Institute for Systems Biology Protocol Direct Incorporation of Cy3/Cy5 During Reverse Transcription Written by Anne Rosenwald and Todd Eckdahl; August 2003)

Materials Needed:

Isolated and quantitated total RNA samples

Microarray slides (70-mer plus-strand oligomers)

RNase-free water

oligo dT primer (16- to 18-mer) at 1 □g/ul

Coverslips, 22 x 40mm size from Corning

100 mM DTT (dithiothreitol)

low dTTP dNTP mix (10 mM each dATP, DCTP, dGTP, 1 mM dTTP)

Cy3-dUTP and Cy5-dUTP (1 mM each [separately])

3 M Ammonium Acetate, pH 5.2

100% Ethanol, 70% Ethanol

Superscript II Reverse Transcriptase, 5X first strand buffer

RNase A (4 mg/ml)

RNase H (2 unit/ \square 1)

Reverse Transcription and Cy-dye Incorporation

- 1. In duplicate, aliquot 50 g total RNA (one for each treatment)
 - a. already checked with denaturing agarose gel
 - b. quantitated with UV spectrophotometer
 - c. precipitated (eg. 1/10 volume 3M NaOAc pH 5.2, 2 volumes EtOH)
- 2. To each tube, add 2.5 □g oligo dT
- 3. Adjust volume to 11 Π with DEPC-treated H₂O
- 4. Heat to 75°C for 10 min
- 5. Cool slowly to room temperature and spin down (Note: keep at RT from this point on)
- 6. Add the following in order:
 - a. 4 □l Superscript first strand 5X buffer
 - b. 2 ∏l DTT (100 mM)
 - c. 1 \prod dNTPs (10 mM each dATP, dCTP, cGTP and 1 mM dTTP)
 - d. 1 []l Cy-dye labeled dUTP (1 mM) (One gets Cy-3 dUTP and one gets Cy-5 dUTP)
 - e. 1 🗍 Superscript Reverse Transcriptase II (200 units/ ul; make sure this is Exonuclease-free)
- 7. Mix gently and incubate at room temperature for 10 min
- 8. Incubate at 42°C for 2-3 hours (no more than ~5 hours; do not do this step overnight)
- 9. Heat sample to 95°C for 2 min
- 10. Place samples on ice, spin down (can store at -20° C at this point if necessary)

Degrade RNA

- 1. Make sure contents of tubes are spun down
- 2. Add 0.5 \square l of RNase A (4 mg/ml) at room temperature (Promega)
- 3. Add 0.5 [l of RNase H (2 U/[l]) (Fermentas) (Note: Not clear if really necessary to use both enzymes; the RNase H is fairly expensive)
- 4. Incubate at 37°C for 15-30 min

(Alternative RNA Degradation)

- 1. Add 3.5 □l 0.5 M NaOH/50 mM EDTA, then
- 2. Heat at 65 C, 10 minutes
- 3. Add 5 □ 1 1 M Tris 7.5

Purification (Using Qiagen PCR CleanUp Kit)

- 1. Add 25 □l high-quality H₂O to samples (add only 17.5 ul if alternative RNA degradation was done)
- 2. Add 2.7 [] 1 3 M Sodium Acetate, pH 5.2
- 3. Add 250 ∏l QIAquick buffer PB
- 4. Apply each sample to a QIAquick column (the DNA should stick to the column here)
- 5. Centrifuge for 30 sec at full speed
- 6. Take the column flow-through and replace back onto the top of the column and spin a 2nd time
- 7. Place the flow-through back in the original tube and save in case of problems with the purification.
- 8. Wash with 400 [I QIAquick buffer PE, spin 30 sec at full speed and discard flow-through (your DNA remains on the column)
- 9. Repeat step 8, discarding flow-through
- 10. Spin the column briefly once more to get rid of remainder of wash solution
- 11. Place column in a clean, well-labeled 1.5 ml elution tube
- 12. Apply 30 ∏l buffer EB to center of column without touching the membrane
- 13. Wait one min, then centrifuge 1 min at full speed (gradually increase from 0 to full speed to avoid shearing off the eppendorf tube lids). Your DNA is in the flow-through this time!
- 14. Again apply 30 □l buffer EB to center of column without touching the membrane. DNA should be in a volume of 60 □l.

Determining the incorporation of labeled nucleotides

- 1. Use a 384-well spec plate (if available) so that small volumes can be used
- 2. Use undiluted labeled sample and buffer as the blank (~40 □l of each). Read absorbances at 260 nm, 280 nm, 550 nm for Cy3 and 650 for Cy5.
- 3. Calculations:

- a. Extinction coefficients are 150,000 for Cy3 and 250,000 for Cy5
- b. Purity: Corrected A260/A280 (want this to be \sim 1.8)
- c. Pmol dye/ \Box l of sample = A(dye)/(extinction coefficient *10⁶)
- d. $dsDNA = 50 \square g/ml$
- e. $ssDNA = 33 \square g/ml$
- f. $ssRNA = 40 \square g/ml$

Example:

Total dsDNA (\square g) = 50 \square g/ml * 1 ml/ 1000 \square l * A260 * Volume (\square l) * DF

4. If labeling efficiencies are fairly close for each dye and the nucleic acid yield is also similar, then about 30 pmol of dye of the sample per hybridization is a good starting point to product good intensity on most arrays. It is better to control the amounts of starting RNA/cells and have a good internal control and normalization scheme to deal with incorporation discrepancies.

Institute for Systems Biology Direct Incorporation of Cy3/Cy5 During Reverse Transcription

Cost Analysis

Reagent	Supplier	Startup Cost	Number of To Label Expts	wo Cost per Two Label Expt
oligo dT	Operon	\$75 for 100 ug	20	\$3.75
Superscript II	Invitrogen Life Technolo	\$220 for 10,000 units gies	25	\$8.80
Cy3–dUTP Cy5-dUTP	Amersham Biosciences	25 nmoles for \$295 25 nmoles for \$304	25 25	\$11.80 \$12.16
Rnase A	Promega	\$212 - 1 ml, 4 mg/ml	1000	\$0.22
Rnase H	Promega	\$146 for 50 units	25	\$5.84
QIAquick	Qiagen	50 columns for \$76	25	\$3.04
Totals		\$1328 for 25 Experi	ments	\$45.61 per Expt