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Breast cancer patients with the same stage of disease can have
markedly different treatment responses and overall outcome. The
strongest predictors for metastases (for example, lymph node
status and histological grade) fail to classify accurately breast
tumours according to their clinical behaviour'™. Chemotherapy
or hormonal therapy reduces the risk of distant metastases by
approximately one-third; however, 70-80% of patients receiving
this treatment would have survived without it*’. None of the
signatures of breast cancer gene expression reported to date®'*
allow for patient-tailored therapy strategies. Here we used DNA
microarray analysis on primary breast tumours of 117 young
patients, and applied supervised classification to identify a gene
expression signature strongly predictive of a short interval to
distant metastases (‘poor prognosis’ signature) in patients with-
out tumour cells in local lymph nodes at diagnosis (lymph node
negative). In addition, we established a signature that identifies
tumours of BRCAI carriers. The poor prognosis signature con-
sists of genes regulating cell cycle, invasion, metastasis and
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angiogenesis. This gene expression profile will outperform all
currently used clinical parameters in predicting disease outcome.
Our findings provide a strategy to select patients who would
benefit from adjuvant therapy.

We selected 98 primary breast cancers: 34 from patients who
developed distant metastases within 5 years, 44 from patients who
continued to be disease-free after a period of at least 5 years, 18 from
patients with BRCAI germline mutations, and 2 from BRCA2
carriers. All ‘sporadic’ patients were lymph node negative, and
under 55 years of age at diagnosis. From each patient, 5 ng total
RNA was isolated from snap-frozen tumour material and used to
derive complementary RNA (cRNA). A reference cRNA pool was
made by pooling equal amounts of cRNA from each of the sporadic
carcinomas. Two hybridizations were carried out for each tumour
using a fluorescent dye reversal technique on microarrays contain-
ing approximately 25,000 human genes synthesized by inkjet
technology". Fluorescence intensities of scanned images were
quantified, normalized and corrected to yield the transcript abun-
dance of a gene as an intensity ratio with respect to that of the signal
of the reference pool'. Some 5,000 genes were significantly regu-
lated across the group of samples (that is, at least a twofold
difference and a P-value of less than 0.01 in more than five
tumours).

An unsupervised, hierarchical clustering algorithm allowed us to
cluster the 98 tumours on the basis of their similarities measured
over these approximately 5,000 significant genes. Similarly, the
~5,000 genes were clustered on the basis of their similarities
measured over the group of 98 tumours (Fig. 1a). In the dendro-
grams shown in Fig. 1a (left and top), the length and the subdivision
of the branches displays the relatedness of the breast tumours (left)
and the expression of the genes (top). Two distinct groups of
tumours are the dominant feature in this two-dimensional display
(top and bottom of plot, representing 62 and 36 tumours, respec-
tively), suggesting that the tumours can be divided into two types on
the basis of this set of ~5,000 significant genes. Notably, in the
upper group only 34% of the sporadic patients were from the group
who developed distant metastases within 5 years, whereas in the
lower group 70% of the sporadic patients had progressive disease
(Fig. 1b). Thus, using unsupervised clustering we can already, to
some extent, distinguish between ‘good prognosis’ and ‘poor prog-
nosis’ tumours.

To gain insight into the genes of the dominant expression
signatures, we associated them with histopathological data; for
example, oestrogen receptor (ER)-a expression as determined by
immunohistochemical (IHC) staining (Fig. 1b). Out of 39 IHC-
stained tumours negative for ER-a expression (ER negative), 34
clustered together in the bottom branch of the tumour dendrogram.
In the enlargement shown in Fig. lc, a group of downregulated
genes is represented containing both the ER-a gene (ESRI) and
genes that are apparently co-regulated with ER, some of which are
known ER target genes. A second dominant gene cluster is asso-
ciated with lymphocytic infiltrate and includes several genes
expressed primarily by B and T cells (Fig. 1d).

Sixteen out of eighteen tumours of BRCAI carriers are found in
the bottom branch intermingled with sporadic tumours. This is
consistent with the idea that most BRCAI mutant tumours are ER
negative and manifest a higher amount of lymphocytic infiltrate®.
The two tumours of BRCA2 carriers are part of the upper cluster of
tumours and do not show similarity with BRCAI tumours. Neither
high histological grade nor angioinvasion is a specific feature of
either of the clusters (Fig. 1b). We conclude that unsupervised
clustering detects two subgroups of breast cancers, which differ in
ER status and lymphocytic infiltration. A similar conclusion has
also been reported previously”'®,

The 78 sporadic lymph-node-negative patients were selected
specifically to search for a prognostic signature in their gene
expression profiles. Forty-four patients remained free of disease
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Figure 1 Unsupervised two-dimensional cluster analysis of 98 breast tumours. a, Two-
dimensional presentation of transcript ratios for 98 breast tumours. There were 4,968
significant genes across the group. Each row represents a tumour and each column a
single gene. As shown in the colour bar, red indicates upregulation, green
downregulation, black no change, and grey no data available. The yellow line marks the
subdivision into two dominant tumour clusters. b, Selected clinical data for the 98 patients
in a: BRCAT germline mutation carrier (or sporadic patient), ER expression, tumour grade
3 (versus grade 1 and 2), lymphocytic infiltrate, angioinvasion, and metastasis status.
White indicates positive, black negative and grey denotes tumours derived from BRCA1
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germline carriers who were excluded from the metastasis evaluation. The cluster below
the yellow line consists of 36 tumours, of which 34 are ER negative (total 39 ER-negative)
and 16 are carriers of the BRCAT mutation (total 18). ¢, Enlarged portion from a
containing a group of genes that co-regulate with the ER-a gene (ESR7). Each gene is
labelled by its gene name or accession number from GenBank. Contig ESTs ending with
RC are reverse-complementary of the named contig EST. d, Enlarged portion from a
containing a group of co-regulated genes that are the molecular reflection of extensive
lymphocytic infiltrate, and comprise a set of genes expressed in T and B cells. (Gene
annotation as in ¢.)
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after their initial diagnosis for an interval of at least 5 years (good
prognosis group, mean follow-up of 8.7 years), and 34 patients had
developed distant metastases within 5 years (poor prognosis group,
mean time to metastases 2.5 years) (Fig. 2a). To identify reliably
good and poor prognostic tumours, we used a powerful three-step
supervised classification method, similar to those used

25,000 genes on the microarray. The correlation coefficient of the
expression for each gene with disease outcome was calculated and
231 genes were found to be significantly associated with disease
outcome (correlation coefficient <-—0.3 or >0.3). In the second
step, these 231 genes were rank-ordered on the basis of the
magnitude of the correlation coefficient. Third, the number of
genes in the ‘prognosis classifier’ was optimized by sequentially
adding subsets of 5 genes from the top of this rank-ordered list and

previously>'”'®. In brief, approximately 5,000 genes (significantly
regulated in more than 3 tumours out of 78) were selected from the
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Figure 2 Supervised classification on prognosis signatures. a, Use of prognostic reporter
genes to identify optimally two types of disease outcome from 78 sporadic breast tumours
into a poor prognosis and good prognosis group (for patient data see Supplementary
Information Table S1). b, Expression data matrix of 70 prognostic marker genes from
tumours of 78 breast cancer patients (left panel). Each row represents a tumour and each
column a gene, whose name is labelled between b and ¢. Genes are ordered according to
their correlation coefficient with the two prognostic groups. Tumours are ordered by the
correlation to the average profile of the good prognosis group (middle panel). Solid line,
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prognostic classifier with optimal accuracy; dashed line, with optimized sensitivity. Above
the dashed line patients have a good prognosis signature, below the dashed line the
prognosis signature is poor. The metastasis status for each patient is shown in the right
panel: white indicates patients who developed distant metastases within 5 years after the
primary diagnosis; black indicates patients who continued to be disease-free for at least
5 years. ¢, Same as for b, but the expression data matrix is for tumours of 19 additional
breast cancer patients using the same 70 optimal prognostic marker genes. Thresholds in
the classifier (solid and dashed line) are the same as b. (See Fig. 1 for colour scheme.)
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evaluating its power for correct classification using the ‘leave-one-
out’ method for cross-validation (see Supplementary Information).
Classification was made on the basis of the correlations of the
expression profile of the ‘leave-one-out’ sample with the mean
expression levels of the remaining samples from the good and the
poor prognosis patients, respectively. The accuracy improved until
the optimal number of marker genes was reached (70 genes).

The expression pattern of the 70 genes in the 78 samples is shown
in the colour plot of Fig. 2b (left panel), where tumours were
ordered by rank according to their correlation coefficients with the
average good prognosis profile (Fig. 2b, middle panel). The classifier
predicted correctly the actual outcome of disease for 65 out of the 78
patients (83%), with respectively 5 poor prognosis and 8 good

letters to nature

prognosis patients assigned to the opposite category (Fig. 2b,
threshold ‘optimal accuracy), solid line). However, for the selection
of patients eligible for adjuvant systemic therapy, a lower number of
poor prognosis patients assigned to the good prognosis category
should be attained. For this purpose, we set a threshold that resulted
in misclassification of no more than 10% of the poor prognosis
patients (3 patients out of 34 of the poor prognosis group). This
optimized sensitivity threshold resulted in a total of 15 misclassi-
fications: 3 poor prognosis tumours were classified as good prog-
nosis, and 12 good prognosis tumours were classified as poor
prognosis (Fig. 2b, dashed line). We classified tumours having a
gene expression profile with a correlation coefficient above the
‘optimized sensitivity’ threshold (dashed line) as a good prognosis
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Figure 3 Supervised classification on ER and BRCAT signatures. a, Outline of a two-level
classification system: 98 breast tumours are first classified into an ER-positive group and
an ER-negative group, which is further divided into BRCA7 mutation and sporadic
tumours. b, Expression data matrix of the 98 sporadic tumours across 550 optimal ER
reporter genes. The contrasting patterns discriminate between tumours with an ER-
negative signature (below solid line) and an ER-positive signature (above solid line). The
reporter genes were ordered on the basis of their level of contribution to the classifiers.
Tumours are arranged according to the leave-one-out correlation coefficients to the
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average signatures of the classifier. The ER status, as determined by IHC and microarray,
are indicated in the two right panels. ¢, Expression data matrix of 38 ER-negative tumours
defined by the ER classifier over the 100 optimal BRCAT reporter genes. The degree of the
patterns divides the tumours in the ER-negative group into two subgroups: BRCA1-like
and sporadic-like. Patients above the solid line are characterized by a BRCAT signature.
The classification for each tumour was based on the leave-one-out procedure. The BRCAT
germline mutation status is indicated in the right panel (white indicates mutation). (See
Fig. 1 for colour scheme.)

533




letters to nature

signature, and below this threshold as a poor prognosis signature.
Even small primary tumours without lymph node metastases can
display the poor prognosis signature, indicating that they are
already programmed for this metastatic phenotype.

The functional annotation for the genes provides insight into the
underlying biological mechanism leading to rapid metastases.
Genes involved in cell cycle, invasion and metastasis, angiogenesis,
and signal transduction are significantly upregulated in the poor
prognosis signature (for example cyclin E2, MCM6, metalloprotei-
nases MMP9 and MPI, RAB6B, PK428, ESM1, and the VEGF
receptor FLT1; see Fig. 2b). If we evaluate all 231 prognostic reporter
genes, more genes belonging to these functional categories become
apparent (for example, RAD2I, cyclin B2, PCTAIRE, CDC25B,
CENPE, VEGE, PGK1, MAD2, CKS2, BUBI) (for a complete list,
see Supplementary Information Table S2).

Many clinical studies have correlated alterations in expression
of individual genes with breast cancer disease outcome, often
with contradictory results. Examples include cyclin D1, ER-a,
UPA, PAI-1, HER2/neu and c-myc"~*. Surprisingly, none of these
genes are present in our set of 70 marker genes. This could be due to
the fact that here we determine gene expression at the level of
transcription, whereas most previous studies measured protein
levels. However, it is more likely that these genes in isolation have
only limited predictive power, which highlights the need for an
approach based on many genes.

To validate the prognosis classifier, an additional independent set
of primary tumours from 19 young, lymph-node-negative breast
cancer patients was selected. This group consisted of 7 patients who
remained metastasis free for at least five years, and 12 patients who
developed distant metastases within five years. The disease outcome
was predicted by the 70-gene classifier and resulted in 2 out of 19
incorrect classifications using both the optimal accuracy threshold
(Fig. 2¢, solid line) and the optimized sensitivity threshold (Fig. 2c,
dashed line). Thus, the classifier showed a comparable performance
on the validation set of 19 independent sporadic tumours and
confirmed the predictive power and robustness of prognosis classi-
fication using the 70 optimal marker genes (Fisher’s exact test for
association P = 0.0018).

The prediction of the classifier presented in Fig. 2b would indicate
that women under 55 years of age who are diagnosed with lymph-
node-negative breast cancer that has a poor prognosis signature
have a 28-fold odds ratio (OR) (95% confidence interval, CI 7-107,
P = 1.0 x 10 to develop a distant metastasis within 5 years
compared with those that have the good prognosis signature (see
Methods for odds ratio definition). This estimate, however, is based
on the same series of patients that the classifier was derived from,
and therefore this odds ratio represents an upper limit. A perfor-
mance cross-validation procedure, in which the leave-one-out
sample is not involved in selecting the prognosis reporter genes
and the number of reporter genes is not optimized, results in an
odds ratio of 15 for a short interval to metastases (95% CI 4—56,
P = 4.1 x 10°°) (see Supplementary Information). This cross-
validated predictive value of our classifier is superior to the
currently available clinical and histopathological prognostic
factors: high grade (odds ratio, OR = 6.4 (95% CI 2.1-19), P =
0.0008), tumour size greater than 2 cm (OR = 4.4 (95% CI 1.7-11),
P =0.0028), angioinvasion (OR = 4.2 (95% CI 1.5-12), P = 0.01),
age =40 (OR = 3.7 (95% CI 1.3-11), P = 0.02), and ER negative
(OR = 2.4 (95% CI 0.9-6.6), P = 0.13). Furthermore, the evaluation
of the cross-validated classifier in a multivariate model that includes
all classical prognostic factors indicates that it is an independent
factor in predicting outcome of disease (logistic regression OR =18
(3.3-94), P-value of likelihood ratio test 1.4 x 107™*). Studying a large
and unselected cohort of breast cancer patients is required to provide
a more accurate estimate of the metastatic risk associated with the
prognosis signature.

Unsupervised cluster analysis distinguishes between ER-positive
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and ER-negative tumours (Fig. 1a). To investigate the expression
patterns associated with the immunohistochemical staining of ER
and to explore the differences between the sporadic and BRCA1
tumours that fall into the ER-negative cluster (Fig. 1a), a supervised
two-layer classification was performed (Fig. 3a). Figure 3b shows
that 550 genes optimally report the dominant pattern associated
with ER status, including genes such as keratin 18, BCL2, ERBB3
and ERBB4 (see Supplementary Information Table S3). The leave-
one-out analysis shows that only two ER-positive and three ER-
negative tumours (as determined by IHC) were classified in the
opposite gene expression group (95% correct classification, Fig. 3b,
middle panel). However, in all five discordant cases, the abundance
of ER messenger RNA measured by the microarray agrees with the
classification (Fig. 3b, right panel). An ER status reporter signature
was also determined by others using a similar classification
method®, and their ER signature gene set overlaps with ours (21
out of their 50 ER status reporter genes are present in our set of 550
ER reporters). Our observation in the unsupervised analysis that ER
clustering has predictive power for prognosis is also valid for the ER
supervised classification, although it does not reach the level of
significance of the prognosis classifier (ER signature prediction for
prognosis, OR = 3.7 (95% CI 1.3—11) P = 0.02; data not shown).

Figure 3c shows the leave-one-out classification of the 38 ER-
negative tumours into sporadic cases and BRCAI-associated cases
based on an optimal set of 100 genes. This set is enriched in
lymphocyte-specific genes (see Supplementary Information Table
S4). The classification into sporadic and BRCAI tumours was
caused mainly by the differences in levels of gene expression
(amplitude), in concordance with recent findings that BRCAI
mediates ligand-independent transcriptional repression of the
ER” (95% accuracy, 2/38 misclassified, Fig. 3c). The one sporadic
tumour that was classified as a BRCAI tumour was shown to
contain methylation of the BRCAI promoter, indicating an epige-
netic modification of BRCAI** (data not shown). Notably, the
discordant BRCAI tumour is from a patient where the germline
mutation has only altered the last 29 amino acids of the BRCAI
protein (BRCAI mutation 5,622del62), which abolishes transcrip-
tional activation by BRCAI*). One previous study defined a gene
expression signature associated with BRCAI germline mutations
using a panel of seven tumours®; however, the study was unable
to appreciate the overlap in signatures between the ER-negative
and BRCA1 tumours. Furthermore, the nine BRCAI status repor-
ter genes® were not present in our set of 100 optimal reporter
genes. The two-layer cluster analysis that we have used and the
larger number of tumours we analysed may account for these
differences.

Our results indicate that breast cancer prognosis can already be
derived from the gene expression profile of the primary tumour.
Recent consensus conferences on treatment of breast cancer in
Europe and the USA (St. Gallen’ and NIH consensus®) have
developed guidelines for the eligibility of adjuvant chemotherapy
based on histological and clinical characteristics. Following these

Table 1 Breast cancer patients eligible for adjuvant systemic therapy

Patient group
Consensus Total patient group Metastatic disease Disease free
(h=78) at5yr (n = 34) at 5yr (n = 44)
St Gallen 64/78 (82%) 33/34 (97%) 31/44 (70%)

)

40/44 (91%)

12/44 (27%)
(18/44 (41%)T)

NIH 72/78 (92%)
Prognosis profile* 43/78 (55%)

32/34 (94%)
31/34 (91%)

The conventional consensus criteria are: tumour =2 cm, ER negative, grade 2-3, patient <35yr
(either one of these criteria; St Gallen consensus); tumour >1cm (NIH consensus).

*Number of tumours having a poor prognosis signature using our microarray profile, defined by the
optimized sensitivity threshold in the 70-gene classifier (see Fig. 2b).

T Number of tumours with a poor prognosis signature in the group of disease-free patients, when
the cross-validated classifier is applied.
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guidelines, up to 90% of lymph-node-negative young breast cancer
patients are candidates for adjuvant systemic treatment. As 70—80%
of these patients would not have developed distant metastases
without adjuvant treatment, these patients may not benefit from
the treatment, and may potentially suffer from the side effects. We
applied the St Gallen and NIH consensus criteria on our patient
group to compare the efficacy of the microarray classifier for the
selection of patients for adjuvant systemic treatment. Table 1 shows
that the prognosis classifier selects just as effectively those high-risk
patients that would benefit from adjuvant therapy, but significantly
reduces the number of patients that receive unnecessary treatment.
Thus, the prognostic profile potentially provides a powerful tool to
tailor adjuvant systemic treatment that could greatly reduce the cost
of breast cancer treatment, both in terms of adverse side effects and
health care expenditure. Furthermore, the signature that defines ER
status can be used to decide on adjuvant hormonal therapy, and the
signature that reveals BRCAI status may further improve the
diagnosis of hereditary breast cancer. Finally, genes that are over-
expressed in tumours with a poor prognosis profile are potential
targets for the rational development of new cancer drugs. Identifi-
cation of such targets may improve the efficiency of developing
therapeutics for many tumour types. U

Methods
Breast tumour selection criteria

The criteria for the sporadic patients (n = 97) were: primary invasive breast carcinoma less
than 5cm (T1 or T2), no axillary metastases (N0), age at diagnosis less than 55 years,
calendar year of diagnosis 1983-1996, no previous malignancies; all patients were treated
by modified radical mastectomy (1 = 35) or breast-conserving treatment (n = 62),
including axillary lymph node dissection followed by radiotherapy. Five patients of the
metastases group received adjuvant systemic therapy consisting of chemotherapy (n = 3)
or hormonal therapy (n = 2), all other patients did not receive additional treatment. All
patients were followed at least annually for a period of at least 5 years. The criteria for
hereditary patients (n = 20) were: carriers of a germline mutation in BRCAI or BRCA2,
and primary invasive breast carcinoma; no other selection criterion was applied. This
study was approved by the Medical Ethical Committee of the Netherlands Cancer
Institute. For complete patient data, see Table S1 in Supplementary Information.

Clinical parameters of breast tumours

Tumour material was snap-frozen in liquid nitrogen within 1h after surgery. A haema-
toxylin and eosin stained section was prepared before and after cutting slides for RNA
isolation for assessment of the percentage of tumour cells. Only samples with greater than
50% tumour cells were selected, mean 67% and median 70% for all groups studied.
Formalin-fixed, paraffin-embedded tumour tissue was used to evaluate the following:
tumour type (according to the World Health Organisation classification), histological
grade (grade 1-3), and the presence of angioinvasive growth and extensive lymphocytic
infiltrate. ER expression was determined by immunohistochemical staining (negative
when less than 10% of the nuclei showed staining, all others ER positive).

RNA isolation

We used 30 sections of 30-pm thickness for total RNA isolation. Total RNA was isolated
with RNAzolB, and finally dissolved in RNase-free H,O. Twenty-five micrograms of total
RNA was treated with DNase using the Qiagen RNase-free DNase kit and RNeasy spin
columns. Total RNA treated with DNase was dissolved in RNase-free H,O to a final
concentration of 0.2 ug ™.

cRNA labelling

cRNA was generated by in vitro transcription using T7 RNA polymerase on 5 pug total RNA
and labelled with Cy3 or Cy5 (CyDye, Amersham Pharmacia Biotech)". Five micrograms
of Cy-labelled cRNA from one breast cancer tumour was mixed with the same amount of
reverse colour Cy-labelled product from a pool, which consisted of an equal amount of
cRNA from each individual sporadic patient.

Expression profiling using microarray

Labelled cRNAs were fragmented to an average size of approximately 50—100 nucleotides
by heating at 60 °C in the presence of 10 mM ZnCl,, added to a hybridization buffer
containing 1 M NaCl, 0.5% sodium sarcosine, 50 mM MES, pH 6.5, and formamide to a
final concentration of 30%, final volume 3 ml at 40 °C. Hu25K microarrays represented the
24,479 biological oligonucleotides plus 1,281 control probes. Sequences for microarrays
were selected from RefSeq (a collection of non-redundant mRNA sequences; http://
www.ncbi.nlm.nih.gov/LocusLink/refseq.html) and from expressed sequence tag (EST)
contigs (http://www.phrap.org/est_assembly/human/gene_number_methods.html). Each
mRNA or EST contig was represented on the Hu25K microarray by a single 60-polymer
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oligonucleotide chosen by the oligonucleotide probe design programme". After hybri-
dization, slides were washed and scanned using a confocal laser scanner (Agilent
Technologies). Fluorescence intensities on scanned images were quantified, corrected for
background noise and normalized". Microarray data are available at http://www.rii.com/
publications/default.htm.

Method of unsupervised two-dimensional clustering

In the two-dimensional cluster analysis, gene clustering and tumour clustering were
performed independently using an agglomerative hierarchical clustering algorithm. For
gene clustering, pairwise similarity metrics among genes are calculated on the basis of
expression ratio measurements across all tumours. Similarly, for tumour clustering,
pairwise similarity measures among tumours are calculated based on expression ratio
measurements across all significant genes (for details see Supplementary Information).

Method of supervised classification

We developed a method for classifying breast tumours into prognostic or diagnostic
categories based on gene expression profiles. This method includes the following three
steps: (1) selection of discriminating candidate genes by their correlation with the
category; (2) determination of the optimal set of reporter genes using a leave-one-out
cross validation procedure; (3) prognostic or diagnostic prediction based on the gene
expression of the optimal set of reporter genes (for details see Supplementary
Information).

Statistical analysis

The odds ratio is the ratio of the odds in favour of developing distant metastases within 5
years for a patient in this study with a tumour characterized by the poor prognosis
signature, to the odds in favour of developing metastases without this signature (2x2
table). P-values associated with odds ratios are calculated by Fisher’s exact test. In the
multivariate analysis a logistic model was applied with outcome of disease as the
dependent variable, and the P-value for the relevant parameter is derived from the
likelihood ratio test in the model (see Supplementary Information).
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Activation of naive CD4" T-helper cells results in the development
of at least two distinct effector populations, Th1 and Th2 cells' .
Th1 cells produce cytokines (interferon (IFN)-v, interleukin (IL)-
2, tumour-necrosis factor (TNF)-a and lymphotoxin) that are
commonly associated with cell-mediated immune responses
against intracellular pathogens, delayed-type hypersensitivity
reactions*, and induction of organ-specific autoimmune diseases’.
Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial
for control of extracellular helminthic infections and promote
atopic and allergic diseases*. Although much is known about the
functions of these two subsets of T-helper cells, there are few
known surface molecules that distinguish between them®. We
report here the identification and characterization of a transmem-
brane protein, Tim-3, which contains an immunoglobulin and a
mucin-like domain and is expressed on differentiated Thl cells.
In vivo administration of antibody to Tim-3 enhances the clinical
and pathological severity of experimental autoimmune encepha-
lomyelitis (EAE), a Thl-dependent autoimmune disease, and
increases the number and activation level of macrophages. Tim-3
may have an important role in the induction of autoimmune
diseases by regulating macrophage activation and/or function.

In addition to their distinct roles in disease, Th1 and Th2 cells
cross-regulate each other’s expansion and functions. Thus, prefer-
ential induction of Th2 cells inhibits autoimmune diseases”®, and
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Figure 1 Cloning of a Th1-specific cell surface protein, Tim-3. a, Th1, Th2, Tc1 and Tc2
cells were stained with monoclonal antibody to Tim-3 (solid line) or rat IgG isotype control
(dotted line). b, Deduced amino-acid sequence of murine and human Tim-3. Shading
indicates regions of homology. gV, variable region of immunoglobulin. ¢, CHO cells
transfected using either Tim-3 ¢cDNA (CHO mTim-3) or vector alone (CHO mock). Stable
puromycin-resistant cells were stained with monoclonal antibody to Tim-3 (solid line) or
rat IgG isotype control (dotted line). d, Total RNA from various cell lines and cells purified
from SJL mice was isolated and transcribed to cDNA by reverse transcription, and cDNA
was used for Tagman PCR. The figure shows expression of Tim-3 RNA relative to control
GAPDH expression.

predominant induction of Th1 cells can regulate induction of asthma,
atopy and allergies™"’. Several groups have reported the association
of chemokine and co-stimulatory receptors with Th1 (refs 11-14)
and Th2 (refs 12, 13, 15—18) cells; however, the nature of the
differences in expression of most of these molecules is quantitative.

To identify new Th1-specific cell surface proteins, we immunized
Lewis and Lou/M rats with Th1 T-cell clones and lines, including the
established Th1-specific clone AE7 and in vitro differentiated Thl
cell lines derived from 5B6 (ref. 19) and DO11.10 T-cell receptor
(TCR) transgenic mice. A panel of approximately 20,000 mono-
clonal antibodies was generated and screened on Th1 and Th2 cells.
Two of the monoclonal antibodies (8B.2C12 and 25F.1D6) that
selectively stained Thl cells were further characterized. These
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