There is no time limit on this test, though I don’t want you to spend too much time on it. I have tried to design an exam that will take less time that exams in the past. You do not need to read any additional papers other than the ones I send to you. There are 4 pages, including this cover sheet, for this test. There are no Discovery Questions on this exam. You are not allowed discuss the test with anyone until all exams are turned in at 10:30 am on Wednesday February 12. ELECTRONIC COPIES OF YOUR EXAM ANSWERS ARE DUE BY 10:30 am ON WEDNESDAY FEBRUARY 12. You may use a calculator, a ruler, your notes, the book, and the internet. You may work on this exam in as many blocks of time as you want. Submit your electronic version before 10:30 am (eastern time zone).

The answers to the questions must be typed in a Word file and emailed to me as an attachment. Be sure to backup your test answers just in case (I suggest a thumb drive or other removable medium). You will need to capture screen images as a part of your answers which you may do without seeking permission since your test answers will not be in the public domain. Remember to explain your thoughts in your own words and use screen shots to support your answers. Screen shots without your words are worth very few points. Support your answers with data using screen shots liberally.

DO NOT READ or DOWNLOAD ANY PAPERS FOR THIS EXAM. You may search and read abstracts. RELY ON YOUR EXPERIENCE, AND YOUR SKILLS. Spell out your logic for each answer.

-3 pts if you do not follow this direction.

Please do not write or type your name on any page other than this cover page.
Staple all your pages (INCLUDING THE TEST PAGES) together when finished with the exam.

Name (please type): ANSWER KEY

Write out the full pledge and sign (electronic signature is ideal):

How long did this exam take you to complete?
20 pts

1) I want you to analyze some sequences. All of them can be found in the Word file called “Mystery_One.docx”.

a) Translate >First_Sequence. How many amino acids does the encoded protein have? (5 pts)

<table>
<thead>
<tr>
<th>Translation 3660 a.a. MW=422892.649999</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 151 to 11133.</td>
</tr>
<tr>
<td>Translation 3660 a.a. MW=422892.649999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>First_Sequence</td>
<td>3660 a.a.</td>
</tr>
</tbody>
</table>

MW=422892.649999
<table>
<thead>
<tr>
<th>Start Position</th>
<th>End Position</th>
<th>Number of Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>551</td>
<td>575</td>
<td>25</td>
</tr>
<tr>
<td>576</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>596</td>
<td>650</td>
<td>55</td>
</tr>
<tr>
<td>651</td>
<td>675</td>
<td>25</td>
</tr>
<tr>
<td>676</td>
<td>700</td>
<td>25</td>
</tr>
<tr>
<td>701</td>
<td>725</td>
<td>25</td>
</tr>
<tr>
<td>726</td>
<td>750</td>
<td>25</td>
</tr>
<tr>
<td>751</td>
<td>775</td>
<td>25</td>
</tr>
<tr>
<td>776</td>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>801</td>
<td>825</td>
<td>25</td>
</tr>
<tr>
<td>826</td>
<td>850</td>
<td>25</td>
</tr>
<tr>
<td>851</td>
<td>875</td>
<td>25</td>
</tr>
<tr>
<td>876</td>
<td>900</td>
<td>25</td>
</tr>
<tr>
<td>901</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>926</td>
<td>950</td>
<td>25</td>
</tr>
<tr>
<td>951</td>
<td>975</td>
<td>25</td>
</tr>
<tr>
<td>976</td>
<td>1000</td>
<td>25</td>
</tr>
<tr>
<td>1001</td>
<td>1025</td>
<td>25</td>
</tr>
<tr>
<td>1026</td>
<td>1050</td>
<td>25</td>
</tr>
<tr>
<td>1051</td>
<td>1075</td>
<td>25</td>
</tr>
<tr>
<td>1076</td>
<td>1100</td>
<td>25</td>
</tr>
<tr>
<td>1101</td>
<td>1125</td>
<td>25</td>
</tr>
<tr>
<td>1126</td>
<td>1150</td>
<td>25</td>
</tr>
<tr>
<td>1151</td>
<td>1175</td>
<td>25</td>
</tr>
<tr>
<td>1176</td>
<td>1200</td>
<td>25</td>
</tr>
</tbody>
</table>

Genomics Exam #1
Spring 2014
1826 VKELLQRGDTLQKRITDERKRELK1850
5626GTGAAAGAATGTGCAAGGCGACACCTCCAGAAAGATACACATGAGAGAAACCGAGGAGAAATAAAAAG5700
1851IKQQLQTKhNALKDLRSQRKRAL1875
5701ATAAAACACGCTGTGCAACACTAACATAGCTCCACTGAGACTCTGCTCAAAAGAGAAAGAAAAAGGCTTTA5775
1876EISHQWYQYKROADDLMTDLDDIEK1900
5776GAGATTTCTCTATCAATGTGATGATCAAGAGCCACTGTGAGACTCTAAATAGATGCTGAGACTTTGARA9350
1901KLASLPDQDLKEIGGELEKKK1925
5851AAGGATGACAGACGAGGGAATAAAGGCTTTA1950
1926EDLNAVNRQAEERLSDKGAAKAPE1950
5926GAAGATCTGCAATGGTATCAGTACAAGCGACGCTGAGACTCTAATGAAAGAAAAAAGGCTTTA6000
1951LVQLSKRWRFDSFKPAQFRRLYNAQ1975
6001CTGGTACAGCTAGCAAGCTCAGTCTGCAC1976
6076
2000ITQTVLTEDTTFTMTESMTPETVPS2000
6776
2250CTACTCTGACAGCAGGTAACGTGCTGAAGGAGCAACTGGGAAATACTGAATACCCGAGGAGGAGGAG12250
2276TGGLTTLGSASLNPERRKHKLESTLKE2300
6976ACTGAGGAGACACGCTGCAATGGTATGACTCTAAGCAACAGAGAAAGAAAAAAGATGAGAGAA11975
2301ASRRLKVSRDLPKEKQKEKEIILKD2325
7051GCTACCGGATGACAGAGTACAGTTAAAAGTTTATAGTTGTCTTACAGAGATGAGCAACTGCGCAG12250
2326FIELNQICHQITLWITPVKNQNLELY2350
7126TCTACTGCAACTTAAATCACAGAAATTCACATGCAACACTGTCATGTAACCCCTGTCACAAACACAGCTGAC12400
2351NQVQPGAPFDIKEETEAAVQAKQPNV2375
7201AACCAGGTGAGCACTGACAGCTCCACAGAGAAGAAAGAAAAAAGATGAGAGAA12250
2376EEVLSKGCHELKKEKPAHTHPVKXKLE2400
7246GAGATTTCTCTATCAATGTGATGATCAAGAGCCACTGTGAGACTCTAAATAGATGCTGAGACTTTGARA9350
2401DLNAWDKAINHLIQLKKEKPTFGEP2425
7351GACTTGAGACTGCAAGGAGAATAAACACCTTAACTTCTACACTAAGGAGAAAGGACACTTGGGAC12425
2426ALTSPPGVLTSQVTAVAVDTQARVTKE2450
7426GCCCTTACCTCCAGGGTCTCTTAAACTCTGTCATGAAAGAAAGGAGGAGGAGAA12425
b) From what species was this sequence taken? Support your answer with evidence.

/organism="Gallus gallus"
c) I happen to know that >Second_Sequence evolved from >First_Sequence. Analyze >Second_Sequence. List and describe all the mutations you detect. Support each mutation you describe with the evidence you used. Your analysis should provide the most parsimonious answer.

1) SNP in 10th codon to change amino acid
2) double inversion: first one at 2,200 and 10,500; second one at 6,100 and 9,400.

d) Search NCBI to find a tabular presentation of some of the known SNPs in the original gene for First Sequence. Be sure you are looking at the correct species (see part b above). Your answer must include a screen show showing multiple SNPs and the effects they would have on the encoded protein.

something like this:
20 pts

2) Over the last few years, we have sequenced more and more Neanderthal DNA. These questions pertain to those findings.

a) Neander Fig 1a shows the analysis of DNA from 6 different fossil bone samples. Which fossil would you use for additional studies and why? Support your answer with data.

VI-80 has the least amount of modern DNA contamination and the most Neanderthal DNA.

b) From an abstract: “Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago.” What can you conclude from Neander Fig 1b?

If diverged and split mean about the same thing (i.e. 500K years ago), then about 2,000 individuals gave rise to humans and Neanderthals.

c) From the figure legend of Neander Fig 1c: “a, Individual maps; the marginal probability of Neanderthal ancestry for one European-American, one east-Asian and one sub-Saharan-African phased genome across chromosome 9. b, Population maps; estimated the proportion of Neanderthal ancestry in European individuals (red) and east-Asian individuals (green), averaged across all individuals from each population in non-overlapping 100-kb windows on chromosome 9. The black bar denotes the coordinates of the centromere. The plot is limited to segments of the chromosome that pass quality filters. CEU, residents of Utah, US, with northern and western European ancestry; CHB, Han Chinese in Beijing, China; LWK, African Luhya in Webuye, Kenya.” Interpret panels a and b from this figure. Support your answer with data from the
figure.
panel a:
It appears East Asian and Europeans still carry some Neanderthal DNA on chromosome 9. It looks like they are not identical segments, but maybe the resolution is not precise enough to be sure. The Luhya person does not appear to carry any Neanderthal DNA on chromosome 9.

panel b:
Similar results for populations of Asians and Europeans with both sharing similar parts of chromosome 9 with Neanderthals.

d) Consider Neander Fig1d and summarize the results. Support your answer with data from the figure. Functionally important DNA from Neanderthal DNA seems to be less abundant on the X chromosomes of Asians and Europeans than on the autosomes. Suggests some decreased fertility or other form of fitness.
15 pts
3) This question focuses on the biggest news in biology for several years. I suspect this will win a Nobel prize not long from now.

a) Look up “STAP cells” and briefly summarize what they are. Provide me with a link to your source(s).

These are induced pluripotent stem cells but they are not produced by giving them DNA encoding 4 transcription factors like iPSCs. Treated with acid to stress them. They had GFP and were derived from white blood cells that had rearranged DNA to verify they were somatic.

b) What genomic evidence did the investigators use to convince skeptics that they had converted mature, differentiated cells into stem cells? Provide citation for your source(s).
“gene rearrangement analysis” for T cell receptor or antibodies (T cells is correct, but the abstract did not differentiate which one).

c) What sort of changes would you expect to see at the genome level if you compared the original cells to the STAP cells? Do not talk about protein or mRNA differences – focus on the genome.
Epigenetic changes
25 pts
4) The first two snake genomes (Burmese Python and King Cobra) were sequenced in December, 2013. Answer the following questions.
 a) Look at **Snake Fig1** (MKO = mouse knock out phenotype). Summarize what you see about snakes in general as well as each species of snake.

 Snakes have gene enrichment in all four categories but metabolism is by far the most enriched. Cobra has slightly more than python in all but metabolism.

 b) **Snake Fig2** focuses on snake venom that evolved in king cobras. (C) … the three-finger toxin gene family (D) other pathogenic toxin families of venom-expressed genes, and (E) ancillary toxin families after the split of the Burmese python from the advanced snakes. Compare and contrast evolution of the three toxin gene families.

 C three-finger toxin – lots of adaptive radiation in cobra, but not in python.

 D other venom genes – adaptive radiation in 3 genes for cobra, not as much as three-finger toxin, and only one paralog in python.

 E ancillary toxins – not much adaptive radiation in cobras or pythons in this category. So cobra mainly diversified three-finger toxins.

 c) Where are Bermese Pythons found in nature outside their normal range? Are they having an impact on their new location? Support your answer with data including a peer-reviewed journal citation.
 Florida Everglades: killing all vertebrates and mammals.
 Our own Mike Dorcas:
 http://www.pnas.org/content/109/7/2418.abstract?sid=93e23f28-3d72-46e1-bba1-308342442f7d
d) What would you do next to determine if the Burmese Python is evolving in its new habitat? Design the experiment you would like to perform if expense and human resources were not limiting. Lots of options: genome, transcriptome, epigenetic changes in methylome….

e) Find the Homo sapiens kallikrein 1 gene in a human genome browser. What compounds bind to human kallikrein 1? Support your answer with screen shots.

f) What is kallikrein 1’s normal function and what human tissues transcribe this mRNA? Support your answer with screen shots. How could this function be related to snake venom?

Protease
Molecular Function:
GO:0003824 catalytic activity
GO:0004252 serine-type endopeptidase activity
GO:0004293 tissue kallikrein activity
GO:0008233 peptidase activity
GO:0016787 hydrolase activity

GeneHub-GEPIS -- From Gene Integration to Expression Profiling

Most in saliva, then pancreas then lymph system.

In blood, regulates BP.
g) How could the cobra’s kallikrein 1 gene evolve to be venomous in king cobra if snakes use kallikrein 1 the same way humans do?

They had gene duplication, then the paralogs changed expression pattern to be in venom and they use this to break down proteins in prey. Could also cause BP crash in prey.
20 pts
5) The final question is a series of mildly related parts.
 a) Look at Seq Fig5a and evaluate the diagram. This is a hypothetical case of one chromosome with three distinct regions (I, II and III). The short segments under the long contiguous piece of DNA are sequencing reads from a 454 machine. On top is the assembly from algorithm #1 and below is the assembly from algorithm #2. Summarize what algorithm #2 did by mistake. Explain how this mistake could take place.

 Regions of similarities and #2 combined them into one locus and put II on a separate scaffold. #2 did not take into consideration the number of reads as indicating a collapsed region.

b) Some authors stated, “hemizygosity of a 600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. The corresponding reciprocal duplication is associated with being underweight. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.” Do your best to determine how many distinct genes are in this region of the human genome. Explain to me how you determined your answer. Support your answer with screen shots.

 Gene names appear more than once but it looks like about 100 genes??
 Genome Browser packed view.
 Different correct answers. It is harder than you think it would be to know how many genes.
c) Look at **Seq Fig5b** which shows GWAS data plotted on negative log\(_{10}\) p-value on the Y-axes. They were looking for genes that affect systolic blood pressure (SBP) and diastolic blood pressure (DBP). The horizontal dotted line is \(p = 2.5 \times 10^{-8} \). Pick one gene to study and tell me why you would choose it. What is the function of the encoded protein for the gene you chose (use GO terms)?

Many options. Choose a gene high up on its column.

d) Look at **Seq Fig5c**. What can you conclude about the microbiome on humans and their pet dogs? The left panel shows the average unweighted UniFrac distance between adult dog-owners and their dogs (blue), between dog-owners and other (not their own) dogs (red), and between adults who do not own dogs and dogs (green). The right panel shows the number of phylotypes shared for the same categories. Comparisons are labeled on the y-axis such that the first body site listed corresponds to the dog and the second site corresponds to the human. Mean ± 95% CI shown. The presence of asterisks lacking brackets indicates that all pairwise comparisons within that group are significant. *\(p<0.05 \), **\(p<0.001 \) after Bonferroni correction (Wilcoxon test).

Do owners have more bacterial phylotypes than non-dog owners in all sites. The diversity between humans is greatest when compared to non-dog owners in most cases, though not all.