the protein number reaches a threshold. This problem is similar to the

problem that a particle, whose position follows the Fokker-Planck equation, escapes

from the region between zero and the threshold. To deal with the latter problem,
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Gardiner define a function G(x, t), which means the probability that the particle,

initially at x, is still in the region at t. Alive probability function F (t) can be

obtained from the function G(x, t). So first we need to solve the function G(x, t)

from a partial differential equation (PDE) [10]:

∂(δt)G(x, t) = A(x)∂xG(x, t) +
1

2
B(x)∂2

xG(x, t) (3.4)

The initial condition is:

G(x, 0) = 1, x ∈ [0, xT ]

= 0, elsewhere (3.5)

The boundary condition is:

∂xG(0, t) = 0 (3.6)

G(xT , t) = 0 (3.7)

In the equations above, xT reprensents the protein number threshold and A(x)

and B(x) are the same as in (3.3). After obtaining G(x, t) from Eq. (3.4), F (t) is

obtained by plugging initial value x0 into G(x, t):

F (t) = G(x0, t) (3.8)

For systems, where A(x) and B(x) can be obtained, the numerical solution

of Fokker-Planck equation can be efficient and convenient in obtaining the protein

number distributions and the alive probability functions under different parameter

values.
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3.2.3 Computation from Stochastic Petri Net Simulation

Stochastic Petri network (SPN) is a good tool for simulating stochastic and

discrete processes. In SPN, molecular events inside cells, such as transcription,

translation, molecular association and disassociation, are considered as chemical

reactions and the probability of taking place follows a negative exponential density

function [15]. Mobius software can be used to simulate SPN [17].

The SPN designed to obtain alive probability function is shown in Fig. 3.1. In

the SPN, the “Protein” place is also connected to other components which are not

shown. Those components represent cellular activities which can influence protein

number, i.e., the value for “Protein” place. The initial values for “Alive” and “Time”

places are set to be 1 and 0. A threshold is set in the input gate of “DivisionIG”.

Once simulation starts, i.e., the cell is born, the value for “Time” place is increased

by one every minute. When the value for “Protein” place reaches the threshold

for the first time, which means the cell divides and “dies” at that time, “Alive”

place sets its value to zero and stops accumulating the value for “Time” place. So

the value for “Time” place will record the life span of the cell. After simulating a

sufficient large number of cells, we have the number of undivided cells at a particular

time and let F (t) to be equal to undivided cell number divided by total cell number.

Compared with Fokker-Planck equation, Stochastic Petri net has two advan-

tages. The first is that SPN is a discrete model, which is more accurate because

molecule numbers inside cell are discrete. Second, SPN is convenient for modeling

multi-species system, while Fokker-Planck equation with more than a few variables
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Figure 3.1: General stochastic Petri net to obtain alive probability function.

is often impossible to solve, even numerically [5]. If we use single-variable Fokker-

Planck equation, we usually need to make some approximations, which may reduce

the accuracy of the result. The disadvantage of SPN is that SPN simulation is often

computationally very expensive. Due to the advantages and the disadvantage, we

will use different method in different cases. When we want to analyze alive proba-

bility functions under several different parameter values, we will use Fokker-Planck

equation. When we want to verify whether the conclusion is applicable to complex

systems, we will use Stochastic Petri net.
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Figure 3.2: Self-promotion network.

3.3 Results for Alive Probability Function

3.3.1 Results from Fokker-Planck Equation

Here we use the self-promotion network in Fig. 3.2 as an example. In this

network SdiA protein can improve its own expression. We choose SdiA as an example

because this protein is involved in cell division. For simplification, we assume that

SdiA is a key protein so that cell divides immediately once SdiA protein number

reaches a threshold. Although we use SdiA as an example here, this network is not

too specific because this mechanism of positive feedback appears in several biological

systems [57, 55] and previous study on the stochasticity in this network is general

[12]. Therefore the conclusion from this SdiA network can also be used in other

self-promotion networks.

In the self-promotion network in Fig. 3.2, if we suppose the reactions are af-

fected by thermal fluctuations, with fast-transition and small-noise approximations,

the evolution of protein number can be expressed with Fokker-Planck equations [12].

So the equations (3.3) and (3.4) can be applied here. For this network, the functions
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A(x) and B(x) are [12]:

A(x) =
ba0 + x2

b + x2
− x −

2xb(a0 − 1)[((a0 − 2) + x)x2 + b(x − a0)]

κ(b + x2)4
(3.9)

B(x) =
1

mo
(
b(a0 + x) + x2(1 + x)

b + x2
) +

2bx2(a0 − 1)2

κ(b + x2)3
(3.10)

So the results are dependent on the values for four parameters, which can be obtained

from the parameters in Fig. 3.2: a0 = α0/α1, b = βθδ2/α2
1, κ = Kα2

1/(θδ3), mo =

α1/δ. We should notice that x is dimensionless and equal to protein number m

divided by mo. In the same way, suppose the threshold is mT and initial protein

number is m0. Then the dimensionless threshold and initial numbers are xT =

mT /mo and x0 = m0/mo.

The explicit form of alive probability function is not easy to find because it

requires an analytical solution for Eq. (3.4). However, by observing the numerical

solution of (3.4) and (3.8), we propose a conjecture: if protein number distribution

from (3.3) is bistable, then the alive probability function F (t) from (3.4) to (3.8)

can be written in the form of double-exponential function:

F (t) = c · exp(−t/T1) + (1 − c) · exp(−t/T2), T1 > T2 (3.11)

All the numerical results in this chapter show that after fitting the parameters in

(3.11), the double-exponential function matches the numerical solution of (3.4) to

(3.8) very well. Next, several different cases will be discussed to show this match

and how protein number distribution influences the alive probability function.

Bifurcation with distant peaks. When a0 = 0.02, b = 0.175, κ = 64,

mo = 400, the steady state distribution of protein number is bistable as shown in Fig.
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3.3. The two peaks of ρ(x) are separated and distant from each other, which means

the barrier between the two peaks is significant and thus the transition between the

two peaks is relatively difficult. We set x0 = 0.25 and xT = 0.5, which indicates

that initial protein number is 100 and the threshold is 200. The initial number is

between the two peaks because bifurcation is liable to happen when start point is

between the two peaks. And we usually assume initial number to be half of the

threshold, because when the cell divides the protein number is at the threshold and

then after division the initial protein number for the two daughter cells will be half

of the threshold. The alive probability function is obtained and shown in Fig. 3.4.

The squares are selected points of the numerical solution of (3.4) to (3.8). (We

do not show all the points of numerical solution, otherwise they would cover the

double-exponential curve.) The solid line is the double-exponential function with

the parameters of c = 0.5464, T1 = 74.8774 and T2 = 0.6734, which are obtained

from fitting. The fit is excellent. Therefore with appropriate parameter values,

double-exponential function can be used to represent the alive probability function.

Bifurcation with partially overlapped peaks. When a0 = 0.08, b = 0.28,

κ = 500, mo = 500, the steady state distribution of protein number is also bistable

as shown in Fig. 3.5 [12]. However in this distribution the two peaks are so close that

the bottom parts of the two peaks even overlap. This means the barrier between

the two peaks is weak and thus the transition between the two peaks is relatively

easy. Suppose initial protein number is 150 and the threshold is 300, i.e., x0 = 0.3,

xT = 0.6. Then alive probability function is obtained and shown in Fig. 3.6. The

fitting result is c = 0.6139, T1 = 106.2460 and T2 = 17.1727. In this case T1 is
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Figure 3.3: Protein number distribution for the case with bifurcation with distant
peaks: a0 = 0.02, b = 0.175, κ = 64, mo = 400, δ = 2.5, (Data from Chapter. 2)
and x0 = 0.25, xT = 0.5.
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Figure 3.4: Alive probability function for the case with bifurcation with distant
peaks. Fitting results: c = 0.5464, T1 = 74.8774, T2 = 0.6734.
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Figure 3.5: Protein number distribution for the case with bifurcation with partially
overlapped peaks: a0 = 0.08, b = 0.28, κ = 500, mo = 500, δ = 1, (Data from [12])
and x0 = 0.3, xT = 0.6.

nearly 6 times T2, while in the cases with significant bifurcation, T1 is more than

one hundred times T2. Therefore when the two peaks are not so far away from

each other, i.e., the barrier between the peaks is not so strong, the ratio of T1 to T2

becomes relatively small. When the two peaks are so close that they almost totally

overlap, that is, almost no barrier between the two peaks exists, T1 and T2 will be

almost the same. In other words, the distribution becomes monostable and F (t)

function takes a single-exponential form instead of double-exponential.

No bifurcation and threshold point is in the peak area. When a0 =

0.02, b = 0.1, κ = 64, mo = 400, as shown in Fig. 3.3.1, the steady state protein

number distribution has only one peak, which means at that time the network does

not have bifurcation. Suppose x0 = 0.4 and xT = 0.8, i.e., initial protein number is
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Figure 3.6: Alive probability function from Fokker-Planck equation for the case
with bifurcation with partially overlapped peaks. Fitting results: c = 0.6139, T1 =
106.2460, T2 = 17.1727.

160 and the threshold is 320. Here xT is in the peak and x0 is outside the peak area,

so this case can be considered as one where the protein number is trying to reach

the peak from outside. Alive probability function is shown in Fig. 3.8, in which

F (t) quickly decreases to zero. The results of parameter fitting are: c = 0.0453,

T1 = 16.5336 and T2 = 1.0782. Here c is so small that the T1 term can be ignored.

Therefore in this case alive probability function F (t) can be considered as a single-

exponential function.

No bifurcation and initial point is in the peak area. When a0 = 0.02,

b = 0.25, κ = 64, mo = 400, the distribution of protein number is also monostable

as shown in Fig. 3.9. Set x0 = 0.025 and xT = 0.1, which means the initial protein

number is 10 and the threshold is 40. In this case x0 is in the peak area and xT is
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Figure 3.7: Protein number distribution for the case without bifurcation and thresh-
old point is in the peak: a0 = 0.02, b = 0.1, κ = 64, mo = 400, δ = 2.5, and x0 = 0.4,
xT = 0.8.
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Figure 3.8: Alive probability function from Fokker-Planck equation for the case
without bifurcation and threshold point is in the peak. Fitting results: c = 0.0453,
T1 = 16.5336, T2 = 1.0782.
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Figure 3.9: Protein number distribution for the case without bifurcation and start
point is in the peak: a0 = 0.02, b = 0.25, κ = 64, mo = 400, δ = 2.5, and x0 = 0.025,
xT = 0.1.

outside, so it can be considered that the protein number is trying to escape from

the peak area. Then as shown in Fig. 3.10, alive probability function is obtained.

Here F (t) decreases very slowly from one. The fitting results are: c = 1.0000,

T1 = 19.2618 and T2 = 1.0037. Because c is equal to 1, the term of T2 is zero

and thus can be cancelled. Therefore in this case F (t) is also a single-exponential

function.

No bifurcation but with double-exponential function. Suppose the

protein number distribution in Fig. 3.11 is the same as that in Fig. 3.9. But we

change the initial protein number and the threshold so that they are 40 and 80

respectively. Therefore x0 = 0.1 and xT = 0.2, both of which are to the right of

the peak. In this case, the fitting results is: c = 0.8587, T1 = 138.9259 and T2 =
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Figure 3.10: Alive probability function from Fokker-Planck equation for the case
without bifurcation and start point is in the peak. Fitting results: c = 1.0000,
T1 = 19.2618, T2 = 1.0037.

0.3907, then as shown in Fig. 3.12, alive probability function F (t) is also a double-

exponential function. For this case F (t) is in the double-exponential form, although

protein number distribution is monostable. Let us increase the threshold. Then

after fitting, for this monostable case, T1 increases significantly. But for bistable

cases, when threshold increases, T1 almost remains the same value as long as the

threshold is inside the right peak area or between the two peaks. This characteristic

distinguishes this case from the real bifurcation cases.

3.3.2 Results from Stochastic Petri Nets

Based on the network in Fig. 3.2, an SPN is set up as shown in Fig. 3.13. In

this SPN “SdiA” place represents the key protein and the places introduced before
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Figure 3.11: Protein number distribution for the case without bifurcation but with
double-exponential function: a0 = 0.02, b = 0.25, κ = 64, mo = 400, δ = 2.5, and
x0 = 0.1, xT = 0.2.
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Figure 3.12: Alive probability function from Fokker-Planck equation for the case
without bifurcation but with double-exponential function. Fitting results: c =
0.8587, T1 = 138.9259, T2 = 0.3907.
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can be seen. The parameter values in the networks in Fig. 3.13 are the same as the

SPN simulated in previous work. The initial protein number and the threshold are

set to be 100 and 200 respectively. With the method by Kepler and Elston [12], these

parameter values can be found to correspond to the parameters in the case distant-

peak bifurcation (shown in Figs. 3.3 and 3.4). Figure 3.14 shows the result of protein

number distribution 50 minutes after cells are born, which is obtained previously. It

can be found that after 50 minutes (close to the mean generation time of E.coli), the

distribution is close to steady state (solid curve obtained from the result in Fig. 3.3)

and has a bistability. The alive probability function obtained from SPN simulation

are shown in Fig. 3.15. (Only selected points from SPN simulation are used because

all the points will cover the continuous curves.) We notice that the function F (t)

from SPN can also be written as a double-exponential function. Therefore the

conclusion that the bifurcation of key protein number results in double-exponential

form of F (t) applies not only to the result of Fokker-Planck equation, but also to

that of SPN simulation. The values for the parameter c from these two methods

are very close, which indicates that with the two methods the results unrelated to

time scale can be very close. However the values for the parameters T1 and T2 are

different. And for SPN simulation, one more parameter, the time delay τ , is added

to obtain a good fitting. So the double exponential function is:

F (t) = 1, t < τ

F (t) = c · exp(−
t − τ

T1
) + (1 − c) · exp(−

t − τ

T2
), T1 > T2, t ≥ τ (3.12)
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Figure 3.13: SPN to obtain alive probability function of self-promotion network.

F (t) from Fokker-Planck equation drops faster than that from SPN. This is because

of the approximations made to derive Fokker-Planck equation. For example, the fast-

transition approximation ignores the time used to reach the equilibrium of reversible

reactions [12].

The second case for SPN is the signal-mediated self-promotion network as

shown in Fig. 3.16. Here we are still discussing a general case although we also use

SdiA as an example. In this network there is still a mechanism of positive feedback,

which makes bifurcation possible. However this mechanism takes effect through

signal molecules (AI-2 molecule in Fig. 3.16). The protein needs to bind the signal

molecule first, and then form a dimer and activate its own expression. Moreover,

this network is more detailed than the self-promotion network we discussed earlier.

In this network, the steps of transcription and translation are separate, while the
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Figure 3.14: Protein number distribution of self-promotion network from Stochastic
Petri nets (SPN). The solid curve is the steady state distribution. The bargraph is
the distribution of cells at the age of 50 minutes, which is from SPN simulation.
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Figure 3.15: Alive probability function of self-promotion network from Stochastic
Petri nets (SPN). Fitting results: c = 0.5484, T1 = 193.5935, T2 = 0.9782, τ =
0.3323.
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Figure 3.16: Signal-mediated self-promotion network.

steps merge into one expression step in the self-promotion network. Therefore, the

behavior of the signal-mediate self-promotion network may be different from the

self-promotion network.

The function F (t) for this network cannot be easily obtained with Fokker-

Planck equation. So we can only use SPN to obtain its alive probability function.

The SPN for signal-mediated self-promotion network is shown in Fig. 3.17. In this

SPN, “SdiA” place also represents key protein and the same places are used to

obtain F (t) as in the SPN in Fig. 3.13. The parameter values used in this SPN are

the same as that in previous work.

The results of SPN simulation are shown in Fig. 3.18 and Fig. 3.19. Figure

3.18 shows the protein number distribution after 50 minutes. We notice that the

protein number distribution is also bistable. In Fig. 3.19 we see the alive probability

function. The function F (t) here takes a double-exponential form again. But in this

double-exponential function, the values for the time-related parameters T1, T2 and

τ are larger than both Fokker-Planck equation and SPN simulation results for the

self-promotion network. F (t) here drops slower than for the self-promotion network
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Figure 3.17: SPN to obtain alive probability function of signal-mediated self-
promotion network.

because of the assumptions made for the simplification of the network in Fig. 3.16

into the self-promotion network. For example, one assumption ignores the time

needed for the mRNA number to reach steady state.

The alive probability functions for both networks above can be written in the

double-exponential form, which suggests that this form can be of wide applicability.

Let us summarize some common properties of the two networks, which contribute to

F (t) being a double-exponential function. First, a key protein regulates cell division

through a threshold mechanism. Second, the processes in the network are considered

to be stochastic Markov processes, which can lead to the loss of synchronization.

Third, the key protein number has a bifurcation, which comes from the positive

feedback in each of the two networks.
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Figure 3.18: Protein number distribution of signal-mediated self-promotion network
from Stochastic Petri nets (SPN).
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Figure 3.19: Alive probability function of signal-mediated self-promotion network
from Stochastic Petri nets (SPN).Fitting results: c = 0.3588, T1 = 474.0490, T2 =
10.5924, τ = 6.6477.
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3.3.3 Explanation of the Double-exponential Form in Relation to Bi-

furcation of Key Protein Number

Based on the results for the two networks we studied, we may conclude that

when steady state distribution of a key protein for division is bistable, then the alive

probability function F (t) is a double-exponential function; while when the protein

distribution is monostable, F (t) is a single-exponential function. It is required that

in the bistable cases, x0 should be between the two peaks and xT should be either

inside the right peak area or between two peaks. However, a special case of monos-

table distribution also shows double-exponential F (t). We also discussed that the

double-exponential form for alive probability function is not limited to a specific

method or to a specific network.

Although we have used the double-exponential form in several different cases,

we have not yet discussed a theoretical reason for the form. Here we propose that the

bifurcation of key protein numbers of the cell population in a homogenous culture

can explain the double-exponential form of F (t). The two peaks in the steady state

distribution of protein number actually correspond to two directions that the cells

may take. If the initial protein number is between the two peaks, there will be

a bifurcation during the evolution of the protein number. In some cells, protein

number evolves to the right peak and therefore reaches the threshold quickly. So

these cells will divide quickly. In other cells, protein number evolves to the left

peak, and after this happens the protein number is liable to stay there, therefore

making it hard to reach the threshold. So it would take very long time for cells in
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x0 c T1 T2

0 1.0000 78.1322 –

0.05 1.0000 74.0013 –

0.1 0.9272 74.0011 1.0049

0.15 0.8157 74.9209 0.9889

0.2 0.6900 74.0140 0.7948

0.25 0.5464 74.8774 0.6734

0.3 0.4052 74.7216 0.5477

0.35 0.2737 74.4318 0.4350

0.4 0.1619 72.2416 0.3319

0.45 0.0679 74.2357 0.2487

0.5 0 - 0

Table 3.1: Parameter Values of Double-exponential Function.

this group to divide. In this way, the bifurcation of protein number causes F (t) to

take a double-exponential shape.

Based on the explanation above, we can discuss the physical meanings of the

parameters. Consider the bifurcation case with distant peaks (Figs. 3.3 and 3.4)

and hold the threshold xT = 0.5. Then let us change the initial point x0 and fit

the parameter values of the double-exponential function. The results are shown in

Table 3.1.

Physical meaning of c. c denotes the fraction of cells which go to the left

peak. From Fig. 3.20, we could see that as x0 increases, c decreases. This means
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Figure 3.20: c vs x0 curve.

that as x0 goes up, SdiA number is more likely to directly go to the right peak.

When x0 is around the left peak, c is equal to 1. When x0 is equal to xT , c is equal

to 0, which means in all the cells, the protein number goes across the threshold

quickly, so all the cells divide at once. It could also be noted that if x0 increases

from 0.1 to 0.4, the parameter c goes down almost linearly (Fig. 3.20).

Physical meaning of T1. T1 is essentially the mean time it takes the protein

number to reach the threshold for cells which go to the left peak. For these cells,

protein number actually goes to left peak very fast so that the values for T1 should

nearly be equal to the mean first passage time (MFPT), i.e., the average time length

for protein number to escape from the left-peak value. So this MFPT is independent

of the initial value x0 and the T1 values in Table 3.1 are almost constant. MFPT
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T (x) can be obtained by solving the following second-order ODE [10]:

A(x)
dT

dx
+

1

2
B(x)

d2T

dx2
= −1 (3.13)

with the boundary conditions:

dT

dx
(0) = 0 (3.14)

T (xT ) = 0 (3.15)

Then T (x0) is the MFPT from x0 to the threshold xT . Use the summit value of left

peak x0 = 0.005 and then MFPT T (x0) = 79.1. Use x0 = 0.075, which corresponds

to a point at the edge of the left peak and then MFPT T (x0) = 74.4. Both of the

values are close to the T1 in Table 3.1. Therefore the physical meaning of T1 we

propose is reasonable.

Physical meaning of T2. T2 is the mean time for protein number to reach

threshold for the cells which go to the right peak. Therefore, as x0 goes up, the

initial protein number becomes closer to the threshold and T2 becomes the smaller.

The ratio of T1 to T2 can be used to describe the intensity of the barrier between

the two peaks. That T1/T2 is close to 1 means that the barrier is weak and cells can

easily transit from one peak to the other.

3.4 Methods for Obtaining Age Distribution

3.4.1 Generation Time Distribution

Next we shall have to calculate the age distribution from the alive probability

function. Generation time distribution f(t) is necessary in this step. Its definition
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is that, in a very small time interval [t, t + ∆t], the probability that the cell divides

is f(t)∆t. Generation time distribution has been proposed and used to obtain

age distribution since very early [72, 74]. f(t) has also been called “life-length

distribution” and “interdivision time distribution” [75].

Alive probability function F (t) and generation time distribution f(t) have the

following relations:

f(t) = −
dF (t)

dt
(3.16)

F (t) = 1 −

∫ t

0
f(t′)dt′ (3.17)

From equations (3.16) and (3.17), generation time distribution and alive probabil-

ity function can be obtained from each other and then used to calculate the age

distribution.

3.4.2 Total-Based Method to Obtain Age Distribution

Total-based method considers all the cells as a whole. With generation time

distribution, Powell [74] derived age distribution for balanced growth (steady state).

For dynamic growth, a population balance model can be used to obtain age distri-

bution. Population balance model is a mathematical model which considers the

segregation of bacteria. This model is widely used and can also provide mass dis-

tribution [83]. However it is very difficult to solve so that its solution is usually

numerical [84]. An analytical solution is possible but it is very complex to obtain

[77]. Here we propose a new method for an analytical solution, utilizing the Laplace

Transform.
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The population balance model is a partial differential equation (PDE) [77]:

∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −Γ(a)n(t, a) (3.18)

where t is time, a is age. n(t, a) is unnormalized age distribution, which means at

the time t the number of cells with age between [a, a + ∆a] is n(t, a)∆a. Γ(a) is the

division rate density function and equal to:

Γ(a) =
f(a)

F (a)
(3.19)

The boundary condition is:

n(t, 0) = 2
∫

∞

0
Γ(a)n(t, a)da (3.20)

The initial condition is:

n(0, a) = n0(a) (3.21)

Equation (3.18) is difficult to solve, not only because it is a PDE but also be-

cause its boundary condition has an integral. To simplify it, we define a production

function P (t), which means that during a time interval after time zero, [t, t + ∆t],

the number of newly born cells is P (t)∆t. Therefore by definition we have:

n(t, a) = P (t− a)F (a) (3.22)

Use (3.22) into (3.18), left side is automatically equal to right side. Use (3.22) into

boundary condition (3.20), we obtain an equation containing f(t) and P (t):

P (t) = 2
∫

∞

0
P (t − a)f(a)da (3.23)
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The equation (3.23) was also obtained by Ramkrishna [85] through a very compli-

cated mathematical derivation. In our approach, the functions f(t) and P (t) have

clear biological meaning making the method easier to understand.

Compared with the PDE (3.18), equation (3.23) seems to be relatively easier

to solve because it only contains single-variable functions. However the integral in

(3.23) still makes the equation hard to solve. Here we apply the Laplace Transform

to obtain P (t) from f(t).

Before the Laplace Transform is used, we need to assume that at the very

beginning (t = 0), the cells of the first generation are just born, that is to say,

n0(a) = N0δ(0). So the production function at t = 0 is:

P (0) = N0δ(0) (3.24)

where N0 is the original number of first-generation cells.

Use (3.24) into (3.22), then the age distribution becomes:

n(t, a) = P (t− a)F (a), t > a

n(t, a) = N0F (a)δ(a − t), t = a (3.25)

Use (3.24) into (3.23) to set:

P (t) = 2N0f(t) + 2
∫ t−

0
P (t − a)f(a)da, t > 0 (3.26)

Then let us use Laplace Transform. First we need to get the Laplace Transform

of f(t):

fL(s) = L[f(t)] (3.27)
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Then get the transform of P (t):

P L(s) =
2N0f

L(s)

1 − 2fL(s)
(3.28)

Equation (3.28) is obtained by taking Laplace Transform on both sides of

(3.26). With this formula, P (t) can be obtained:

P (t) = L−1[P L(s)] (3.29)

In summary, we have developed a new way to obtain an analytical form of

the age distribution n(t, a) from f(t). The steps are: from F (t) to f(t) with (3.16);

from f(t) to P (t) with (3.27), (3.28) and (3.29); from P (t) to n(t, a) with (3.25).

Actually in our work, we are also interested in the fraction of the first-generation

cells in a cell population rather than just the age distribution of the population. The

total cell number of a population is the integration of age distribution:

N(t) =
∫ t

0
n(t, a)da (3.30)

Use (3.25) in (3.30) to obtain:

N(t) = N0F (t) +
∫ t−

0
P (t − a)F (a)da (3.31)

To avoid integration, we can also use the Laplace Transform:

NL(s) = N0F
L(s) + P L(s)F L(s) = F L(s)(N0 + P L(s)) (3.32)

With the equation above, similarly to the way for obtaining P (t), we can obtain

P L(s), and then NL(s), and then N(t). The number of first-generation cells is

N0F (t). So the fraction of first-generation cells in a cell population, R(t), is:

R(t) =
N0F (t)

N(t)
(3.33)
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We can summarize the steps to obtain R(t): from F (t) to f(t) with (3.16);

from f(t) to P (t) with (3.27), (3.28) and (3.29); from P (t) to N(t) with (3.31); from

N(t) to R(t) with (3.33). R(t) may be possible to measure by experiments.

3.4.3 Generation-Based Method to Obtain Age Distribution

Generation-based method obtains the cell age distribution for each generation

and then integrates the results for each generation into an overall result. Liou

et al. [77] proposed successive generations approach to obtain the analytical age

distribution of each generation. However the solutions by this approach contain

repeated integrations and are very complex. Also in this approach age distributions

are obtained generation by generation, and thus, to obtain the age distribution of

one generation, age distributions of all previous generations need to be calculated.

So we will attempt to reduce the intensive computation required by this approach.

The population balance equations for age distribution of each generation are

as follows. First we have the PDE for first generation:

∂n1(t, a)

∂t
+

∂n1(t, a)

∂a
= −Γ(a)n1(t, a) (3.34)

with boundary condition and initial condition:

n1(t, 0) = 0 (3.35)

n1(0, a) = n0(a) (3.36)

And then for the other generations:

∂nk(t, a)

∂t
+

∂nk(t, a)

∂a
= −Γ(a)nk(t, a), k ≥ 2 (3.37)
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where boundary and initial conditions:

nk(t, 0) = 2
∫

∞

0
Γ(a)nk−1(t, a)da (3.38)

n(0, a) = 0 (3.39)

To deal with these PDEs, similarly to the approach in the previous section, we

define the production for each generation, Pk(t). Then by definition we also have:

nk(t, a) = Pk(t − a)F (a) (3.40)

Use (3.40) into (3.36), and we have:

P1(t) = n0(−t)/F (−t), t ≤ 0

P1(t) = 0, t > 0 (3.41)

Use (3.40) into (3.38), and we have:

Pk(t) = 2
∫

∞

0
Pk−1(t − a)f(a)da, k ≥ 2 (3.42)

To use the Laplace Transform, we need to assume all the first-generation cells

are born at the time t = 0. Then n0(a) = N0δ(0). So the production function of

the first generation is Dirac delta function:

P1(t) = N0δ(0) (3.43)

In this way, no cell exists before t = 0. Then in (3.42), the upper limit of the

integration can be changed. Then the equation becomes:

Pk(t) = 2
∫ t

0
Pk−1(t − a)f(a)da, k ≥ 2 (3.44)
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Therefore the Laplace Transforms of the production functions Pk(t) are:

P L
1 (s) = N0 (3.45)

P L
k (s) = 2P L

k−1(s)f
L(s), k ≥ 2 (3.46)

With (3.45) and (3.46) the Laplace Transform of production function can be written

as:

P L
k (s) = N0[2f

L(s)]k−1 (3.47)

In this way, from F (t) and f(t), we can directly obtain Pk(t) with (3.47), and

then obtain age distribution for the kth generation with (3.40). We do not need to

calculate the age distributions generation by generation.

We are also interested in the fraction of first-generation cells. We begin with

the cell number of each generation:

Nk(t) =
∫

∞

0
nk(t, a)da =

∫ t

0
Pk(t − a)F (a)da (3.48)

The upper limit is t because no cell exists before t = 0 for the P1(t) we assume in

(3.43). Then the Laplace Transform is:

NL
k (s) = P L

k (s)F L(s) (3.49)

From (3.17) we know the relation between the Laplace Transform of f(t) and F (t):

F L(s) =
1

s
−

fL(s)

s
(3.50)

Plug equations (3.47) and (3.50) into (3.49), and then obtain the Laplace Transform

of Nk(t):

NL
k (s) = N0[2f

L(s)]k−1(
1

s
−

fL(s)

s
) =

N0

s
[(2fL(s))k−1−

1

2
(2fL(s))k], k < K (3.51)
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where K denotes the latest generation, which is excluded. For this generation, the

cells have not divided. So instead of (3.50), we can assume that for those cells

F (t) = 1 and thus F L(s) = 1/s. Then from (3.47) and (3.49), the cell number can

be represented by:

NL
K(s) =

P L
k (s)

s
=

N0

s
[2fL(s)]K−1 (3.52)

Then from (3.51) and (3.52), the Laplace Transform of total cell number is:

NL(s) =
K

∑

k=1

NL
k (s) =

N0

s
+

N0

2s

K
∑

k=2

[2fL(s)]k−1 (3.53)

First-generation cell number is a special case for (3.51):

NL
1 (s) =

N0

s
[1 − fL(s)] = N0F

L(s) (3.54)

So the number of first generation is:

N1(t) = N0F (t) (3.55)

Finally, from f(t), we can obtain N1(t) with (3.55), and N(t) with (3.53). The

fraction of first-generation cells is:

R(t) =
N1(t)

N(t)
=

N0F (t)

N(t)
(3.56)

3.5 Results for Age Distribution

3.5.1 Case without Time delay

In the previous section, we concluded that if key protein number in cells has

bifurcation, alive probability function F (t) can be written in the double-exponential
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form. Here we discuss the age distribution obtained with such an F (t). First we

discuss a simple case, in which the time delay τ is ignored. This case is relatively

easier than the case with time delay. So we prefer using the conclusions in this case

if the time delay is very small. We choose the parameter values for signal-mediated

self-promotion network (Fig. 3.16). In this case the alive probability function is:

F (0)(t) = 0.3588exp(−t/474.0490) + (1 − 0.3588)exp(−t/10.5924) (3.57)

The superscript (0) here means no time delay. Then the Laplace Transform of F (t)

is:

F (0)L(s) =
0.6412

s + 0.09441
+

0.3588

s + 0.002110
(3.58)

So the other Laplace Transforms are:

f (0)L(s) = 1 − sF (0)L(s) = 1 −
0.6412s

s + 0.09441
−

0.3588s

s + 0.002110
(3.59)

P (0)L(s) =
2N0f

(0)L(s)

1 − 2f (0)L(s)
=

0.01208s + 0.0003984

s2 − 0.02428s − 0.0001992
N0 (3.60)

N (0)L(s) = F (0)L(s)[P (0)L(s) + N0] =
s + 0.03522

s2 − 0.02428s − 0.0001992
N0 (3.61)

Hence the total cell number is:

N (0)(t) = [1.7561exp(0.03224t) − 0.7561exp(−0.006177t)]N0 (3.62)

Choose time t = 50. Then N (0)(t) = 8.2478N0, F (0)(t) = 0.3286. So the

first-generation cell fraction is:

R(0)(t) = 4% (3.63)

This number is not large. But experimental techniques can observe less than one

percent abnormal cells in a population [73]. So this number may be measurable.
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The results above are the results under specific parameter values. Next we

will analyze the effect of different parameter values. Double-exponential function is

too complex to obtain the functions above related to age distribution. Because the

value for T1 is usually very large, we will assumed as an approximation that T1 is

infinity and the T1 term in (3.11) is constant. And also let µ = 1/T2. Then the

double-exponential function becomes a simplified form of exponential plus constant:

F (t) = (1 − c)exp(−µt) + c (3.64)

This analytical form of alive probability function can be handled easily. The relation

between alive probability function and age distribution is described based on the

function (3.64). Plug (3.64) into (3.16), (3.27), (3.28) and (3.32), we have:

N (0)L(s) = F (0)L(s)[P (0)L(s) + N0] =
1 − c

1 − 2c
·

N0

s − µ(1 − 2c)
−

c

1 − 2c
·
N0

s
, c 6=

1

2

(3.65)

N (0)L(s) = F (0)L(s)[P (0)L(s) + N0] =
N0

s
+

µN0

2s2
, c =

1

2
(3.66)

So the total cell number is:

N (0)(t) =
1 − c

1 − 2c
N0exp[µ(1 − 2c)t] − N0

c

1 − 2c
, c 6=

1

2
(3.67)

N (0)(t) = N0 +
µN0t

2
, c =

1

2
(3.68)

Figure 3.21 shows the total cell number when F (t) is in two different forms, with the

parameter values in (3.57). We notice that before 60 minutes the difference between

the two total number functions are small. So the function (3.64) is a reasonable

approximation.
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With this alive probability function, the total cell number has three kinds

of shapes shown in Figs. 3.22 to 3.24. It is very interesting that under different

parameter values the cells show different growth curves. Based on this, the function

R(t) can be discussed. In the situation of c > 1/2, N(t) has an upper limit, so

R(t) = N0F (t)/N(t) has a lower limit 2c − 1. That means the fraction of original

cells can not go to zero. When c is not too close to 1/2, the fraction of original cells

in the population is always significant:

R(0)(t) > 2c − 1, c >
1

2
(3.69)

For the other two situations, we could select time ts which is long enough but is

still much smaller than T1. Then in the time period before ts, R(t) can not be lower

than R(ts):

R(0)(t) > R(0)(ts), c ≤
1

2
(3.70)

Therefore, if the key protein number has a bifurcation, after a relatively long

period, the first-generation cells will still occupy a significant fraction in the cell

population.

3.5.2 Case with Time Delay

In the alive probability function (3.57), the time delay is ignored. However

the time delay often has significant effect on the results. This time delay may be

related to the time needed by protein number to reach the threshold, or due to time

needed by other cellular activities between reaching threshold and cell division. If

the time delay is not ignored, the alive probability function for signal-mediated
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self-promotion network is:

F (τ)(t) = 1, t < 6.6477

= (1 − 0.3588)exp[−(t − 6.6477)/10.5924]

+0.3588exp[−(t − 6.6477)/474.0490], t ≥ 6.6477 (3.71)

The superscript (τ) here means time delay exists. The generation time distribution

is:

f (τ)(t) = 0, t < 6.6477

= 0.06053exp[−0.09441(t − 6.6477)]

+0.0007569exp[−0.002110(t− 6.6477)], t ≥ 6.6477 (3.72)

When there is a time delay, in order to obtain the age distribution, we have

to consider the cells of each generation. We choose the time of 50 minutes. Then

the number of generations we need to consider is:

K = fix(
50

6.6477
) + 1 = 8 (3.73)

where we fix(x) returns the integer portion of x.

The Laplace Transform of f(t) is:

f (τ)L(s) = exp(6.6477s)
0.06129s + 0.0001992

(s + 0.09441)(s + 0.002110)
(3.74)

Plug this equation into (3.53), to set the Laplace Transform of total cell number

function:

N (τ)L(s) =
N0

s
+

N0

2

K
∑

k=2

2k−1(0.06129s + 0.0001992)k−1

s(s + 0.09441)k−1(s + 0.002110)k−1
exp[(k − 1)6.6477s]

(3.75)
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To obtain the inverse Laplace Transform, we define a function Qk(t), whose

Laplace Transform is:

QL
k (s) =

2k−1(0.06129s + 0.0001992)k−1

s(s + 0.09441)k−1(s + 0.002110)k−1
(3.76)

Then the function N (τ)L(s) is:

N (τ)L(s) = N0Q
L
1 (s) +

N0

2

K
∑

k=2

QL
k (s)exp[(k − 1)6.6477s] (3.77)

We can obtain Qk(t), the inverse Laplace Transform of (3.76). But the function

Qk(t) contains many terms. So here we just plot curves of the functions from Q1(t)

to Q8(t) as shown in Figs. 3.25 to 3.32. The total cell number N (τ)(t) is:

N (τ)(t) = N0Q1(t) +
N0

2

8
∑

k=2

Qk[t − (k − 1)6.6477] (3.78)

The result is shown in Fig 3.33.

At the time t = 50min, F (τ)(t) = 0.3381 and N (τ)(t) = 3.3439. So the fraction

of first-generation cells is:

R(τ)(t) = N0F
(τ)(t)/N (τ)(t) = 10.1% (3.79)

Therefore the fraction here is still significant.

3.6 Discussion

It is known that self-promotion gene regulation networks may exhibit stochas-

tic bistability. In this work we examine what effect this might have on cell age

distribution, including the fraction of first-generation cells in a population, in the

case where a protein considered as a key protein for cell division is involved in this
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Figure 3.25: The functions Q1(t) for the case with time delay.
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Figure 3.27: The functions Q3(t) for the case with time delay.
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Figure 3.28: The functions Q4(t) for the case with time delay.
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Figure 3.29: The functions Q5(t) for the case with time delay.
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Figure 3.30: The functions Q6(t) for the case with time delay.

90



0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

t (min)

Q
7

Figure 3.31: The functions Q7(t) for the case with time delay.
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Figure 3.32: The functions Q8(t) for the case with time delay.
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Figure 3.33: Total cell number for the case with time delay.

stochastic behavior. We assume that (1) the evolution of gene regulation networks

satisfy Markov property; (2) the molecular number of key protein has bifurcation

and therefore steady state distribution of key protein numbers has two peaks; (3)

cell division happens once the key protein number reaches a threshold; (4) the initial

number of key protein is between the two peaks in the distribution and the threshold

is between the two peaks or around the peak of high protein number. Under these

assumptions, it is found that the alive probability function can be written in the

form of a double-exponential function. The more difficult the transition between the

two peaks is, the more apparent the double-exponential form is. Based on this alive

probability function, the age distribution of cell population can be obtained. It is

found that after several generation times, the proportion of first generation cells is
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still significant enough to be detectable.

We suggest the alive probability function can be written in the form of double-

exponential function when the key protein number distribution is bistable. Usually

the solution directly from Fokker-Planck equations or Stochastic Petri nets is numer-

ical and does not contain analytical form, while the suggested double-exponential

function has a simple analytical form and thus can be plugged into population bal-

ance model to calculate the age distribution. Although the double-exponential form

has not been proven, the alive probability functions obtained from both Fokker-

Planck equations and Stochastic Petri nets match this form very well. Laplace

transformation is also used to solve the population balance models. Population bal-

ance models are often solved numerically [76, 84]. An analytical solution is very

complex [77]. Laplace transformation can help us obtain a relatively simple ana-

lytical solution quickly. Therefore both double-exponential function and Laplace

transformation contribute to obtaining an analytical form of age distribution, espe-

cially an analytical form of first generation cell fraction.

The significance of the first generation cell fraction is not difficult to under-

stand. The stochasticity of gene regulation networks causes the bifurcation of the

first-generation cells, which are initially homogeneous. Then one group of cells has

higher number of key division proteins and therefore divides soon and keeps growing.

The other group of cells has lower number of key proteins and therefore holds for a

long time without division. Because of the existence of the latter group, the fraction

of first generation cells can be significant after a relatively long time. It was indeed

detected that a certain fraction of the oldest cells can exist in a cell population [73].
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It should be noted that the bifurcation of replication activity does not only

happen in bacteria. Some species of viruses also have this kind of bifurcation. When

these viruses infect cells, viruses in some cells are in “active” state and replicate

quickly and then kill these cells and release their gene; while viruses in other cells are

in “latent” state and replicate slowly [62]. Therefore the methods and conclusions

in this work may be of much wider use.
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Chapter 4

Deterministic and Stochastic Modeling of Autoinducer-2 Uptake

Regulation Network in Escherichia coli

4.1 Introduction

“Quorum sensing” is the biological process through which bacteria communi-

cate with each other by using chemical signal molecules [20]. Autoinducer-2 (AI-2)

is an important signal molecule and much work has been done on its synthesis,

uptake and functioning [30, 86, 46]. A very important aspect of such work is the

study on AI-2 uptake to reveal how bacteria transport AI-2 molecules from the

surrounding environment into their own cells. Recent research indicates that AI-2

uptake is regulated by similar mechanisms in some bacteria [32, 36, 86, 87]. The

regulation networks of AI-2 uptake in Salmonella typhimurium and Escherichia coli

are shown in Figs. 4.1 and 4.2. In both networks, the AI-2 uptake is regulated by

a set of lsr genes. AI-2 is first transported into cells by the transporter apparatus

encoded by lsrACDB. Then AI-2 is phosphorylated by the kinase LsrK. LsrR can

repress the transcription of lsr genes but the LsrR repression can be derepressed by

the phospho-AI-2. Finally, the protein LsrF and LsrG involve the degradation of

AI-2 [36, 88].

The development of a detailed differential equation model for a cellular bio-
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Figure 4.1: The regulation networks of AI-2 uptake in Salmonella typhimurium
(Adapted from [88]).
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Figure 4.2: The regulation networks of AI-2 uptake in Escherichia coli (Adapted
from [36].
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chemical pathway often requires the estimation of many parameters resulting in com-

putationally intensive problems [89]. In some cases, parameter values are estimated

by a trial-and-error fit to the experimental data [90, 91], something that requires the

repetition of simulation, which is inefficient, and cannot obtain the best parameter

values. An alternative is to calculate parameter values through mathematical op-

timization techniques, and several applications on biological systems with different

optimization methods have been reported [91, 92, 93]. However, for complex gene

networks, the simultaneous estimation of all parameters through optimization may

turn out to be inefficient due to limited experimental data, measurement errors and

other factors. For the AI-2 uptake network in E.coli, experimental data have been

obtained from different mutations of bacteria [32, 36]. Each mutation corresponds

to a simplified regulation network and thus can help us estimate some parame-

ters. Therefore we suggest that parameter values can be estimated separately from

experimental data for different mutations.

A deterministic ordinary differential equation (ODE) model assumes molecule

numbers are deterministic and continuous. However, when molecule numbers are

small, they need to be considered discrete and stochastic fluctuations become im-

portant [4, 5]. Stochastic models have been simulated for some biological systems

[3, 8], including the AI-2 quorum sensing system in E.coli [51]. However this AI-2

model focuses more on AI-2 synthesis and the uptake of AI-2 is simplified into a

single step. Moreover, this model did not compare the stochastic model with the

deterministic one. It is usually not necessary to use stochastic models if the means

of stochastic simulations follow closely the result of deterministic simulations. Some
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stochastic simulations predict bifurcations, in which stochastic means show signifi-

cant and very important differences from deterministic results [8, 12]. However, this

leaves the open question of whether stochastic models are important if there is no

stochastic bistability in the system.

In this work, a deterministic model for the AI-2 uptake regulation network

in E.coli is first constructed. The parameters in this model are estimated step by

step with experimental data for wild-type E.coli and their mutants. Stochastic

simulation is also performed and a comparison between stochastic and deterministic

simulations is made.

4.2 Models

4.2.1 Kinetic Network

Based on the regulation network in Fig. 4.2, a kinetic network is constructed

and shown in Fig. 4.3. The pathway from external AI-2 (AI2ex) to decomposed AI-2

(AI2d) indicates the evolution of AI-2 molecules. First, external AI-2 molecules are

transported into cells. Experiments suggested that there is an lsr-mediated uptake

mechanism and an alternative mechanism for AI-2 uptake [32]. The alternative

mechanism is represented with rate constant ktpa in Fig. 4.3. For the lsr-mediated

uptake mechanism, it was reported that protein LsrB is the AI-2 transporter in

S.typhimurium [88]. This may also be the case in E.coli and in the kinetic network,

LsrB is considered as a catalyst. It was also reported that proteins LsrC and LsrD

are used to construct the transport channel [88]. Hence sufficient amounts of the two
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Figure 4.3: AI-2 uptake network of wild type E.coli.
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proteins are necessary for uptake. Here we arbitrarily choose LsrD as the bottleneck

and assume that the LsrD number must reach a threshold for lsr-mediated uptake

to take place. After entering the cells, free AI-2 molecules (AI2) are phosphorylated

into phospho-AI-2 (pAI2) by the kinase LsrK [32]. Phospho-AI-2 molecules involve

the regulation of lsr genes and finally they are decomposed by proteins LsrF and

LsrG. Understanding of the phospho-AI-2 decomposition is still vague and two pos-

sible explanations have been proposed. Here we choose one of them, which assumes

that the decomposition consists of two steps through an intermediate state (AI2m)

and that the first step is reversible. Each of the two steps is catalyzed by one of the

proteins LsrF and LsrG [87]. In the kinetic network, it is arbitrarily assumed that

LsrF is responsible for the first step and LsrG for the second.

The Lsr proteins play important roles in all the steps of the AI-2 uptake process

and they are encoded from two operons: lsrRK operon and lsrACDBFG operon

[32]. Transcripts of the two operons are from the same promoter (lsr). LsrR can bind

the operator and let the promoter be repressed (lsr·LsrR). However the repression

can be weakened by phospho-AI-2 [32]. So it can be suggested that phospho-AI-

2 forms another complex (LsrR·pAI2) with LsrR so that the number of LsrR is

reduced.

4.2.2 Deterministic Model

The deterministic ODE model that describes the kinetic network is listed in

Table 4.1. X is OD600 and represents cell amount, so the first ODE is for cell growth.
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dX
dt

= µX

d[AI2]
dt

= ktp[LsrB][AI2ex] + ktpa[AI2ex] − kpho[LsrK][AI2]− µ[AI2]

d[pAI2]
dt

= kpho[LsrK][AI2] + kdR[LsrR · pAI2] − kder [pAI2][LsrR] + Kderkder [LsrR · pAI2]

−kf [LsrF ][pAI2] + kb[LsrF ][AI2m]− µ[pAI2]

d[AI2m]
dt

= kf [LsrF ][pAI2]− kb[LsrF ][AI2m]− kdAI2[LsrG][AI2m]− µ[AI2m]

d[AI2d]
dt

= kdAI2[LsrG][AI2m] − µ[AI2d]

d[mRNAB ]
dt

= kx1[lsr] − kdRB [mRNAB ] − µ[mRNAB ]

d[mRNAD ]
dt

= kx1[lsr] − kdRD [mRNAD ] − µ[mRNAD ]

d[mRNAF ]
dt

= kx1[lsr] − kdRF [mRNAF ] − µ[mRNAF ]

d[mRNAG]
dt

= kx1[lsr] − kdRG[mRNAG] − µ[mRNAG]

d[mRNAK ]
dt

= kx2[lsr] − kdRK [mRNAK ] − µ[mRNAK ]

d[mRNAR]
dt

= kx2[lsr] − kdRR[mRNAR] − µ[mRNAR]

d[LsrB]
dt

= klB [mRNAB ] − kdB[LsrB] − µ[LsrB]

d[LsrD]
dt

= klD [mRNAD ] − kdD[LsrD] − µ[LsrD]

d[LsrF ]
dt

= klF [mRNAF ] − kdF [LsrF ] − µ[LsrF ]

d[LsrG]
dt

= klG[mRNAG] − kdG[LsrG] − µ[LsrG]

d[LsrK]
dt

= klK [mRNAK ] − kdK [LsrK] − µ[LsrK]

d[LsrR]
dt

= klR[mRNAR] − kdR[LsrR] − krep[lsr][LsrR] + Krepkrep[lsr · LsrR] − kder [pAI2][LsrR]

+Kderkder [LsrR · pAI2] − µ[LsrR]

d[lsr·LsrR]
dt

= krep[lsr][LsrR] − Krepkrep[lsr · LsrR] − µ[lsr · LsrR]

d[lsr]
dt

= −krep[lsr][LsrR] + Krepkrep[lsr · LsrR] + µ[lsr · LsrR]

d[LsrR·pAI2]
dt

= kder [pAI2][LsrR] − Kderkder [LsrR · pAI2] − kdR[LsrR · pAI2] − µ[LsrR · pAI2]

µ = µmax(Xm−X)
K ′

s+(Xm−X)

[AI2ex] = [AI2total] − X([AI2] + [pAI2] + [LsrR · pAI2] + [AI2m] + [AI2d])/Ca

Table 4.1: ODEs of AI-2 uptake network in E.coli. [*] means molecule
number of * in one cell.
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Other ODEs are kinetics, in which the square brackets [ · ] represent the number

of corresponding molecules in one cell. In those ODEs, the last term that includes

µ comes from cell division [94]. In the kinetics ODE for lsr, the last term has a

positive sign because genes replicate as cells divide and thus we need to let the sum

of d[lsr]/dt and d[lsr · LsrR]/dt be zero. There are two more equations at the end

of Table 4.1. The first one is used to calculate specific growth rate µ. The second

is for external AI-2 activity [AI2ex]. [AI2total] represents total amount of released

AI-2. In this equation the coefficient, Ca, used for last several terms comes from

the assumption that one unit of normalized AI-2 activity (AI-2 activity divided by

OD600) represents a certain number of AI-2 molecules [51].

Some parameter values are based on the literature as shown in Table 4.2.

Those parameters are based on previous research. The values for translation rate,

degradation rate of Lsr proteins and phosphorylation rate kpho are adjusted based on

Li et al. [51] within the same order of magnitude. The values for mRNA degradation

rate and protein binding rate, krep and kder, are adjusted based on the work in

Chapter. 2. The remaining parameters need to be obtained by fitting experimental

data.

4.2.3 Optimization Model for Parameter Estimation

Model parameters not listed in Table 4.2, will be estimated by solving an

appropriate optimization problem:

min
p

J =
∑

i

(yi,sim − yi,exp)
2 (4.1)
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Parameter value (min−1) Parameter value (min−1)

kdRB 0.3 kdRD 0.4

kdRF 0.1 kdRG 0.1

kdRK 0.5 kdRR 0.4

klB 0.5 klD 0.8

klF 0.3 klG 0.3

klK 0.4 klR 0.6

kdB 0.05 kdD 0.02

kdF 0.03 kdG 0.03

kdK 0.04 kdR 0.06

krep 10 kder 10

kpho 0.5

Table 4.2: Parameter values adjusted from literature.
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subject to

f(
dv

dt
,v,p,pa, t) = 0 (4.2)

v(t0) = v0 (4.3)

yi,sim = g(v, ti) (4.4)

The objective function (4.1) is the sum of squares of the differences between

experimental data and their corresponding model simulation data. The first set of

constraints (4.2) are the ODEs decribing the kinetics. The constraints can be the

full ODE model in Table 4.1, but also can be part of the ODEs to describe the

kinetics of mutants. v, pa and p represent the ODE variables, assigned parameters

in Table 4.2 and parameters to be fitted. The second set of constraints (4.3) assign

initial conditions. Here the initial values for X and lsr are 0.025 and 1 respectively

and the other initial values are zero. The third set of constraints (4.4) indicate how

to obtain simulation values which correspond to experiment values. ti are the time

points of experimental data. In this work we will use two sets of experimental data:

external AI-2 activity and β-galactosidase units. When external AI-2 activity is

used, the simulation data are:

yi,sim = AI2ex(ti) (4.5)

When β-galactosidase units are used, the units can be obtained by multiplying

transcription rate with a constant [51]:

yi,sim = Cbkx[lsr] (4.6)
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Figure 4.4: Stochastic Petri net for AI-2 uptake network in E.coli.

where Cb is the constant; kx represents transcription rate constant and can be kx1

or kx2 depending on which operon is studied (Fig. 4.3).

4.2.4 Stochastic Model

Stochastic Petri net (SPN) can be used to simulate stochastic and discrete

processes and has been proposed for gene networks [15] and has been further applided

for simulation of some genetic circuits [18]. Stochastic simulation of AI-2 quorum

sensing circuit have also been realized with an SPN, although the model for AI-2

uptake was too simple [51]. The Mobius software is used to simulate the SPN. This

software is available from Performability Engineering Research Group (PERFORM)

at the University of Illinois at Urbana-Champaign [17].
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In Fig. 4.4 shows the SPN for AI-2 uptake network in E.coli. The circle

places in the SPN indicate cellular species, including gene, mRNA, proteins, signal

molecules and their complexes. The values for those places indicate the molecule

numbers of the species. One special feature is that the “reach” place at the bottom

right of the SPN figure indicates whether LsrD protein number reaches the threshold.

The bold vertical lines indicate activities including transcription, translation, protein

binding and signal processing. Those activities are stochastic and the time of their

happening follows a negative exponential distribution [15]. The thin vertical line

is an instant activity, which changes the value for “reach” place as soon as LsrD

number reaches the threshold. There are also some triangles which are input gates

and indicate the preconditions of related activities [17].

For most species, their amounts in both deterministic and stochastic models

are expressed in the form of molecule number. So most parameter values in stochas-

tic model are the same as those in deterministic model. However in the deterministic

model, external AI-2 amount is expressed in the form of activity. So in order to ob-

tain external AI-2 number per cell for stochastic model, a transformation needs to

be made for activity and the uptake rate constants ktp and ktpa also need to be

converted. The details will be discussed in the next section.
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Figure 4.5: Fitting results for cell growth data. Estimated parameter
values: µmax = 0.015, K ′

s = 0.3216, Xm = 4.2637. Experiment data are
from Wang et al. [32]

4.3 Results

4.3.1 Parameter Estimation

First, the cell growth parameters are estimated by fitting the OD600 data. The

result shown in Fig. 4.5 indicates that the simulation with obtained parameter values

matches the experimental data well. It is also can be noticed that the switch time

point between exponential stage and stationary stage is just a little earlier than 400

minutes.

Next, the kinetic networks of different mutants are used to fit experiment

data. Those networks are simplified from the wild type network in Fig. 4.3 and are
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summarized in Figs. 4.6 to 4.10. The simplifications come from two causes: Some

of the lsr genes are mutated; and only one of the two sets of experimental data

(external AI-2 activity and β-galactosidase units) is considered. Both causes allow

us to ignore part the wild type network. The kinetic networks of mutants have

different complexities. For networks fitting external AI-2 activity, no AI-2 uptake

happens in ∆lsrK mutant so no kinetic network for this case is shown. The network

of ∆lsrACDBFG mutant only contains a single step which is the alternative uptake

(Fig. 4.7). The network for ∆lsrR mutant is more complex than the previous two

because both lsr-mediated and alternative AI-2 uptake happen in this case (Fig.

4.8).

For networks fitting β-galactosidase units, the network of ∆lsrR is the sim-

plest because there is no repression here and full transcription happens (Fig. 4.6).

For the ∆lsrK mutant there is a repression on transcription (Fig. 4.9). For the

∆lsrACDBFG mutant there are, not only repression, but also de-repression and

therefore the network is the most complex (Fig. 4.10). Because of the difference in

complexity, we will estimate the parameter values step by step from simple network

to complex network.

Fitting results for mutant networks are summarized in Table 4.3. With the

estimated parameters, deterministic simulations for each step are shown in Figs.

4.11 to 4.11. The fitting steps are ordered from simple networks to more complex

ones, so that the latter steps can use the parameter values from former steps. In

the first step of Table 4.3, total amounts of synthesized AI-2 are interpolated. In

the second, third and fourth step, the parameters have different values before and
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Figure 4.6: Kinetic network of mutant ∆lsrR to fit β-galactosidase units (full tran-
scription).

Figure 4.7: Kinetic network of mutant ∆lsrACDBFG to fit external AI-2 activity
(alternative uptake).

Figure 4.8: Kinetic network of mutant ∆lsrR to fit external AI-2 activity (both
uptake).
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Figure 4.9: Kinetic network of mutant ∆lsrK to fit β-galactosidase units (repres-
sion).

after 5 hours. Experiment data indicate that before around 5 hours almost no

transcription from lsr promoter and no AI-2 uptake happen [32, 36]. Although the

transcription level of lsrRK operon at 4 hours is not zero (shown in Fig. 4.13, from

[36]), at that time there is no uptake and thus the transcription is meaningless.

So we can set the transcription rates and uptake rate to be equal to zero before 5

hours. We also need to note that β-galactosidase units fitted in the fourth step are

the units for lsrRK operon, while in other steps the units are for lsrACDBFG

operon. In the fifth step, the value for uptake rate constant ktp depends on whether

LsrD number reaches the threshold TD. We discussed earlier that lsr-mediated AI-2

uptake requires a sufficient amount of LsrD. Here in order to simply the problem, it

is assumed that the threshold is reached when we reach 5 hours. This assumption

is further discussed below.

The threshold of LsrD number should be in a reasonable region. In mutant

∆lsrK, the transcription level is significantly larger than zero after 5 hours, which

means some LsrD proteins are produced. However AI-2 uptake still does not happen
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Figure 4.10: Kinetic network of mutant ∆lsrB to fit β-galactosidase units (de-
repression).
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Step Mutant Experiment data fitted Remark Fitting result

1 ∆lsrK Ext. AI-2 activity No uptake [AI2total] shown in Fig. 4.11

2 ∆lsrR β-gal. units Full transcription1 kx1 =















0 t < 5h

7.8875 t ≥ 5h

3 ∆lsrR β-gal. units of lsrRK Full transcription2 kx2 =















0 t < 5h

21.7764 t ≥ 5h

4 ∆lsrACDBFG Ext. AI-2 activity Alternative uptake ktpa =















0 t < 5h

0.1443 t ≥ 5h

5 ∆lsrR Ext. AI-2 activity Both uptake ktp =















0 LsrD < TD

0.3837 LsrD ≥ TD

6 ∆lsrK β-gal. units Repression Krep = 7.2171

7 ∆lsrACDBFG β-gal. units De-repression Kder = 8.5987

Table 4.3: Fitting results for mutant kinetic networks.
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Figure 4.11: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “no uptake”. All experiment data are from [32] and [36]
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Figure 4.12: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “full transcription1”. All experiment data are from [32] and [36]
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Figure 4.13: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “full transcription2”. All experiment data are from [32] and [36]
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Figure 4.14: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “alternative uptake”. All experiment data are from [32] and [36]
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Figure 4.15: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “both uptake”. All experiment data are from [32] and [36]
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Figure 4.16: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “repression”. All experiment data are from [32] and [36]
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Figure 4.17: Deterministic simulation of mutant network corresponding to the step
in Table 4.3 for “de-repression”. All experiment data are from [32] and [36]

at that time. So the threshold should be larger than LsrD numbers for this case.

From Fig. 4.18, it is suggested that a threshold higher than 90 is acceptable. For

the estimation ktp, it is assumed that in mutant ∆lsrR, LsrD number reaches the

threshold soon after 5 hours. The assumption is reasonable if LsrD threshold is

not too high. In Fig. 4.19 the threshold is 390, and simulation result still matches

experiment data well. Therefore the threshold for LsrD number should be between

90 and 390.

The remaining undetermined parameters are TD, kf , kb and kdAI2. Experimen-

tal data for wild type E.coli will be used to obtain these parameter values. However,

the wild type kinetic network as shown in Fig. 4.3 is so large that computational

problems may be caused. We use effective lsr transcription level and AI-2 uptake

rate to simplify the network. Effective transcription level is used to calculate TD.
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Figure 4.18: Analysis of LsrD threshold. LsrD number of mutant ∆lsrK suggests
lower bound of LsrD threshold.
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Figure 4.19: Analysis of LsrD threshold. External AI-2 activity of mutant ∆lsrR
when the threshold is 390, which suggests upper bound of LsrD threshold.
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The network in this case only includes the expression of LsrD (Fig. 4.20). The effec-

tive level is interpolated from experimental data points of wild type β-galactosidase

units (Fig. 4.21, from [32]). An artificial point is added at 5 hours because previ-

ous computation indicates that transcription level increases quickly after 5 hours.

The value for this point is the average of the three subsequent data points. From

experimental data of external AI-2 activity, wild type E.coli has the same activity

as ∆lsrACDBFG mutant at 6 hours, and has an activity of zero at 8 hours. It is

suggested that LsrD number reaches TD and lsr-mediated uptake happens between

6 and 8 hours. We set the time at 7 hours arbitrarily resulting in TD equal to 297,

which is the LsrD number at 7 hours as shown in Fig. 4.22. Effective AI-2 uptake

rate is used to obtain the other parameter values. Fig. 4.24 shows the uptaken

AI-2 amount, which is equal to activity of ∆lsrK mutant minus activity of wild

type. Then the effective uptake rate in Fig. 4.25 is the slope value for the uptaken

amount. The kinetic network in this case is shown in Fig. 4.23. The AI-2 uptake

and related regulations are simplified into a single step. The phosphorylation is also

ignored because previous computation shows the step to be very quick. By using

this network to fit the experimental β-galactosidase units, the parameters are esti-

mated as follows: kf = 1.070 × 10−3, kb = 5.954 × 10−5 and kdAI2 = 1.077 × 10−5.

In summary, in estimating TD, β-galactosidase units are used to calculate effective

transcription level and external AI-2 activity is fitted; while in estimating kf , kb

and kdAI2, external AI-2 activity is used to calculate effective AI-2 uptake rate and

β-galactosidase units are fitted.

With all the parameter values available, the behavior of the full wild type
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Figure 4.20: Kinetic network with effective transcription level.
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Figure 4.21: Effective transcription level for obtaining TD.
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Figure 4.22: Fitting result for obtaining TD from the network with effective tran-
scription level: TD = 297.

network can be simulated by using all the the ODEs in Table 4.1. The simulation

results follow the experimental data well, as shown in Figs. 4.27 and 4.28. In Fig.

4.27, external AI-2 activity has a sharp drop between 6 and 8 hours because at

that point the number of LsrD protein reaches the threshold TD and remaining AI-2

molecules outside enter the cells quickly through lsr-mediated uptake. In Fig. 4.28,

β-galactosidase units have two spikes. At the time of 5 hours, transcription level is

high because there is no LsrR protein at first. Soon after that, LsrR proteins are

produced and repress the lsr promoter. So the transcription level drops down and

forms a spike. At time around 7 hours, lsr-mediated AI-2 uptake happens. AI-2

molecules enter cells and reduce the repression by LsrR. Thus transcription jumps

up again. Then with high transcription level, more LsrF proteins are produced and
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Figure 4.23: Kinetic network with effective AI-2 uptake rate.
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Figure 4.24: Effective AI-2 uptaken amount for obtaining kf , kb and kdAI2.
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Figure 4.25: Effective AI-2 uptake rate for obtaining kf , kb and kdAI2.
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Figure 4.26: Fitting result for obtaining kf , kb and kdAI2 from the network with
effective AI-2 uptake rate: kf = 1.070 × 10−3, kb = 5.954 × 10−5 and kdAI2 =
1.077 × 10−5.

help phospho-AI-2 (pAI2) transform into the intermediate (AI2m). So the effect of

de-repression is reduced and transcription level drops down again. Then another

spike is formed. In the next section, we see how stochastic simulation explains that

such spikes will be as sharp when a cell population is observed as a whole.

4.3.2 Results of Stochastic Simulation

Stochastic simulation is performed from a time of 390 minutes to 490 minutes.

Deterministic simulation suggests that after 390 minutes, cell mass X almost reaches

its maximum Xm and cell population enters stationary stage. Therefore the effect

of cell growth need not be considered in stochastic simulation. At this stage cells do

not divide so quickly, so SPN model in Fig. 4.4 can be simulated for 100 minutes,
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Figure 4.27: Deterministic simulation results of external AI-2 activity of wild type
E.coli. Experiment data are from Wang et al. [32]
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Figure 4.28: Deterministic simulation results of β-galactosidase units of wild type
E.coli.Experiment data are from Wang et al. [32]
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which is longer than the doubling time during exponential period.

The results of stochastic simulation are shown in Figs. 4.29 to 4.32. Fig. 4.29

and 4.30 are results which can provide a view of the whole time frame, while the

results in Fig. 4.31 and 4.32 limit the time to between 390 and 490 minutes, which

shows more detail. For external AI-2 activity as shown in Fig. 4.29 and 4.31, during

the first several minutes the stochastic mean matches the deterministic result very

well. After that, a difference between the stochastic mean and deterministic result

appears. External AI-2 activity from the deterministic ODE simulation continues

to decrease slowly and drops sharply to zero at around 415 minutes, while the mean

activity from stochastic simulation does not have the sharp change but goes down

gradually to zero. After 470 minutes, both stochastic and deterministic activities

are equal to zero so they match again. For β-galactosidase units in Fig. 4.30 and

4.32, the deterministic result has a spike at around the time of 415 minutes, while

the peak in stochastic mean is shorter and wider. And after 450 minutes, stochastic

mean almost follows deterministic result again.

The difference between stochastic and deterministic results happens because

LsrD numbers for deterministic and stochastic simulations reach their threshold in

different ways. For deterministic simulation, LsrD number reaches the threshold

at a fixed time, at which point a sharp drop in external AI-2 activity and a spike

in β-galactosidase units appear. For the stochastic simulation, LsrD numbers in

different cells reach the threshold at different times. The standard deviation of

external AI-2 activity from stochastic simulation as shown in Fig. 4.31 can help us

understand what happens. During the first several minutes, the standard deviation
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Figure 4.29: Results of external AI-2 activity in the whole time range from deter-
ministic simulation and stochastic simulation.
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Figure 4.30: Results of β-galactosidase units in the whole time range from deter-
ministic simulation and stochastic simulation.
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Figure 4.31: Results of external AI-2 activity in time range between 390 and 490
minutes from deterministic simulation and stochastic simulation.
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Figure 4.32: Results of β-galactosidase units in time range between 390 and 490
minutes from deterministic simulation and stochastic simulation.
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is very small which means in all the cells LsrD numbers are lower than the threshold

and thus only alternative AI-2 uptake happens. After that, in some cells LsrD

numbers reach the threshold and activity becomes zero, so the standard deviation

for the cell population becomes large. The more cells in which LsrD numbers reach

the threshold, the larger the standard deviation. The standard deviation becomes

the largest when both the number of cells with LsrD more the threshold and that

with LsrD number less than the threshold. Then the standard deviation decreases

as more cells have a LsrD number higher than the threshold. Finally after 470

minutes the standard deviation is very small again because in almost all the cells

LsrD number reaches the threshold and AI-2 activity becomes zero.

4.4 Discussion

We demonstrated the successful estimation of parameter values in the regula-

tion network of AI-2 uptake in E.coli. As shown in Fig. 4.3, the wild type kinetic

network of AI-2 uptake is very complex, and two main sets of experimental data,

external AI-2 activity and lsr transcription level, are available. Rather than at-

tempting to define a very large optimization problem, we chose an approach that

takes advantage of experimental data available for different mutant cell types. In

this way the kinetic networks are simplified as shown in Figs. 4.6 to 4.10. As a re-

sult, several parameter values can be obtained in a series of steps. In each step one

type of mutant cells are considered and one set of experimental data are fitted. This

allows the careful examination and understanding of the quality of the fit, which is
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very important when one considers the rather limited number of experimental data.

The final remaining unknown parameter values are obtained from experimental data

of wild type cells. We introduced effective lsr transcription level and effective AI-2

uptake rate, so that the kinetic network can also be simplified and the two sets of

experimental data can be considered separately. With all the parameters estimated,

the simulation result of the whole network matches experimental data very well. The

work here provides new thoughts for parameter estimation, where the optimization

task is improved by utilizing biological rather than mathematical concepts, through

the consideration of mutant cells.

Stochastic simulation for this network indicates that stochastic models can be

valuable even when the system does not exhibit stochastic bistability. Although

for monostable systems, stochastic means usually follow closely the deterministic

paths. The results for the AI-2 uptake network have a significant difference. The

presence of a threshold for the LsrD protein number needed to allow lsr-mediated

uptake is supported by literature [88]. In deterministic simulation, at the time the

threshold is reached, external AI-2 activity has a steep drop and lsr transcription

level has a spike. In stochastic simulation, each cell reaches the threshold at dif-

ferent time, so for the cell population, the drop of external AI-2 activity is mild

and there is no spike for lsr transcription level. Therefore if there is a threshold

mechanism in a monostable system, the results from deterministic simulation and

stochastic simulation can be significantly different and stochastic model is valuable

as it better represents the type of experimental measurements we can expect from

a cell population.

130



Chapter 5

Conclusion

It has been discovered in recent years that the stochasticity plays an important

role in gene regulation networks. Such networks are composed of many molecular

activities, which are basically stochastic due to thermal fluctuations [5]. Molecule

numbers for many species are very small and reactions are relatively slow. Hence, the

effects of stochasticity become significant and cannot be ignored [4]. The simulation

of stochastic models can predict behavior distinct results from that of determinis-

tic models. To further understand the impact of stochasticity on gene regulation

networks, we have selected the quorum sensing system in E.coli as an example and

examined stochastic effects in it.

5.1 Protein Number Distribution

Stochasticity in bistable systems is important, because in this case cells with

the same initial condition can evolve into two different groups. We used the reg-

ulation network of the sdiA gene expression as an example. This network has a

positive-autoregulation which is mediated by signal molecules and thus may be a

bistable system.

First the stochastic simulation of the network was performed. The result

indicated that, from the same initial condition and after around fifty minutes, there
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is a bifurcation among cell population: some cells have high numbers of protein

molecules and others have low protein numbers.

Second, it was discovered that the signal-mediated positive-autoregulation net-

work (full network) can be simplified into another network. The simplified network

has relatively fast stochastic simulation and can be conveniently described with

Fokker-Planck equation [12]. Therefore the results for the simplified network can

be obtained quickly and confirmed with two different methods. We discussed the

simplifications and the assumptions behind them, and found that the simplifications

do not influence the bistable property and do not affect the shape of protein num-

ber distribution much. Therefore the simplified network can be used to predict the

behavior of the full network.

Third, we have made a comparison between stochastic and deterministic sim-

ulation. From one initial condition, deterministic simulation follows a fixed path,

while stochastic simulation has a bifurcation, and thus results in means different

from the deterministic path and in large variances. These results show that deter-

ministic simulation is not appropriate for bistable system and stochastic simulation

is necessary.

Fourth, we found that the stochastic bistabiliy of the full network can be

influenced by signal molecules. When the signal molecule number is in a special

range, there will be three steady states, two of which are stable. So the system is

bistable. When the signal molecule number is outside this range, there will be only

one steady state and the system becomes monostable.
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5.2 Age Distribution

If the protein happens to be a key protein for cell division, this bifurcation

may have an experimentally measurable effect on cell age distribution. SdiA protein

can regulate the expression of ftsQAZ, and FtsQAZ protein is necessary for cell

division. As a result, the SdiA protein may be considered as a key protein for cell

division.

To relate the protein distribution to cell age distribution, we first calculate a

function F (t), which represents the probability that a cell has not divided at time t,

based on the evolution of key protein number. The results from both Fokker-Planck

equation and stochastic Petri nets indicate that the function F (t) can be written

in a double-exponential form, when the key protein number has a bifurcation. This

is the first attempt to construct a mathematical relation between the bifurcation of

protein number and the function F (t).

Based on F (t) function in this analytical form, we took the second step of cal-

culating the age distribution of the cell population. The results indicate that if there

is a bifurcation for key protein number, then there would be a significant fraction

of very old cells in the cell population. This conclusion is not difficult to under-

stand. With the bifurcation, the cells which evolve into high key protein numbers

can divide quickly, while the cells which evolve into low key protein numbers would

remain undivided for long times. The existence of small fraction of very old cells

has been reported in the literature. But we first proposed here that the bifurcation

of key protein number can be the explanation of this experimental phenomenon.
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5.3 AI-2 uptake

The study of AI-2 mediated SdiA positive autoregulation networks showed that

the signal molecule AI-2 can be a determining factor on the presence of bistability.

We next considered the regulation network for the AI-2 uptake in E.coli.

First we obtained kinetic parameter values for this network by fitting a deter-

ministic model to experimental data in the literature. We took an approach where

data for mutant cells and effective data for wild type cells, corresponding to sim-

plified network structures, were used to build the more complex wild type network

step-by-step. Of course, finally the model matches the wild type cell measurements.

Usually, improving the efficiency of parameter estimation is accomplished by im-

proved optimization techniques. As optimization techniques have been thoroughly

studied, the poteintial of this mathematical approach has become limited. Our ap-

proach is based on a biological concept which can open a new way to improve the

efficiency of parameter estimation.

This network has a repression-derepression mechanism and is a monostable

system. However there is still difference between the results of stochastic and de-

terministic simulation. The results of deterministic simulation show a step change

in external AI-2 activity and a spike in transcription level, while in the results of

stochastic simulation, the change is mild and the spike disappears. This differ-

ence comes from a threshold mechanism. The lsr-mediated AI-2 uptake requires

sufficient LsrD protein, so we can propose this uptake cannot take place until the

LsrD protein number reaches a threshold. In deterministic simulation, LsrD protein
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number reaches the threshold at a fixed time. But in stochastic simulation, protein

numbers can reach the threshold at different times in different cells, and thus the

average changes are not as sharp as in deterministic simulation. The difference of

these results indicates that stochastic models can also be necessary for a monostable

system if it has a threshold.

5.4 Suggestions for Future work

We have used the quorum sensing system in E.coli as an example to study

the stochasticity in gene regulation networks, and found that stochasticity can have

significant impact on gene regulation networks for both bistable and monostable

systems. But there are still open questions of interest for the future work.

In Chap. 2, we studied protein number distributions for the full network and

the simplified network. We discussed the influence of signal molecule number on

the bistability of the distributions. However, we did not discuss the influence of

the kinetic parameters on the distributions. For the simplified network, the phase

diagram by Kepler and Elston [12] provided a complete view of the influence of

parameters on the protein number distribution. But no such work has been done

for the full network. The SPN simulation we used is time-consuming and therefore

trying many sets of different parameter values in the full netork would computa-

tionally very expensive. Erban et al. [95] proposed an equation-free approach which

can perform a “bifurcation analysis”. With this approach we may be able to obtain

a phase diagram of the full network, and distinguish the parameter values in which
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the network has a stochastic bistability.

In Chap. 3, we developed a double exponential form for the alive probability

function. This form was obtained by fitting to the simulation data and we provided

a biological explanation. However we did not prove this form in a mathematical

way. Further work may be done to provide a mathematical basis for the double

exponential form. For simplified network, the alive probability function can be

obtained from equation (3.4), which is from the Fokker-Planck equation. Equation

(3.4) is a linear PDE and should be further studied for the simplified network.

Finally we may be able to obtain an analytical solution for equation (3.4), which

may provide justification for the double exponential form.

In Chap. 4, we stated that the regulation network of AI-2 uptake is a monos-

table system. Although simulation results supportthis statement, it would be useful

to do a rigorous analysis for the network. The AI-2 uptake regulation network is

very complex and its simulation is time-comsuming. However, the equation-free ap-

proach by Erban et al. [95] may also be used here for the “bifurcation analysis” of

this network. Hence this approach may confirm whether the network is monostable

or not.

136



Bibliography

[1] U. Alon, An introduction to systems biology: design principles of biological
circuits (Chapman & Hall/CRC, Boca Raton, FL, 2006), Chaps. 2.

[2] C.V. Rao and A.P. Arkin, “Control motifs for intracellular regulatory net-
works,” Annu. Rev. Biomed. Eng. 3, 391 (2001).

[3] H.H. McAdams and A. Arkin, “Simulation of prokaryotic genetic circuits,”
Annu. Rev. Biophys. Biomol. Struct. 27, 199 (1998).

[4] H.H. McAdams and A. Arkin, “Its a noisy business! Genetic regulation at the
nanomolar scale,” Trends in Genetics 15, 65 (1999).

[5] C.V. Rao, D.M. Wolf and A.P. Arkin, “Control, exploitation and tolerance of
intracellular noise,” Nature 420, 231 (2002).

[6] M.S. Ko, H. Nakauchi and N. Takahashi, “The dose dependence of
glucocorticoid-inducible gene expression results from changes in the number
of transcriptionally active templates. EMBO J. 9, 2835 (1990).

[7] H.H. McAdams and A. Arkin, “Stochastic mechanisms in gene expression,”
Proc. Natl. Acad. Sci. USA 94, 814 (1997).

[8] A. Arkin, J. Ross and H.H. McAdams, “Stochastic kinetic analysis of develop-
mental pathway bifurcation in phage λ-infected Escherichia coli cells,” Genetics
149, 1633 (1998).

[9] M.M. Domach and M.L. Shuler, “A finite representation model for an asyn-
chronous culture of Escherichia coli,” Biotechnol. Bioeng. 26, 877 (1984).

[10] C.W. Gardiner, Handbook of stochastic methods for physics, chemistry and the
natural sciences (Springer, Berlin, 1990), Chaps. 4.

[11] J. Xing, H. Wang and G. Oster, “From Continuum Fokker-Planck Models to
Discrete Kinetic Models,” Biophysical Journal 89, 1551 (2005).

[12] T.B. Kepler and T.C. Elston, “Stochasticity in transcriptional regulation: ori-
gins, consequences, and mathematical representations,” Biophysical J. 81, 3116
(2001).

137



[13] D.T. Gillespie, “The chemical Langevin equation,” J. Chemical Physics. 113,
297 (2000).

[14] A.P.J. Jansen, An introduction to Monte Carlo simulations of surface reactions.
http://arxiv.org/abs/cond-mat/0303028 (2005).

[15] P.J. Goss and J. Peccoud, “Quantitative modeling of stochastic systems in
molecular biology by using stochastic Petri nets,” Proc. Natl. Acad. Sci. USA
95, 6750 (1998).

[16] J.L. Peterson, Petri net theory and the modeling of systems (Prentice Hall,
Englewood Cliffs, NJ, 1981).

[17] W.H. Sanders, Mobius User Manual. Version 1.5.0 (PERFORM Performabil-
ity Engineering Research Group, University of Illinois at Urbana-Champaign,
2004).

[18] R. Srivastava, M.S. Peterson and W.E. Bentley, “Stochastic kinetic analysis
of the Escherichia coli stress circuit using σ32-targeted antisense,” Biotechnol.
Bioeng. 75, 120 (2001).

[19] T. Wilson and J.W. Hastings, “Bioluminenscence,” Ann. Rev. Cell. Dev. Biol.
14, 197 (1998).

[20] M.B. Miller and B.L. Bassler, “Quorum sensing in bacteria,” Ann. Rev. Micro-
biol. 55, 165 (2001).

[21] W.C. Fuqua, S.C. Wintans and E.P. Greenberg, “Quorum sensing in bacteria:
the LuxR-LuxI family of cell density-responsive transcriptional regulators,” J.
Bacteriology. 176, 269 (1994).

[22] J.M. Henke and B.L. Bassler, “Baterial social engagements,” Trends in cell
biology. 14, 648 (2004).

[23] B.A. Lazazzera and A.D. Grossman, “The ins and outs of peptide signaling,”
Trends Microbiol. 6, 288 (1998).

[24] R. Hakenbeck and J.B. Stock, “Analysis of two-component signal transduction
systems involved in transcriptional regulation,” Methods Enzymol. 273, 281
(1996).

138



[25] B.L. Bassler, M. Wright and M.R. Silverman, “Multiple signalling systems con-
trolling expression of luminenscence in Vibrio harveyi: sequence and function
of genes encoding a second sensory pathway,” Mol. Microbiol. 13, 273 (1994).

[26] K.C. Mok, N.S. Wingreen and B.L. Bassler, “Vibrio harveyi quorum sensing:
a coincidence detector for two autoinducers controls gene expression,” EMBO
J. 22, 870 (2003).

[27] J.G. Cao and E.A. Meighen, “Purification and structural identification of an
autoinducer for the luminescence system of Vibrio harveyi,” J. Biol. Chem.
264, 21670 (1989).

[28] B.L. Bassler, E.P. Greenberg and A.M. Stevens, “Cross-species induction of
luminescence in the quorum-sensing bacterium Vibrio harveyi,” J. Bacteriol.
179, 4043 (1997).

[29] M.G. Surette, M.B. Miller and B.L. Bassler, “Quorum sensing in Escherichia
coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes re-
sponsible for autoinducer production,” Proc. Natl. Acad. Sci. USA. 96, 1639
(1999).

[30] S. Schauder, K. Shokat, M.G. Surette and B.L. Bassler, “The LuxS fam-
ily of bacterial autoinduders: biosynthesis of a novel quorum-sensing signal
molecule,” Mol. Microbiol. 41, 463 (2001).

[31] M.G. Surette and B.L. Bassler, “Regulation of autoinducer production in
Salmonella typhimurium,” Mol. Microbiol. 31, 585 (1999).

[32] L. Wang, Y. Hashimoto, C.-Y. Tsao, J.J. Valdes and W.E. Bentley, “Cylic AMP
(cAMP) and cAMP receptor protein influence both synthesis and uptake of
extracellular autoinducer-2 in Escherichia coli,” J. Bacteriol. 187, 2066 (2005).

[33] M.G. Surette and B.L. Bassler, “Quorum sensing in Escherichia coli and
Salmonella typhimurium,” Proc. Natl. Acad. Sci. USA. 95, 7046 (1998).

[34] M.P. DeLisa, J.J. Valdes and W.E. Bentley, “Mapping stress-induced changes
in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12,”
J. Bacteriol. 183, 2918 (2001).

[35] A.L. Beeston and M.G. Surette, “pfs-dependent regulation of autoinducer 2
production in Salmonella enterica serovar Typhimurium,” J. Bacteriol. 184,
3450 (2002).

139



[36] L. Wang, J. Li, J.C. March, J.J. Valdes and W.E. Bentley, “luxS-Dependent
Gene Regulation in Escherichia coli K-12 Revealed by Genomic Expression
Profiling,” Journal of Bacteriology, 187, 8350 (2005).

[37] B.M.M. Ahmer, “Cell-to-cell signalling in Escherichia coli and Salmonella en-
terica,” Mol. Microbiol. 52, 933 (2004).

[38] X.D. Wang, P.A.J. de Boer and L.I. Rothfield, “A factor that positively regu-
lates cell division by activating transcription of the major cluster of essential
cell division genes of Escherichia coli,” EMBO J. 10, 3363 (1991).

[39] Y. Wei, A.C. Vollmer and R.A. LaRossa, “In vivo titration of mitomycin C
action by four Escherichia coli genomic regions on multicopy plasmids,” J.
Bacteriol. 183, 2265 (2001).

[40] S. Rahmati, S. Yang, A.L. Davidson and E.L. Zechiedrich, “Control of the
AcrAB multidrug efflux pump by quorum sensing regulator SdiA,” Mol. Micro-
biol. 43, 677 (2002).

[41] D.M. Sitnikov, J.B. Schineller and T.O. Baldwin, “Control of cell division in
Escherichia coli, regulation of ftsQA involves both rpoS and SdiA-mediated
autoinduction,” Proc. Natl. Acad. Sci. USA. 93, 336 (1996).

[42] K. Kanamaru, I. Tatsuno, T. Tobe and C. Sasakawa, “SdiA, an Escherichia coli
homologue of quorum-sensing regulators, controls the expression of virulence
factors in enterohaemorrhagic Escherichia coli O157:H7,” Mol. Microbiol. 38

805 (2000).

[43] P.V. Dunlap and J.M. Ray, “Requirement for autoinducer in transcriptional
negative autoregulation of the Vibrio fischeri luxR gene in Escherichia coli,” J.
Bacteriol. 171, 3549 (1989).

[44] G.S. Shadel and T.O. Baldwin, “The Vibrio fischeri LuxR protein is capa-
ble of directional stimulation of transcription and both positive and negative
regulation of the luxR gene,” J. Bacteriol. 173, 568 (1991).

[45] J. Garcia-Lara, L.H. Shang and L.I. Rothfield, “An extracellular factor reg-
ulates expression of sidA, a transcriptional activator of cell division genes in
Escherichia coli,” J. Bacteriol. 178, 2742 (1996).

[46] M.P. DeLisa, C.-F. Wu, L. Wang, J.J. Valdes and W.E. Bentley, “DNA
microarray-based identification of genes controlled by autoinducer 2-stimulated
quorum sensing in Escherichia coli,” J. Bacteriol. 183, 5239 (2001).

140



[47] D.L. Chopp, M.J. Kirisits and M.R. Parsek, “A mathematical model of quorum
sensing in a growing bacterial biofilm,” Journal of Industrial Microbiology &
Biotechnology. 29, 339 (2002).

[48] A.U. Viretta and M. Fussenegger, “Modeling the quorum sensing regulatory
network of human-pathogenic Pseudomonas aeruginosa,” Biotechnol. Prog. 20,
670 (2004).

[49] A.G. Daga, Quorum sensing in silico: kinetic modeling in Escherichia coli
through stochastic Petri nets. Master of Science, Dept. of Chem. Eng., Univ.
of Maryland, College Park (2001).

[50] A.B. Goryachev, D.J. Toh, K.B. Wee, T. Lee, H.B. Zhang and L.H. Zhang,
“Transition to quorum sensing in an Agrobacterium population: a stochastic
model,” PLoS Comput. Biol. 1, 265 (2005).

[51] J. Li, L. Wang, Y. Hashimoto, C.-Y. Tsao, T.K. Wood, J.J. Valdes, E. Zafiriou
and W.E. Bentley. “A Stochastic Model of Escherichia coli AI-2 Quorum Signal
Circuit Reveals Alternative Synthesis Pathways,” Molecular Systems Biology.
doi:10.1038/msb4100107 (December 2006).

[52] J.M. Raser and E.K. OShea. “Noise in gene expression: origins, consequences,
and control,” Science 309, 2010 (2005).

[53] B. Zhou, D. Beckwith, L.R. Jarboe and J.C. Liao. “Markov chain modeling
of pyelonephritis-associated pili expression in uropathogenic Escherichia coli,”
Biophysical Journal. 88, 2541 (2005).

[54] F. J. Isaacs, J. Hasty, C.R. Cantor and J.J. Collins. “Prediction and measure-
ment of an autoregulatory genetic module,” Proc. Natl. Acad. Sci. USA. 100,
7714 (2003).

[55] A. Becskei, B. Seraphin and L. Serrano, “Positive feedback in eukaryotic gene
networks: cell differentiation by graded to binary response conversion,” EMBO
J. 20, 2528 (2001).

[56] J.E. Ferrell, “Self-perpetuating states in signal transduction: positive feedback,
double-negative feedback and bistability,” Current Opinion in Chemical Biol-
ogy. 6, 140 (2002).

[57] M. Ptashne, A genetic switch: Phage λ and higher organisms, 2nd edition (Cell
Press and Blackwell Scientific Publications, Cambridge, MA, 1992).

141



[58] M.T. Record Jr., W.S. Reznikoff, M.L. Craig, K. McQuade, and P.J. Schlax.
Escherichia coli RNA polymerase (Eσ70), promoters, and the kinetics of the
steps of transcription initiation, in Escherichia coli and Salmonella, 2nd ed,
vol.2. F.C. Neidhart, R. Curtiss, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Ma-
gasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, editors
(ASM Press, Washington DC, 1996), 792-816.

[59] S. Pedersen and S. Reeh, “Functional mRNA half lives in Escherichia coli,”
Mol. gen. Genet. 166, 329 (1978).

[60] A. Varshavsky, “The N-end rule: functions, mysteries, uses,” Proc. Natl. Acad.
Sci. USA 93, 12142 (1996).

[61] W. Chen, J.E. Bailey, and S.B. Lee. “Molecular design of expression systems:
comparison of different repressor control configurations using molecular mech-
anism models,” Biotechnol. Bioeng. 38, 679 (1991).

[62] L.S. Weinberger, J.C. Burnett, J.E. Toettcher, A.P. Arkin and D.V. Schaffer,
“Stochastic gene expression in a lantiviral positive-feedback loop: HIV-1 Tat
fluctuations drive phenotypic diversity,” Cell. 122, 169 (2005).

[63] J.J. Tyson and B. Novak, “Regulation of the Eukaryotic Cell Cycle: Molecular
Antagonism, Hysteresis, and Irreversible Transitions,” J Theor Biol. 210, 249
(2001).

[64] W. Xiong and J.E.Jr. Ferrell, J.E.Jr. “A positive-feedback-based bistable ‘mem-
ory module’ that governs a cell fate decision,” Nature. 426, 460 (2003).

[65] E. Bi and J. Lutkenhaus, “FtsZ ring structure associated with division of Es-
chrichia coli”. Nature. 354, 161 (1991).

[66] X. Ma, D.W. Ehrhardt and W. Margolin, “Colocalization of cell division pro-
teins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by
using grren fluorescent protein,” Proc. Natl. Acad. Sci. USA. 93, 12998 (1996).

[67] L. Rothfield, S. Justice and J. Garcia-Lara, “Bacterial cell division”. Annu.
Rev. Genet. 33, 423 (1999).

[68] C.E. Helmstetter and D.J. Cummings, “Bacterial synchronization by selection
of cells at division,” Proc. Natl. Acad. Sci. USA. 50, 767 (1963).

[69] C.E. Helmstetter and D.J. Cummings, “An improved method for the selection
of bacterial cells at division,” Biochim. Biophys. Acta. 82, 608 (1964).

142



[70] S. Copper, Baterial growth and division (Academic Press, San Diego, CA, 1991).

[71] S. Copper, “Analysis of bacterial division cycle using membrane-elution
method,” Methods molec. Genet. 3, 234 (1994).

[72] C.D. Kelly and O. Rahn, “The growth rate of individual bacterial cells,” J.
Bacteriol. 23, 147 (1932).

[73] A.L. Koch, The variability and individuality of the bacterium. In: Escherichia
coli and Salmonella typhimurium: Cellular and Molecular Biology (F.C. Nei-
dhardt, ed, American Society for Microbiology, Washington, DC, 1987), pp.
1606-1614.

[74] E.O. Powell, “Growth rate and generation time of bacteria with special refer-
ence to continuous culture,” J. gen. Microbiol. 15, 492 (1956).

[75] A.L. Koch and M. Schaechter. “A model for statistics of the cell division pro-
cess,” J. Gen. Mocrobiol. 29, 435 (1962).

[76] M.A. Hjortso, “Solution and properties of age population balance models which
assume discrete division ages,” J. Biotechnol. 42, 271 (1995).

[77] J.-J. Liou, F. Srienc and A.G. Fredrickson, “Solution of population balance
models based on a successive generations approach,” Chem. Eng. Sci. 52, 1529
(1997).

[78] D.G. Kendall, “On the role of variable generation time in the development of
a stochastic birth process,” Biometrika. 35, 316 (1948).

[79] D.G. Kendall, “On the choice of mathematical models to represent normal
bacterial growth,” J. R. Stat. Soc. B. 14, 41 (1952).

[80] J.A. Smith and L. Martin, “Do cells cycle?” Proc. Natl. Acad. Sci. USA. 70

1263 (1973).

[81] R.F. Brooks, D.C. Bennett and J.A. Smith, “Mammalian cell cycles need two
random transitions,” Cell. 19, 493 (1980).

[82] J.D. Keasling, H. Kuo and G. Vahanian, “A monte carlo simulation of the
Escherichia coli cell cycle,” J. theor. Biol. 176, 411 (1995).

143



[83] N.V. Mantzaris, J.-J. Liou, P. Daoutidis and F. Srienc, “Numerical solution of
a mass structured cell population balance model in an environment of changing
substrate concentration,” J. Biotechnol. 71, 157 (1999).

[84] M.A. Hjortso and J. Nielsen, “Population balance models of autonomous mi-
crobial oscillations,” J. Biotechnol. 42, 255 (1995).

[85] D. Ramkrishna, “Statistical models of cell populations,” Adv. Biochem. Engng.
11, 1 (1979).

[86] M.E. Taga, J.L. Semmelhack and B.L. Bassler, “The LuxS-dependent autoin-
ducer AI-2 controls the expression of an ABC transporter that functions in AI-2
uptake in Salmonella typhimurium,” Mol. Microbiol. 42, 777 (2001).

[87] M.E. Taga, S.T. Miller and B.L. Bassler, “Lsr-mediated transport and process-
ing of AI-2 in Salmonella typhimurium,” Mol. Microbiol. 50, 1411 (2003).

[88] K.B. Xavier and B.L. Bassler, “Regulation of Uptake and Processing of the
Quorum-Sensing Autoinducer AI-2 in Escherichia coli,” J. Bacteriol. 187, 238
(2005).

[89] P. Mendes and D.B. Kell, “Non-linear optimization of biochemical pathways:
Applications to metabolic engineering and parameter estimation,” Bioinformat-
ics. 14, 869 (1998).

[90] K. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak and J.J. Tyson, “Kinetic
analysis of a molecular model of the budding yeast cell cycle,” Mol. Biol. Cell
11, 369 (2000).

[91] J.W. Zwolak, J.J. Tyson and L.T. Watson, “Parameter Estimation for a Math-
ematical Model of the Cell Cycle in Frog Eggs,” Journal of computational
biology. 12 48 (2005).

[92] M. Ronen, R. Rosenberg, B. Shraiman and U. Alon, “Assigning numbers to
arrows: Parameterizing a gene regulation network by accurate expression ki-
netics,” Proc. Natl. Acad. Sci. USA. 99, 10555 (2002).

[93] C.G. Moles, P. Mendes and J.R. Banga, “Parameter Estimation in Biochemical
Pathways: A Comparison of Global Optimization Methods,” Genome Res. 13,
2467 (2003).

[94] W.E. Bentley and D.S. Kompala, “A novel structured kinetic modeling ap-
proach for analysis of plasmid instability in recombinant bacterial fermenta-
tions,” Biotechnology and Bioengineering 33, 49 (1989).

144



[95] R. Erban, I.G. Kevrekidis, D. Adalsteinsson and T.C. Elston, “Gene regula-
tory networks: A coarse-grained, equation-free approach to multiscale compu-
tation,” the Journal of Chemical Physics 124, 084106 (2006)

145


