Laboratory Safety

General Safety Rules

- Work in a laboratory only during regular, assigned period when an instructor is present, unless specific authorization has been given by the instructor to work in the laboratory at other times.

- Read carefully and observe fully all laboratory instructions. In case there is any doubt about any procedure, check with your instructor.

- Learn the location and proper use of emergency showers, fire extinguishers, and eye wash stations.

- Avoid inhaling chemical vapors or gases. Use fume hoods for hazardous materials.

- Immediately wash off and chemicals spilled on the skin with lots of water. In case of a serious spill, remove contaminated clothing immediately and flush affected area with lots of water.

- Do not eat, smoke, or drink in the laboratory. Do not bring any food items into the laboratory.

- Do not leave experiments in progress unattended without authorization.

- Keep working areas neat and clean at all times.

- Report all accidents to the instructor immediately.

Personal Protective Equipment

- All persons working with hazardous chemicals should wear gloves.

- All persons working with chemicals that could be splashed in the eyes are required to wear safety goggles or glasses.

- Contact lenses should not be worn in lab when hazardous chemicals or vapors are being used.

- Because of the danger of broken glassware or spilled chemicals, covered shoes should be worn in the laboratory. (No type of open toe shoes are permitted in labs.)

Chemical Safety

- Almost every chemical, whether solid, liquid or gaseous, is poisonous to the human body to some degree. Always use proper caution when handling chemicals.

- Consult a physician if you are pregnant or have any other medical condition which might render you susceptible to exposure to the chemicals used in this laboratory.
• When handling chemicals, keep your hands away from your face, eyes and body until your hands have been washed thoroughly.

• Do not taste any chemical. Label every container so items can be identified.

• When diluting acids, ALWAYS POUR ACID INTO WATER SLOWLY.

• Do not pipet anything into the mouth.

Waste Disposal

• Always treat laboratory glassware as if it were fragile. If glassware breaks, do not pick broken glass up with your hands. Use a broom and dustpan, then place pieces in the cardboard box labeled “Glass Disposal Box.”

• Do not pour any chemicals down the drain. The instructor will advise you to proper waste containers.

• Discarded animals parts must be placed in a red cardboard “Biohazardous Waste” box.

• Discarded sharp items including: scalpels, dissecting pins, probes, and needles must be placed in a red, plastic “Sharps Box.”

Safety Agreement

Biology 111 – Fall 2004

I have read the Lab Safety Rules and procedures for the prevention of injuries in the laboratory, and I will observe them in my lab work.

INSTRUCTOR’S NAME (CIRCLE ONE): HALES LOM WEBSTER

STUDENT’S NAME (PRINT)

STUDENT’S SIGNATURE

DATE

Detach the bottom portion and return signed copy to your instructor at the start of the first lab.
How to Use a Micropipettor

Micropipettors (a.k.a. Pipetmen) are used to measure and transfer small amounts of liquids (≤ 1 ml). You will find them in almost every biology laboratory in the world. They are expensive instruments (~$250/each) that must be shared by many scientists, thus it is imperative that you treat our micropipettors as delicate and calibrated instruments. The scales on micropipettors are in microliters (1000 µl = 1 ml). In this course you will use four different types of micropipettors. Their properties are summarized in the table below.

<table>
<thead>
<tr>
<th>Name</th>
<th>P20</th>
<th>P200</th>
<th>P1000</th>
<th>Multichannel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip color</td>
<td>yellow</td>
<td>yellow</td>
<td>blue</td>
<td>yellow</td>
</tr>
<tr>
<td>Minimum Volume</td>
<td>1 µl</td>
<td>20 µl</td>
<td>200 µl</td>
<td>5 µl</td>
</tr>
<tr>
<td>Maximum Volume</td>
<td>20 µl</td>
<td>200 µl</td>
<td>1000 µl</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

A few important directions for the operation of any micropipettor:

1. Know the limits of your micropipettor (and don’t exceed those limits) of these pipettors. If you go above or below the minimum or maximum volume for a given pipettor, you will jeopardize the instrument’s calibration. (Note: just because you can dial 210 on a P200, doesn’t mean that you should!)

2. Set the desired volume by turning the centrally located rings clockwise to increase volume or counterclockwise to decrease volume.

3. Place a disposable plastic tip on the discharge end of the pipettor. NOTE: If sterile conditions are necessary, do not allow the yellow or blue plastic pipet tip to touch any object.
4. **The plunger will stop at two different positions when it is depressed.** The first of these stopping points is the point of initial resistance and is the level of depression that will result in the desired volume of solution being transferred. Because this first stopping point is dependent on the volume that is being transferred, the distance you have to push the plunger to reach the point of initial resistance will change depending on the volume being pipetted. The second stopping point can be found when the plunger is depressed beyond the initial resistance until it is in contact with the body of the pipettor. At this point, the plunger cannot be depressed further. This second stopping point is used for the complete discharging of solutions from the plastic tip. You should not reach this second stop when drawing liquid into the pipettor, only when expelling the last drop. Before continuing, practice depressing the plunger to each of these stopping points until you can easily distinguish between these points.

5. **Depress the plunger until you feel the initial resistance (first stop) and insert tip into your solution, just barely below the surface of the liquid and not as deep as possible.** The wide (top) portion of the disposable pipette tip should never be underwater. Only the disposable pipette tip should touch the liquid; the pipettor should never touch any of the liquids. You should never rest the pipette tip on the bottom of the container (even if you have a shallow volume of liquid) because this could lead to inaccurate measurements.

6. **Carefully and slowly release plunger.** If you release the plunger too quickly, it will suck liquid up into the pipettor and damage it. NOTE: If the solution you are pipetting is viscous, allow the pipet tip to fill to final volume before removing it from solution to avoid the presence of bubbles in the plastic tip which will result in an inaccurate volume.

7. **Discharge the solution into the appropriate container by depressing plunger.** This time, depress the plunger to the point of initial resistance, wait one second, and then continue pressing the plunger as far as it will go in order to discharge the entire volume of solution.

8. **Discard the tip by pressing down on the tip discarer over a waste container.**

9. **Always change tips between solutions.** You do not want to contaminate or mix your solutions with a dirty pipet tip.
Introduction to Spectrophotometry

Focused Reading: p 147-149 “The interactions of light…” to “Photosynthesis uses…”

Special Note: Bring a calculator to this lab

Introduction

The purposes of this laboratory are to introduce you to:

1. Conventions used in making solutions: molarity, and per cent.
2. Spectrophotometry and the use of the microplate reader.
3. Procedures for obtaining, recording, and analyzing data.
4. Conventions used in presenting data in graphs.
5. Procedures for planning and working through a series of related experiments.

Note: Your instructor recommends that you record all your data, answers to questions and problems, and notes directly in this lab manual. Keep the lab manual beside you and write in it as you work. Good notetaking skills are critical to successful scientific experiments.

Concentrations of solutions

It is important that you understand the units of the metric system (i.e. milli and micro). If you do not, please review these units of measurement as well as the Celsius (centigrade) temperature scale.

In the instructions below, the solute is the substance dissolved, the solvent is the liquid in which the solute is dissolved, and the resulting mixture is the solution.

Molar Concentrations

In technical terms, a mole of a compound is \(6.02 \times 10^{23}\) molecules of that compound. Practically speaking, a mole is the compound's molecular weight in grams. A one molar (1.0 M) solution has one mole of a compound (the solute) dissolved in solvent so that the final volume is 1000 ml (one liter). The molecular weight of NaCl is 58.54. Therefore:

- A 1.0 M solution of NaCl has 58.54 g NaCl dissolved in dH\(_2\)O with a final volume of 1000 ml (or 5.85 g in 100 ml).
- A 0.1 M solution of NaCl has 5.85 g in 1 liter - or 0.585 g in 100 ml - or 0.058 g in 10 ml.
- A 0.2 M solution of NaCl has 11.71 g in 1 liter - or 1.17 g in 100 ml - or 0.117 g in 10 ml.

Concentration in Percent (Weight/Volume = w/v)

By definition, percent means "in a hundred" and by convention, a 10% w/v solution contains 10 grams of a solute in a total volume of 100 ml of the solution. A w/v solution is not made by adding 10 grams of a solute to 100 ml of solvent, but instead by dissolving 10 grams solute in enough solvent to dissolve the solid and then more solvent is added to reach a total volume of 100 ml of the solution. Note the differences in results as you think through the following mental exercise.

Experiment 1: Evaluating a w/v solution

Experiment 1 is a demonstration experiment for you to observe and think about.

1. Locate the graduated cylinder with a NaCl solution in it. Before lab your instructor mixed 5 grams (g) of sodium chloride (NaCl) with exactly 50 ml of distilled water (dH\(_2\)O) and the solution was stirred vigorously to dissolve the salt.
2. Determine the excess volume by reading the volume of the graduated cylinder. This solution represents a failed attempt to make a 10% w/v solution. The number of ml in excess of 50 represents the volume of liquid displaced by the 5 g of dissolved NaCl.

3. What is the actual percentage of NaCl (w/v) in this solution?

Concentrations in Percent (Volume/Volume = v/v)

Aqueous solutes may be specified as percent solutions volume/volume (v/v). One hundred ml of a 5% v/v solution will have 5 ml solute diluted to 100 ml with solvent. Thus, a 5% v/v aqueous solution of ethanol is made by diluting 5 ml 100% ethanol with enough dH2O (95 ml) to make a total of 100 ml (or by diluting 5 liters 100% ethanol with 95 liters dH2O).

Experiment 2: Making a v/v solution of neutral red

On the front bench is a stock solution (1.0 M) of a dye, neutral red. Make 2 ml of a 4% v/v solution from this neutral red stock using dH2O. Label your tube and save this solution; you will use it later today.

Spectrophotometry

A solution, such as neutral red, appears colored because it absorbs certain wavelengths of light in the visible spectrum and transmits or reflects others. Each solution with a different solute has its own characteristic absorption properties or "spectrum." A spectrophotometer is an optical machine that measures and lets you see (sense) how much light energy is transmitted by a substance in solution at different wavelengths of radiant energy. Biologists use the spectrophotometer for two different purposes (we will do both in the laboratory today):

1. to determine the absorption spectrum of a pure substance in solution
2. to determine the concentration of a solution.

A spectrophotometer consists of a white light source (light of all visible wavelengths), a prism or diffraction grating that separates the light into different wavelengths, a slit through which a narrow beam of the desired wavelength (λ) passes (the incident light, I₀), a sample solution holder, a photosensitive detector that measures the energy of light transmitted through the solution (I), and a recording device that displays the amount of transmitted light energy digitally or on a dial. See Fig. 1 below.

Figure 1. A schematic diagram of the components of a spectrophotometer. The arrows indicate the pathway of light.

Transmittance is the ratio of the transmitted light energy (I) to the incident light energy (I₀); percent transmittance is 100X that ratio. Transmittance, however, is not proportional to solute concentration, so it is usually converted into absorbance that is proportional to solute.
concentration. Digital spectrophotometers have readouts for both percent transmittance and absorbance, but we will always measure the absorbance.

\[
\%T = \left(\frac{I}{I_0} \right) \times 100 \quad \text{Abs.} = \log_{10} \left(\frac{100}{\%T} \right)
\]

Microplate Reader

Figure 1 is a simplified diagram of a spectrophotometer that can measure one sample at a time. In our experiments, we will be using a microplate reader that is capable of measuring the absorbance of 96 samples in about eight seconds. The basic design is exactly the same; a selected wavelength of light passes through the samples and a phototube measures the amount of light transmitted through the sample, which the plate reader converts to absorbance. However, the samples are located in microwells that are arranged in an 8 x 12 matrix in one plastic plate (see figure 2). You can put your samples in any or all of the microwells. The plate is moved over an array of eight fiber optics light sources and eight phototubes. Each row of eight is scanned and then the plate advances by one row and the process continues until all 12 rows are scanned. The absorbance data then are displayed on a screen in an 8 x 12 array. These data can be saved in the memory to be printed later. This technology is based on the same principles as older spectrophotometers, but now we can measure more samples in less time. You also can program the plate reader to measure the absorbance of all 96 samples at time intervals of your choice (e.g. every 30 seconds). You should take advantage of these capabilities when you design your experiments for next week.

Figure 2. Schematic diagram of a microplate reader. Samples are placed in the 96 microwells, analyzed by the eight channel spectrophotometer, and the absorbance data are displayed in the large LED window.

The Absorption Spectrum

Because solutions of pure substances do not absorb the energy of all wavelengths of light equally, a substance may be identified by the unique pattern of wavelengths absorbed. The chlorophylls in plants absorb strongly in the blue wavelengths (about 450 nm) and red wavelengths (about 650 nm), but reflect the green wavelengths (about 525 nm). A plot of absorbance versus visible wave lengths (400 to 700 nm) for a solution of chlorophyll a shows two major peaks, one at 450 and one at 650 nm, and a valley from 500 to 625 nm (See Figure 3). This spectrum is characteristic for chlorophyll a and may be used as an aid in its identification.

By measuring the absorbance of an uncharacterized solution over a range of wavelengths and plotting the absorbance value on the Y-axis and the wavelength on the X-axis, one can
determine the absorption spectrum of a sample. The absorption maximum of any pure substance in solution is the wavelength where absorption is the greatest.

![Absorption Spectrum](image)

Figure 3. The absorption spectrum of chlorophyll a. The absorbance of visible light by chlorophyll a is measured spectrophotometrically as a function of wavelength. The absorption maximum is about 460 nm. Compare with figure 8.6a on page 149 of your textbook.

How to Use a Spectrophotometer to Answer Biological Questions

Standard Concentration Curve and Determining the Concentration of a Characterized Substance

One can construct a standard concentration curve of a solution by measuring the absorbance of several different known concentrations of the solution and graphing the results by plotting absorbance on the Y-axis and concentration on the X-axis. Spectrophotometry can be used to measure the absolute or relative concentration of a characterized substance in solution. To determine the absolute concentration of a pure substance, one first constructs a standard concentration curve from known concentrations and then takes the absorbance reading of the unknown concentration. The unknown concentration can be determined from the standard curve by drawing a horizontal line on the graph parallel to the X-axis and through the point on the Y-axis that corresponds to the absorbance. This line will intersect the standard curve; at this intersection, a vertical line is dropped to the X-axis and the concentration read from the X-axis.

Two factors are important in determining unknown or relative concentrations. The absorption maximum should be used, and absorbance rather than percent transmittance should be plotted because absorbance is directly proportional to concentration and transmittance is not.
Experiment 3: Diluting solutions

Using the 4% (v/v) neutral red solution you prepared in experiment #2, set up the following solutions in plastic microfuge tubes using distilled water available on the lab benches.

Volumes of neutral red and distilled water used to prepare solutions for tubes 1 - 8. You must calculate the volumes and fill in the table for the first two columns before you begin the experiment. NOTE: Each tube should contain a final volume of 500 µl.

<table>
<thead>
<tr>
<th>Tube #</th>
<th>µl of distilled water</th>
<th>µl of 4% neutral red solution</th>
<th>% of neutral red solution in tube</th>
<th>concentration of neutral red solution (µg/µl)</th>
<th>concentration of neutral red solution (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>500</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete these columns when answering question #6 at the end of lab

Experiment 4: Determination of absorption maximum

Put 200 µl of the eight different dilutions of neutral red into six different wells of your 96-well plate. You will collect the data for experiments 4 and 5 at the same time (see below).

Experiment 5: Generating a neutral red standard concentration curve

You will generate these data at the same time as those from Experiment 4. Use only the data from the wavelength that is the absorption maximum for neutral red. With the appropriate data, you will generate a curve to measure the unknown concentration of a solution. Follow the directions on the next page to collect the data.
Operation of the Microplate Reader
1. Turn on the spectrophotometer and let it warm up for 15 minutes.

There are two main variables that you must pay attention to while you use the plate reader: the ANALYSIS NUMBER and the FORMAT NUMBER. Format is easy because we will always use format #1, which simply means that all of the wells are to be analyzed for absorbance. Analysis is the list of options you want to use when performing your spectrophotometric analysis of your samples. Specifically, you tell the machine which wavelength of light to use, to calculate the absorbance, to use a single wavelength of light, and to make only one reading for each time you press the START key. Today, we will use ANALYSIS NUMBERS 1-6.

2. Before you collect any data, clear the memory of the plate reader. To do this:
 press FUNCTION, CLEAR ALL; when it asks you if this is OK?, press FUNCTION, CLEAR.

3. Start the reading of your samples by using all six wavelengths of light that the plate reader can use. At the end of each reading, you will get a printout of your absorbance data. When you have finished all six, tear off your paper, clean up any mess you created and remove your 96-well plate. To execute the analysis with all six wavelengths (1 = 340; 2 = 405; 3 = 450; 4 = 490; 5 = 595; and 6 = 655 nm):
 a. press ANALYSIS, 1, ENTER, START. When the reading is complete,
 b. press ANALYSIS, 2, ENTER, START. When the reading is complete,
 c. press ANALYSIS, 3, ENTER, START. When the reading is complete,
 d. press ANALYSIS, 4, ENTER, START. When the reading is complete,
 e. press ANALYSIS, 5, ENTER, START. When the reading is complete,
 f. press ANALYSIS, 6, ENTER, START. When the reading is complete,
 g. remove your paper printouts, remove your plate and clean up any mess.

Analysis of the Data for Experiments 4 and 5
Experiment 4:
Now that you have several pages of data, what do you do next? Follow the order of the experiments, beginning with number 4; determine the absorption maximum for neutral red. Find the wavelength that produced the highest absorbance values. This wavelength is the absorption maximum for neutral red and all subsequent experiments should use only the data generated with this wavelength of light. To generate an abbreviated absorption spectrum, plot the absorbance for tube number 3 in a graph with the Y-axis as the absorbance value and the X-axis as the wavelength of light. This graph will be graph number 1.

Experiment 5:
Using the absorbance data that were generated with the absorption maximum, subtract the absorbance of the blank from the values for the samples. This subtraction corrects for the amount of light absorbed by the plastic and the water. Now, construct a graph with the X-axis as per cent neutral red (increasing from left to right), and the Y-axis as absorbance at your selected absorbance maximum (e.g. Abs_{666nm}) using your adjusted absorbance values. Plot the results from tubes 1 through 6 and draw a straight line (best fit) to generate the standard concentration curve. This graph will be graph number 2.
After completing these analyses and generating two graphs, continue with experiment number 6 below.

Experiment 6: Using your standard curve to determine concentrations

Obtain four neutral red solutions of unknown concentration from your instructor and record the identifying letter in your lab manual. Determine the concentration of your unknowns by putting 200 µl of it in a well, and record the well’s identifying letter and number (e.g. H3 - H6). Use the plate reader at the wavelength of light that is absorbed the best by neutral red. Subtract the absorbance of water (the blank) from these values and use these corrected values to determine the concentrations of the four unknowns.

Analysis of the Data for Experiment 6

Using the standard curve (graph number 2), determine the concentration of your unknown dilutions of neutral red. For each unknown, the unknown concentration can be determined from the standard curve by drawing a horizontal line on the graph parallel to the X-axis and through the point on the Y-axis corresponding to the absorbance (after subtraction) for the unknown. This line will intersect the standard curve; at this intersection, a vertical line is dropped to the X-axis and the concentration read from the X-axis.

Experiment 7: Determining the absorption maximum for NADPH and NADP⁺

Over the next two weeks, we will use NADPH and NADP⁺, and we need to know which wavelength of light to use. You will want to perform a series of experiments similar to experiments four and five. Record which wavelength is absorbed the best and verify your results with the instructor.

Experiment 8: Cleaning Up

Leave your workstation cleaner than you found it. Although this step may seem obvious, it is quite important. It is basic laboratory courtesy to leave the workspace as clean as you found it with equipment back in its proper place(s).

Study Questions (to answer on your own time):

1. How do you account for the excess volume you observed in Experiment 1?
2. The solution made in experiment 1 does not constitute a 10% w/v solution of sodium chloride but something less than that. Calculate the actual percentage from your data.
3. Why do you have to dissolve the solute in a volume of solvent less than the final volume you eventually want? Does it matter if the salt is added first or second to the graduated cylinder?
4. Describe precisely how you made up the 4% v/v solution of neutral red.
5. In Experiment 1, does it matter whether the proper volume of solute is added first or second (relative to the water) to the graduated cylinder?
6. The aqueous stock solution of neutral red is a 1.0 M solution. Determine the molar concentration of the six solutions you made. If neutral red has a molecular weight of 87,
how many µg/µl are contained in your 4% (v/v) solution? Calculate the concentration of neutral red in each tube (µg/µl) and add these data to the table from experiment 3.

7. Describe how to prepare 50 ml of 70% ethanol when your only source is a stock container of 95% ethanol.

8. What is the molarity of your 10% w/v NaCl solution?

9. What is the percent concentration of a 2 M NaCl solution?

10. The molecular weight of Na₂CO₃ is 106. Describe how you would make up 100 ml of a 0.15 M solution.

11. What is the absorption maximum for NADPH?
Lab Notes
Measuring Enzyme Activity with Spectrophotometry

Focused Reading: p 113–116 start at “Enzymes: Biological Catalysts”
 p 127 Fig. 7.4

Special Note: Bring a calculator to this lab

Goals of this exercise:
With this session, we begin a three-week study and discussion of some of the properties of NADP+-dependent IDH. The goals of these laboratory sessions are:
1. Learn spectrophotometric analyses of enzyme activity
2. Determine how the amount of enzyme in the assay affects the rate of activity.
3. Determine how substrate amount in the assay mixture affects enzyme activity rates
4. Determine the effects of environmental conditions on enzyme activity
5. Learn how to organize our data into tabular and graphic form

I. Introduction
Enzymes are biological catalysts with remarkable power, increasing reaction rates by at least a million-fold. They increase reaction rates by lowering activation energies, allowing chemical reactions to proceed under physiological conditions. Enzymes are highly specific as to substrates and reactions catalyzed. They are usually proteins, although some enzymes are other types of biological molecules. Enzymes function best in dilute aqueous solutions under limited conditions of temperature, pH, and salt concentration. Some enzymes require one or more non-protein components called “coenzymes” and “cofactors”; a coenzyme is an organic molecule, while a cofactor may be a metal ion. Some enzymes simultaneously require both a cofactor and a coenzyme. Isocitrate dehydrogenase [IDH] is one of these enzymes, requiring both NADP+ as a coenzyme and Mg2+ or Mn2+ as a divalent metal cofactor,

IDH is a ubiquitous enzyme found in all living organisms and has two catalytic activities (Figure 1). As its name implies, IDH removes hydrogens from its substrate, isocitrate. In addition, it is a decarboxylase, removing a CO2 from the six-carbon substrate to generate a five-carbon product, α-ketoglutarate.

![Figure 1. IDH catalyzes the sequential dehydrogenation and decarboxylation of isocitrate to α-ketoglutarate.](image)

Note that IDH catalyzes two sequential reactions to convert isocitrate into α-ketoglutarate.
Two distinct forms of IDH are found in higher organisms. They differ in their distribution within the cell and in their coenzyme requirements. The soluble form of IDH requires NADP⁺ as its coenzyme (Figure 2). This NADP⁺-dependent form of IDH is considered to be the only IDH in bacteria and is the most prevalent form of IDH in most plants and animals. In higher organisms, this form of IDH appears to be found in all organs and tissues. This form of IDH is used in lipid synthesis. The NAD⁺-dependent form of IDH is limited to eukaryotic organisms and is localized in mitochondria. You may be familiar with this form of IDH from previous study of the Krebs cycle. Both forms of IDH require a divalent metal ion.

![Figure 2. The molecular structure of NADP⁺. The active site is where the hydrogen atom will be added to convert NADP⁺ to NADPH. This diagram illustrates what the letters N-A-D-P represent.](image)

Protocols

IDH activity routinely is measured using a spectrophotometer to monitor the reduction of NADP⁺ to NADPH. While performing assays, the spectrophotometer is set at 340 nm, the absorption maximum of NADPH (and results from last week’s lab). Assays are performed at a standard temperature, usually 25°C to 30°C.

Before a scientist begins an experiment, he or she must first define a problem and suggest possible explanations based upon previous knowledge or observations. In other words, develop

NEWS ITEMS: A team of researchers found a species of voles that was resistant to mutations caused by radiation. When they analyzed their cells, they found that the voles had elevated levels of IDH, which they believe is protecting them from radiation-induced mutations. (Science 273)

NADP⁺-dependent IDH activity is especially high in cardiac tissue and is often monitored in the blood of heart attack patients. Detectable IDH activity in the arterial blood suggests severe tissue damage with leakage of the soluble (cytosolic) IDH into the blood system.
an hypothesis, which might be considered an “educated guess” or a tentative explanation as to the cause and effects relating to that problem. A good hypothesis is one that is testable and fosters predictions that consider one variable at a time. The hypothesis may turn out to be incorrect, but it is a good hypothesis if it can be tested. In fact, an hypothesis that cannot be tested is useless to science - it may be good philosophy, but not good science. Hypotheses can not be proven to be correct - they may be tested extensively and rigorously and they may be proven to be incorrect, but an hypothesis can never be proven to be true.

A scientist must first define a problem and then develop an hypothesis. Next, one must devise predictions that will hold, or will not hold, if the hypothesis were true. These predictions lead to experiments. Many experiments may be possible, and all may be tried eventually; however, it is important to perform one discrete experiment at a time. After designing an experiment, our scientist must outline a series of logical procedures to be completed in the laboratory or in the field. This written sequence of steps is called a protocol. A well-planned protocol will include the following elements:

1. An outline of the sequence of detailed procedures.
2. Calculations of volumes, concentrations, etc., of all reagents to be used.
3. Tables constructed for recording data.
4. Procedures for testing and organizing data for presentation

Experiment 1: How to perform IDH assay

Hypothesis 1: A successful assay for IDH activity simultaneously requires the enzyme (IDH), the substrate (isocitrate), and the cofactor (NADP⁺).

Hypothesis 2: Under ideal conditions, IDH activity will be linear for at least three minutes.

To test your hypotheses, you will need to set up assays as in Table 1. You should ask yourself “What is the purpose of each assay?” You also should ask why assays are done in triplicate.

<table>
<thead>
<tr>
<th>Well</th>
<th>µl of Buffer</th>
<th>µl of NADP⁺</th>
<th>µl of IDH</th>
<th>µl of Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A 2</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A 3</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B 1</td>
<td>180</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>B 2</td>
<td>180</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>B 3</td>
<td>180</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>C 1</td>
<td>180</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>C 2</td>
<td>180</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>C 3</td>
<td>180</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>D 1</td>
<td>180</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>D 2</td>
<td>180</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>D 3</td>
<td>180</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>E 1</td>
<td>170</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>E 2</td>
<td>170</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>E 3</td>
<td>170</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

In this experiment, you will initiate the reactions by adding 10 µl of isocitrate solution as the last step. You will use a multi-tip pipet, at the plate reader, to add isocitrate to all wells.
Step-by-Step Procedure

1. Use the P-200 micropipet to add Assay Buffer to the indicated wells.
2. Use the P-20 micropipet to add 10 µl of NADP+ to the appropriate wells.
3. Use the P-20 micropipet to add 10 µl of IDH to the appropriate wells.
4. Place the microplate in chamber of the plate reader.
5. Use the Multi-8 micropipet to add 10 µl of isocitrate to the appropriate wells.
6. Activate the plate reader and use Analysis 7.
7. After printing, remove your plate from the plate reader.
8. Retrieve your data from the printer.
9. Return to your station and organize your data in the table below.
10. Prepare a graph of your data.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Wells A1-3</th>
<th>Wells B1-3</th>
<th>Wells C1-3</th>
<th>Wells D1-3</th>
<th>Wells E1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations - Experiment 1

Compare your data from all of the wells. Was there activity in wells A1 - D3? Was there activity in wells E1 - E3? Was activity the same in wells E1, E2, and E3? Was activity linear for three minutes? If not, explain your observations. Do your data support your hypotheses? If not, how will you change the protocol? Determine the “corrected” reading for each assay by subtracting the reading of the “control” (average of wells A1-A3) from the other readings. (Would wells B1-3, C1-3, or D1-3 provide better “control” data?)

Using Microsoft Excel, construct a graph that visually portrays your data from Table 1a by plotting absorbance as a function of time (in minutes). The initial rate of a reaction may be determined from the slope of the line joining each successive point. This graph will be graph 1.

If you’re not familiar with the program Excel you will find a quick introduction on the following pages.
A Beginner's Guide to Graphing with Excel

Double click on the Excel icon in the tool bar. When Excel opens, you will see a spreadsheet. In cell A1, enter a name for your X axis values (for instance, "Time"). Enter the appropriate values in column A. In cell B1, enter a name for your dependent variables (for instance, "Abs."). Enter the appropriate values in separate cells of column B. In a similar fashion, enter the values for multiple replicates of the experimental conditions in columns C and D. In cell E1, enter the word "Average." At this point, you should have a spreadsheet that looks similar to the following image:

Using Excel, we can determine the average values for our replicates. Click on cell E2. Next, click on the Insert menu button. Select the Function option and Average from the Function Name selections. You should see a function box similar to the one below.

You might notice that Excel "wants" to calculate the average of the values in cells A2 to D2. Our experimental values, though, are only in cells B2 to D2. Using the mouse, make any necessary changes to these cell designations by highlighting the cells that you want to average (in this case B2, C2, & D2). Click the OK button and the average value of your triplicates will be inserted into cell E2. To determine the averages for the other triplicate readings grab the small
square in the lower right corner of cell E2 and drag it down to the end. When you let go you should have averages in every cell.

<table>
<thead>
<tr>
<th>Time (min.)</th>
<th>Abs (1)</th>
<th>Abs (2)</th>
<th>Abs (3)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.14</td>
<td>0.111</td>
<td>0.92</td>
<td>0.358888889</td>
</tr>
<tr>
<td>1.5</td>
<td>0.341</td>
<td>0.337</td>
<td>0.345</td>
<td>0.346</td>
</tr>
<tr>
<td>2</td>
<td>0.46</td>
<td>0.452</td>
<td>0.461</td>
<td>0.458</td>
</tr>
<tr>
<td>2.5</td>
<td>0.6</td>
<td>0.611</td>
<td>0.597</td>
<td>0.606</td>
</tr>
<tr>
<td>3</td>
<td>0.725</td>
<td>0.715</td>
<td>0.714</td>
<td>0.718</td>
</tr>
</tbody>
</table>

To graph the data, highlight the averages you just calculated and click on the Chart Wizard icon on the top menu bar. Select the Chart Type option and then the XY (Scatter) graph (step 1 of 4). Click the “next>” button to get to step 2. You will then see a graph of your data, but you will notice that the x-axis values are not correct. In step 2 you should click on the “series” button in the top of the window and then click in the box next to “X values:” and then click on the small upward arrowhead to the right of this box. Clicking on the arrowhead will take you to your spreadsheet where you will highlight the cells in the A column (0.5 – 3) that belong on your x-axis. When you have highlighted those cells, hit the return key on the keyboard.

Step 3 of the chart wizard gives you several options to change the appearance of your graph through the buttons at the top labeled “Titles”, “Axes”, etc. Usually you will want to label your graph under the “titles” button, remove the distracting horizontal gridlines under the “gridlines” button, and under the “legend” button you will want to remove the key (confusingly called a legend by Excel) if you have only one line graphed (you will want to keep and properly label the key if you have a graph of several lines).
Step 4 of the chart wizard simply asks where you want to save your new graph, something that is just a matter of personal preference. After you hit the “finish” button you will see your graph.

You may notice that your graph might not look the way you’d like it to appear. You can adjust many parameters simply by double-clicking on specific parts of the graph. For example, to change the color, size, or shape of the data points simply double click on the diamonds and you will get a window that lets you change those parameters. To change the scale of either axis, simply double click on the line of the x- or y-axis and you can change the minimum, maximum, major/minor units, etc. To change the font, size, or orientation of the labels simply double click on the text itself. Notice that the graph above right is the same data as the graph above left, but some of the cosmetic details have been changed.
Finally, you can use Excel to determine a best-fit line of your data and the line’s slope. After you have completed your graph, click on the Chart button in the top tool bar. Select “Add Trendline”, select “linear” and “Series 1”, and then click on the “Options” button. Make sure Set Intercept = 0, and click the boxes for “Display Equation on Chart”, and “Display R-squared Value on Chart”. Click the “OK” button. The equation for your trendline (in \(y = mx + b \) format where \(m \) = slope and \(b \) = the value of the y-intercept) and an \(R^2 \) values will then appear on your graph. Briefly, the closer your R2 value is to 1.0, the better your experimental data fit the trendline you just plotted. Save your completed graph and data worksheet in an appropriate folder (such as Tuesday AM lab) with a descriptive name.
Experiment 2: Effects of varying enzyme concentration on IDH activity

Problem: What is the relationship between the rate of a reaction and the amount of enzyme in the assay solution when substrate and coenzyme are abundant (non-limiting)? This question might become “In subsequent experiments, how much enzyme solution should I use in each assay?”

Hypothesis: IDH activity will vary directly with the amount of enzyme in each assay.

To test this hypothesis, you will need to follow a protocol that holds all conditions constant except the amount of enzyme added to each assay. All tests should be run more than once; routinely, enzyme assays are run “in triplicate”. For example, wells A 4, A 5, and A 6 in Table 2 are triplicate assays containing 5 µl of IDH. Set up reactions as shown in Table 2.

<table>
<thead>
<tr>
<th>Wells</th>
<th>Buffer</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4-6</td>
<td>175</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>B 4-6</td>
<td>170</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>C 4-6</td>
<td>160</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>D 4-6</td>
<td>150</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>E 4-6</td>
<td>180</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Procedure
1. Use the P-200 micropipet to add Assay Buffer to the indicated wells.
2. Use the Multi-8 micropipet to add 10 µl of NADP⁺ to all wells.
3. Use the correct micropipettor to add appropriate volume of IDH to each well.
4. Place the microplate in chamber of the plate reader.
5. Use the Multi-8 micropipet to add 10 µl of isocitrate to the wells.
6. Activate the plate reader.
7. After printing, remove your plate from the plate reader.
8. Retrieve your data from the printer.
9. Return to your station and organize your data in Table 2a (below).
10. Prepare a graph of your data.

Considerations - Experiment 2

Compare the data from all wells. Was there activity in all wells? Did activity vary with the amount of enzyme in each assay? Was activity the same in the three wells with the same amount of enzyme? Was activity linear for the first three minutes for each volume of enzyme? If not, explain your observations. Do your data support your hypothesis?

Determine the mean activity for each set of triplicate assays. Construct a graph to portray your data. Compare activity with the volume of enzyme in the assay solution. [Hint - take
advantage of Excel’s ability to generate a formula for the best fit line: \(y = mx + b \); \(b \) is the Y intercept and \(m \) is the slope or change in absorbance over time which is the definition of activity.] This graph will be graph 2A.

Construct another graph that compares volume of enzyme the slope of the four lines (slope equals enzyme activity) from your previous graph. You may use the table below to collect and organize the data. This new graph will be graph 2B. What conclusions can you reach from your results?

<table>
<thead>
<tr>
<th>Volume of IDH (µl)</th>
<th>Slope</th>
<th>(R^2) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experiment 3. Effects of varying isocitrate concentration

Problem: What is the relationship between the rate of a reaction and the amount of isocitrate in the assay solution when the amounts of IDH and NADP\(^+\) in the assay are held constant? Before you start this experiment, develop an hypothesis and sketch a graph predicting the relationship of activity vs. isocitrate concentration.

Procedure: To test your hypothesis, you will need to follow a protocol that holds all conditions constant except the amount of isocitrate added to each assay. Table 3 outlines such a protocol using five concentrations of isocitrate. Each concentration is tested in triplicate. Add reagents to your wells as listed from left to right.

*The concentrations of these isocitrate solutions will be provided by the instructor. The second number refers to the volume (µl) to be used.

Procedure
1. Use the P200 micropipet to add Assay Buffer to the indicated wells.
2. Use the Multi-8 micropipet to add 10 µl of NADP\(^+\) to the wells.
3. Use the P20 micropipet to add 10 µl of the different concentrations of isocitrate to the wells, as indicated.
4. Place the microplate in chamber of the plate reader.
5. Use the Multi-8 micropipet to add 10 µl of IDH to the appropriate wells.
6. Activate the plate reader.
7. After printing, remove your plate from the plate reader.
8. Retrieve your data from the printer.
9. Return to your station and organize your data in Table 3a (below).
10. Prepare a graph of your data.

<table>
<thead>
<tr>
<th>Time, min</th>
<th>____mM</th>
<th>____mM</th>
<th>____mM</th>
<th>____mM</th>
<th>____mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations - Experiment 3

Considerations - Experiment 3

Compare the data from your experiment. Determine the activity for each concentration of isocitrate by constructing a graph and generating the best-fit lines and equations – this graph will be graph 3A. Next, construct a graph that compares activity as a function of isocitrate concentration. This graph will be graph 3B. Do your data support your hypothesis? Is the relationship between activity and concentration of substrate linear? Explain this relationship, referring to graphs 3A and 3B.

Preparation for Next Week’s Lab:

Preparation for Next Week’s Lab:

In next week’s lab, we will study the effects of environmental conditions on enzyme activity. Each group of students will design an experimental protocol to address one of the following questions:

1. What are the effects of temperature on the stability of IDH?
2. What are the effects of pH of the assay solution?
3. What are the effects of NADP⁺ concentration?
4. What are the effects of different divalent metal ions?
5. What are the effects of varying salt concentrations?
6. Which species or tissues have the most activity?

Before leaving lab today, each group will complete the following:

1. Develop a clear, concise and simple hypothesis about the effects of one of the above environmental conditions upon enzyme activity.
2. Design an experiment to test that hypothesis.
3. Prepare a protocol to carry out that experiment.
Parameters that Affect Enzyme Activity

| Focused Reading: | p 117-119 “Molecular Structure…” to “Metabolism and…”
| | p 119-120 “Enzyme activity…” to “Allosteric enzymes…”
| | p 122-123 “Enzymes are affected…” to “Chapter summary…”

| Special Note: | Bring a calculator to lab |

Goals for This Lab:
This week, we will determine the effects of environmental perturbations of our standard assay conditions. We will use what we learned last week and apply that information to this week’s experiments.

Introduction
Last week we:
1. Learned how to perform isocitrate dehydrogenase (IDH) assays.
2. Examined the relationship between activity and amount of enzyme in an assay.
3. Examined the relationship between activity and substrate concentration.
4. Learned how to present experimental data in graphic form.
5. Chose one of the following experiments (Options A – F) to complete.
6. Designed an experimental protocol for that experiment.

Methods and Materials
You will use the same general methods that we used in the previous lab. All equipment, solutions and supplies required to carry out the experiments have been prepared and are ready for use. You may wish to review your protocol again and assign specific tasks before you start your experiments. You will find helpful tables and suggestions for the different experimental options on the following six pages. Find the one page that relates to the experiment that your group is executing today.

Before You Leave Lab (All Groups):
1. Be certain that you have collected all of the data you need to make your experiment complete.
2. Be certain that each member of the group fully understands what was done and has a copy of all of your data.
3. Schedule a meeting of your group to analyze your results and prepare slides for your group’s oral presentation.
Option A: Does pH influence IDH activity?

Hypothesis:

To determine if pH influences IDH activity, we will need to follow a protocol that holds all conditions constant except the pH of the assay buffer.

<table>
<thead>
<tr>
<th>Wells</th>
<th>pH</th>
<th>Buffer</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>pH</th>
<th>pH</th>
<th>pH</th>
<th>pH</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations:

Does IDH activity vary when the pH of the assay mixture varies, or do levels of activity remain constant regardless of pH? Explain how the pH of the assay mixture might affect activity of an enzyme.
Option B: Does IDH Have a Metal Ion Requirement?

Hypothesis:

You will need to follow a protocol that holds all conditions constant except for the presence or absence of divalent metal ions.

<table>
<thead>
<tr>
<th>Wells</th>
<th>Buffer **</th>
<th>Metal, µl</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>EDTA 10</td>
<td>Mg²⁺ 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mn²⁺ 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca²⁺ 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zn²⁺ 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You will need to use a special buffer that does not contain any added Mg²⁺

<table>
<thead>
<tr>
<th>Time (min.)</th>
<th>None</th>
<th>EDTA</th>
<th>Mg²⁺</th>
<th>Mn²⁺</th>
<th>Ca²⁺</th>
<th>Zn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations:

Does IDH require a divalent metal ion for activity? Does additional Mg²⁺ added to the standard assay buffer increase activity? What does this observation mean? Does the addition of Mn²⁺ added to the standard assay buffer increase activity? What does this observation mean? How can the effects of Ca²⁺ and Zn²⁺ on IDH activity be explained?
Option C: How does temperature influence IDH?

Hypothesis:

You will need to follow a protocol that holds all conditions constant except temperature. You can incubate samples of IDH at 37°C for varying amounts of time prior to assaying activity. Keep all samples on ice until incubations are complete and assay all at the same time.

<table>
<thead>
<tr>
<th>Wells</th>
<th>Min. IDH @ 37 °C</th>
<th>Buffer</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time, min</th>
<th>___Min</th>
<th>___Min</th>
<th>___Min</th>
<th>___Min</th>
<th>___Min</th>
<th>___Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations - Experiment on temperature pre-treatment

Is IDH stable at 37°C? How can these results be explained? How could this experiment be altered to test the hypothesis further?
Option D: Does enzyme activity vary with concentration of NADP⁺?

Hypothesis:

What is the relationship between the rate of a reaction and the amount of coenzyme in the assay solution when the amount of enzyme is held constant? Before starting this experiment, develop an hypothesis and sketch a graph predicting the relationship of activity vs. coenzyme concentration.

<table>
<thead>
<tr>
<th>Wells</th>
<th>Buffer</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The concentration of a NADP⁺ stock solution will be provided by your Instructor.

<table>
<thead>
<tr>
<th>Time, min</th>
<th>__mM</th>
<th>__mM</th>
<th>__mM</th>
<th>__mM</th>
<th>__mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations:

Organize the data from the experiment. Determine the mean activity for each concentration of NADP⁺. Construct a graph that compares activity as a function of NADP⁺ concentration. Do the data support the hypothesis? Is the relationship between activity and concentration of NADP⁺ linear? Explain this relationship.
Option E: Does NaCl concentration influence IDH activity?

Hypothesis:

To test this hypothesis, you will need to follow a protocol that holds all conditions constant except concentration of NaCl in the assay solution. You will be given a 5 M NaCl solution to dilute to different concentrations.

<table>
<thead>
<tr>
<th>Wells</th>
<th>Buffer</th>
<th>5M NaCl</th>
<th>[NaCl] M</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>__M NaCl</th>
<th>__M NaCl</th>
<th>__M NaCl</th>
<th>__M NaCl</th>
<th>__M NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations:
Were differences in activity between the treatments observed? What was the relationship between the concentration of NaCl and activity? Explain how salt might affect enzyme activity.
Option F: Does IDH activity vary among different organisms and/or tissues?

Hypothesis:

This experiment is “open ended”; we may design a single, additional experiment, comparable to the ones listed above, or expand these topics into a research project of wider magnitude.

1. You may choose to survey IDH activity:
 i. In a wide variety of related species.
 ii. In different tissues of a single species.
2. Homogenize the samples in cold Assay Buffer, using a kitchen blender.
3. Filter the homogenate through two layers of cheesecloth into a small beaker on ice.
4. Transfer 1 ml samples to 1.5 ml microfuge tubes, spin for 5 minutes.
5. Transfer the supernatant to clean 1.5 ml microfuge tubes, on ice.
6. Use standard conditions to assay IDH activity.

<table>
<thead>
<tr>
<th>Wells</th>
<th>Buffer</th>
<th>NADP⁺</th>
<th>IDH</th>
<th>Isocitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (min)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Introduction to Data Presentation

The enzyme wildcatase catalyzes the conversion of wildcatin to catin. Previously, researchers determined that catin absorbs maximally at 605 nm, while wildcatin has a minimal absorbance at this wavelength. To characterize the properties of wildcatase, you have conducted a series of experiments. The scientific community is extremely excited to hear about your results. In fact, the organizers of the 16th Annual International Wildcatase Convention ask you to present your findings at their meeting in Cancun. Normally, you would decline this invitation, preferring to stay in Davidson. Because your friend is one of the meeting organizers, though, you agree to attend and present your findings. Of course, now you must organize your data and make graphs and/or tables of your results for your presentation.

Brief descriptions of these experiments and the resulting data are provided below. For each experiment, determine an effective means of presenting your data.

Experiment 1:
After a series of experiments, you have concluded that two different enzymes can catalyze the conversion of wildcatin to catin. You have names these enzymes wildcatase A and wildcatase B. A study of 100 mammal species has revealed that 50 of these species contain wildcataswe A and wildcatase B, 40 contain only wildcatase A, and the remaining 10 contain only wildcatase B.

Experiment 2:
Your studies indicate that both deer mice and filed mice contain only wildcatase A. To investigate the location of wildcatase A within these organisms, you looked for the presence of this enzyme in various tissues. You discovered that, in the deer mouse, wildcatase A is present in lung, brain, spleen, and liver tissues. It is not found in muscle, kidney, or heart tissues. In the field mouse, wildcatase is present in lung, brain, and spleen tissues. It is not found in liver, muscle, kidney, or heart tissues.

Experiment 3:
In examining the tissues of the deer mouse, you discovered that the different tissues containing wildcatase A contain different amounts of wildcatase A. Lung contains 350 units of wildcatase A per gram of tissue. Spleen contains 250 units of wildcatase per gram of tissue. Liver contains 100 units of wildcatase A per gram of tissue. Brain contains 500 units of wildcatase A per gram of tissue.

Experiment 4:
To investigate the kinetics of wildcatase A and wildcatase B activity, you combined 100 mM wildcatase A and 100 mM wildcatin. You then measured the absorbance at 605 nm at 30 second intervals for 2 minutes, resulting in the following data: 0 min: 0.010; 0.5 min: 0.100; 1.0 min: 0.20; 1.5 min: 0.300; 2.0 min: 0.400. You then did a similar experiment, but used wildcatase B instead of wildcatase A, resulting in the following data: 0 min: 0.010; 0.5 min: 0.150; 1.0 min: 0.300; 1.5 min: 0.450; 2.0 min: 0.600.
Guidelines for Scientific Papers (Lab Reports)

Writing a laboratory report is like writing an original research paper. Scientific papers are usually written in a format with the following sections:
- Abstract
- Introduction
- Materials and Methods
- Results
- Discussion
- References
- Figures

Introduction
The introduction should explain why the work was done. What were the objectives of the research? How does the research help to fill a hole in our knowledge? The introduction should include a clear statement of the problem or question to be addressed in the experiment. It is always helpful to put this question into some context by stating why this question needs to be answered or why you found this question to be particularly interesting. Any background material that is particularly relevant to the question should be included in this section.

Materials and Methods
The materials and methods section tells how the work was done. It should NOT be a simple list of the materials used. What procedures were followed? What research materials were used: the organism, special chemicals, instruments? In some of the experiments you will be doing, many of the procedures are given in great detail in the handouts. It is not necessary to retype these verbatim, but rather summarize them and cite the laboratory manual in your references. Provide details only about changes from the handout and about your individual project. The most important feature of this section should be to include enough detail in your description of how your experiment was set up and run so that anyone reading the materials and methods could repeat your experiment. Do not write your materials and methods section as a step-by-step protocol. Write it as descriptive summary of your lab procedures in paragraph form. Include critical information such as the concentration of the reagents you used. Do not include superfluous information that does not affect the outcome of your study (such as what well B2 or A11 contained).

Results
The "Results" section explains in words what you found, the data that you generated, explained succinctly in the body of the report and presented in detail as tables or graphs. The results section should be written so that any college student could read the text to learn what you have done. The text should give the reader a clear idea of the major trends in your data. A reader should have enough information so that s/he could draw the figures (generally) based on your written description of your data in the results section. For example, you might use a paragraph to explain what is seen on a particular graph; “When the enzyme was soaked in sulfuric acid, no change in absorbance was observed (Table 1)” Do not make the common mistake of writing, “We performed the experiment, see figures 1-4.” That is too brief and does not describe what you have done or the results you obtained. When stating your results in the body of the text, refer to your graphs and tables. Do not
attempt to discuss the interpretation of your data in the results section - explanations should be included in the discussion section. Each table and figure should be numbered sequentially for easy reference in the text, and all figures must have a brief description called a legend, which provides the reader enough information to know what you did to produce the data (even without reading the rest of your manuscript).

Discussion

The "Discussion" section typically includes your appraisal of what your research means, including its success in meeting the objectives stated in the introduction, and its significance in advancing your knowledge of the subject. This section also is the place to explain discrepancies or difficulties with experiments, as well as suggestions for future work. For example, if you had known initially what you know now, how might you have changed your experiments? Most importantly, the Discussion provides an opportunity to compare your results with those of others. What previous information exists that is relevant to your research? Do your results support or supplement that information? Once again, when providing your interpretation of the data, direct the reader to specific tables and graphs to prove your point.

References

Finally, it is important to place your work in perspective with the published work of other scientists. We will not have much opportunity to use references in Bio 111, but references are an important component of any report. Scientific journals usually require specific reference formats. We will discuss the preferred format for your reports. (If your instructor does not recommend a specific citation style, pick a style and use it consistently.) For more information on citing references and academic integrity please consult the biology department’s statement on plagiarism at: www.bio.davidson.edu/dept/plagiarism.html

Figures & Tables

Data that have been collected need to be presented clearly and succinctly. As a result, two forms of presentation are most commonly used in scientific papers: figures and tables. Which method to use depends somewhat on the data, but in general anything that can be displayed pictorially (e.g. a graph or diagram) is usually more desirable than a table, because the reader can immediately see the trends in the data. In the paper itself, diagrams, photographs, and graphs are all referred to as “Figures”, and are numbered sequentially in the order of presentation (Figure 1, Figure 2, etc.). Tables also are numbered sequentially in order of presentation. Although figures and tables often are placed directly into the middle of scientific papers. You may include figures and tables within the text of your report or at the end of your report.

Graphs

Graphs can be made using a graphing program such as Excel. Remember to label each axis, including units of measurement, and clearly identify the data you are displaying (e.g. label each line in a graph). In addition, every graph must have a short description (legend) below it to tell the reader some basic information about that data and the way it was obtained. The legend starts with the figure number, followed by a one sentence title. The text of the legend should be a one short paragraph. Following is an example of a graphic figure with legend:
Figure 1. Cat ownership is directly related to educational level. 156 Davidson, NC adult residents were surveyed to determine their education level and the number of cats in the household.

This graph was made using the program Excel. Notice how the axes are labeled, and the figure is numbered and titled (bold type) and the format is very simple, clear, and the data is obvious (avoid the temptation to add extra grid lines, 3D features, shadows, backgrounds, etc. Such “chartjunk” distracts your audience from the data, your main means of conveying scientific evidence. The legend (paragraph below the graph) explains how the data were obtained. You can look at any scientific paper for examples of legends. Note that all figures in your textbook also have legends.

Tables
Tables should be made using the same principles outlined for graphs, though the format is different. Tables can be created with Word or Excel. Tables are numbered, but this number usually appears at the top of the table. The title usually follows the table number:

<table>
<thead>
<tr>
<th>Subject’s Initials</th>
<th>Years of Formal Education</th>
<th># of pet cats</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>CJL</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>CGM</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>ABH</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Tables generally do not contain legends. Often, though, footnotes are included under a table to provide explanatory information. Of course, all column headings should be clearly labeled to describe the data listed below them.

When preparing your data for a presentation, think about the most effective way of showing your data to the audience. Some information can be conveyed most effectively in a figure. Other information can be conveyed most effectively in a table. If you do decide to use a figure, then consider what type of figure will be most effective. In general figures are more effective than tables.
When creating graphs you should also think carefully about what type of graph (X-Y, bar, pie, etc.) best conveys your results. Always make your figures and tables as simple and clear as possible. Do not make your reader work hard to understand your point.

Writing an Abstract

An abstract is a single paragraph summary of your experiment. Like a paper (or lab report), an abstract should contain an introduction, methods, results, and conclusion. Every scientific paper has an abstract at the beginning to let the reader know what the paper is about and to make an informed decision whether the entire paper is worth reading. Abstracts also are printed in reference books and available online where the whole article does not appear, and are used to decide which articles you need to obtain. A third use of abstracts is to summarize the work you will be presenting at a meeting, so people will know if they should come to see your complete presentation. Thus the abstract is absolutely critical and requires very careful thought in the writing process. FYI most scientific journals limit abstracts to 150-500 words.

Guidelines for writing good abstracts

Revise, revise, revise. The Abstract should be clearly and concisely written. Try to address each of the questions below (under ABSTRACT). Use plain English whenever you can, active voice when you can, and use simple sentences. It is not necessary to refer to any literature (if you do, list the references below the abstract). State only your most important conclusion(s). Remember, the abstract will likely be the only portion of your report that most people read. Make sure it is well written.

ABSTRACT

1. Title: The title should indicate the question you investigated, or the method, if that is important. Example: Effect of Owner Education Level on Number of Cats per Household.

2. Author(s) and address(es). Example: Mary Darwin, Polly Merase, and John D. Helix, Biology Department, Davidson College, Davidson, NC 28036.

3. What is the general topic you were investigating and why is it important? One to two sentences. Example: Education level may affect choices people make about their personal lives and habits.

4. What are the specific questions you are addressing with this project? The abstract should not include your complete methods. Provide a one or two sentence overview. Example: We investigated the relationship between education level and the number of cats per household for residents of a small town.

5. How did you do this experiment? For a single paragraph abstract, one or two sentences are needed. You are not trying to be complete, just give a general idea of how you did it. Example: The residents of a small town in North Carolina were polled as to the number of years of education for adults in households and the number of cats associated with the household.

6. What did you observe? One sentence should be enough: state only your main point(s). Example: Adults with either low education levels (0-10 years of school) and those with high education levels (more than 16 years of school) had significantly more cats per household than those with intermediate education levels (11-16 years of school). Include your most important data (mean values, standard deviations, number of samples you studied, etc.) that influenced your conclusion.
7. What did you find out about the general topic or question (see #3 above)? One sentence, 2-3 sentences for a longer abstract. Example: We concluded that education level can affect choices not directly associated with academic pursuits.

Here is the final abstract from the example above:

Effect of Owner Education Level on Number of Cats per Household

Anna Author and Aaron Associate
Biology Department, Davidson College, Davidson, NC 28035

Education level may affect choices people make about their personal lives and habits. We investigated the relationship between education level and the number of cats per household for residents of a small town. 156 adult residents of a small town in North Carolina were polled as to the number of years of education for adults in households and the number of cats associated with the household. Adults with either low education levels (0-10 years of school) and those with high education levels (more than 16 years of school) had significantly more cats per household than those with intermediate education levels (11-16 years of school) when analyzed by the statistical test ANOVA, (p<0.005). This finding is highlighted by noting that those people with high or low education levels were more likely to have four or more cats (23%) than those people with intermediate education (4%). We concluded that education level directly affects whether a household will include pet cats.

With the method outlined above, you should be able to produce a good abstract in less than an hour. If you haven't clearly and carefully thought through what you did in the experiment, writing the abstract should help you do so. It is shorter than a lab report, but includes most important points. (For your information, the study and abstract above was invented for this lab and does not reflect an authentic study.) Also, consult the posters on display in Watson and Dana and the abstracts of research conducted by Davidson science students at: www.bio.davidson.edu/old_site/student/Abstractsmain.html.

NEWS ITEM: If you are under the impression that the research you do is unimportant, then take a lesson from Emily Rosa. Emily published her research results in *JAMA* - the *Journal of the American Medical Association*. She conducted her research while in the fourth grade! She was curious whether there was any validity to a new form of alternative medical therapy called “touch therapy”. She and her mom, a nurse, conducted an experiment which Emily designed. The end result demonstrated that touch therapy was not able to discern as much information as the practitioners claim. You can read her article in the April 1, 1998 issue of *JAMA* in our library (Rosa et al. (1998) *JAMA*. 279:1005-10).
Hints for Your Oral Presentations

Oral presentations are an important means of communicating scientific information. Oral presentations often are used to present experimental findings at colleges and universities (where they also are known as seminars), and at scientific meetings. Therefore, it is important that you gain experience with this presentation format.

Davidson’s science departments each host several seminars each semester. Attending seminars is an excellent method to prepare for your own oral presentations. You will see how different scientists communicate their experimental results (some better than others).

Your instructor realizes speaking in front of a group can be uncomfortable, and it is especially hard the first time. You will make some mistakes - that’s part of the learning process. Please realize that any questions that you are asked by your classmates or instructor are not meant to be taken personally. So, don’t be afraid of questions - they are intended to further our understanding of your scientific investigation. The best preparation for presentations is to understand what you did, especially why you set the experiment up the way you did in order to answer a specific scientific question. Asking questions of other scientists is also an essential skill for you to develop.

Each group will give an oral presentation about their experiment. The presentation should be organized in a manner similar to your scientific reports, with general categories such as: Introduction, Material and Methods, Results, and Discussion/Conclusion. Your lab group is welcome to divide up the speaking responsibilities as you like as long as the division is equal between all students. The most common division of speaking duties for a group of four has each person presenting one of the following sections:

1) The Introduction can include aspects such as background information, the reasons for doing the experiment, and your hypothesis/experimental question.

2) The Materials and Methods section should include your experimental design, where you describe the samples you are testing and the controls you have incorporated into the experiment. In addition, you can do a very brief overview of the major procedures you performed. Remember to consider your audience: all the groups did a basic enzyme laboratory, so there is no need to repeat "standard" protocols. Include procedures that are different from the standard protocol, and be sure to present enough of your protocol so that everyone is clear as to exactly what you did.

3) The Results should be a clear and concise display and explanation of your data. Your data should be distilled down to the important facts, and not necessarily every piece of data you collected. However, don’t make the mistake of showing a figure and saying, “This is what we got.” and then sitting saying nothing else. Walk us through the figure. Point out important parts of each figure. Make certain that your “take-home message” is stated very clearly and emphasized.

4) Finally, the Discussion will be your interpretation of your results. What do your data mean? Discuss whether your data support your hypotheses. Do you have reason to believe your data were inaccurate? What would you do next time to investigate the problem further? What follow-up experiments could you perform as a result of your data?

Your group’s presentation should last no more than 10-15 minutes, because there must be time for questions and discussion with the rest of the class afterward. Each person in your group must speak during the presentation. The use of visual aids is very important. If you use the document camera you need to print very small figures.

In preparing your presentation, you may find it helpful to keep the following questions in mind:

1. Do you clearly state the question(s) you are trying to answer?
2. Is it clear what you did to try and answer your question?
3. Do you explain your results, especially inconsistent or unexpected results?
4. Do you convey why you did the different conditions in your experiment?
5. Did you explain what your data mean? Can you answer the question from number 1 above?

Your group will be critiqued in two ways. First, your classmates will review your presentation. You will not be graded by your classmates - these comments are to help you. Each person will review every group by responding to the following two questions:

1) What were the strengths of this group?
2) What improvements could be made by this group?

When making comments about the presentation of others, keep in mind the four questions listed above, as well as other things such as whether the group was organized, if everyone participated, if their conclusions were valid, etc. These comments are meant to be helpful suggestions and not a slap in the face.

Your instructor will be interested in similar categories, especially how clearly you present your material, whether you display understanding of what you did and why you did it, and if the data support your conclusions. You will receive a group grade, but the most important aspect of this exercise is to become comfortable talking in front of a group and to enjoy your presentation.

Lab Notes
Introduction

Unless you spent the last few years in a cave, you have heard about the increasing use of “DNA fingerprinting” in court cases. The technology available is so sensitive that unbelievable sources of DNA have been used to convict criminals. In Minnesota, for example, DNA was extracted from the back of a postage stamp because some epidermal cells from a person’s tongue had been deposited on the glue when the stamp was licked. Most likely, a pivotal point of contention in future court cases will be the collection and handling of the evidence. For example, what if some DNA from the crime scene is proposed to have come from the accused? The defense attorney could suggest that the police collected some epidermal cells from the sidewalk (from a visit the day before) at the same time as the blood drops. What do you think of this possibility as a defense? If you want to read more about this area, the library has several books in the area of call numbers 614.1.

There are two standard methods for “DNA fingerprinting”: 1) Southern blots and, 2) PCR. We will discuss both of these techniques in class. Dr. Kary Mullis, the inventor of PCR, was awarded a Nobel Prize in 1993 for his revolutionary innovation. As you know, PCR allows you to amplify a single copy of DNA into millions of copies, provided the ends of the DNA of interest have been sequenced because you have to supply DNA polymerase with primers that will specifically hybridize to the target gene and no other DNA. Over the next two weeks, we will use PCR to determine the genotype of every student in class. We are using a hair root as our source of genomic DNA and are looking at a locus called D1S80. D1S80 contains a Variable Number of Tandem Repeat sequence (VNTR). As the term implies, there is a section of DNA that is repeated to varying degrees in each person. As a simplified example, let’s say the repeat unit is the two nucleotides sequence CG. If we were to sequence this portion of the D1S80 locus from four different DNA sources, we might see the following:

1) ATGCCGTATTACGCCTATTAGGTATTAG
2) ATGCCGTATTACGCCTATTAGGTATTAG
3) ATGCCGTATTACGCCTATTAGGTATTAG
4) ATGCCGTATTACGCCTATTAGGTATTAG
In this example, there are four alleles of this VNTR with four different lengths. If we electrophoresed these four segments of DNA on a gel, we would observe bands of four different sizes (2>4>1>3). In a criminal case, we might have four suspects and one DNA sample from the crime scene. The resulting gel might look like this:

![Gel Image]

Questions:
1) So, “who done it?”
2) What is wrong with the above gel? Why is this example too easy?

Protocol

Now it is time for us to determine our genotypes. You should be forewarned – this technique is a delicate procedure that does not always work for everyone. In order to process this kind of evidence for a criminal case, a technician usually has a master’s degree in Forensic Science, and a few years of “on-the-job training”. Nevertheless, even these experts sometimes make mistakes. So, do not be discouraged if your sample does not “work”, but try to avoid this situation by observing these guide lines:

1) Follow the protocol as carefully as possible.
2) Do not contaminate your hair or DNA with that of others (remember one cell contains enough to be amplified).
3) Immediately after the DNA extraction is finished, visually check to verify that you have extracted DNA by gently removing the tube from the thermocycler and flicking the tube holding it up to a light and looking very carefully. You should see a more dense of the solution at the bottom of the tube as it mixes with the less dense water.
4) The most common mistakes are pipetting errors. Be sure to check that you are transferring about the right volumes and always use clean tips; when in doubt a new one.
5) Be very careful loading the gel. We will have time to practice this week so that when you are loading your real sample next week, you will be a pro.

DNA extraction

1) Pluck a hair so that a large portion of root is removed from your head (yikes!) For people of Caucasian heritage, the root will be white/translucent in appearance. People of African heritage will have roots that are dark. Regardless of the color, the root will be sticky so you can test it by touching it to the bench top to see if it adheres. Check to make sure you got some root and not all shaft.
2) Put the hair into a small microfuge tube with the root at the bottom of the tube. Cut off most of the hair but keep the root (~5 mm). Be careful, sometimes the root will jump away when you cut the hair.
3) Incubate the root in 100 µl digestion buffer (which contains 6 µg of proteinase K) for 1 hour at 55°C, then 10 minutes at 95°C (what is the purpose of this step?). Use thermocycler program HAIR 1 - lid disabled.

During this waiting period, we will practice loading gels so you will be ready for next week.
PCR Reaction Mixtures
4) When the DNA extraction cools, **vortex the tubes for 30 seconds** and then set up a new 500 µl microfuge tube by adding the following 15.0 µl of your DNA and 10.0 µl of reaction mixture. The reaction mixture contains H₂O, 10X PCR buffer, dimethylsulfoxide (a solvent), dNTPs (dATP, dTTP, dCTP, & dGTP), and the two primers.

PCR
The D1S80 locus requires hot start PCR. This term means that the Taq DNA polymerase is not added to the PCR mixture until the mixture has been heated to 95˚C. This hot start is necessary because the D1S80 primers have a tendency to anneal to each other rather than to the template while the mixture is heating up for the first time. This tendency allows the DNA polymerase to generate “primer dimmers.” If addition of the DNA polymerase is delayed, then inappropriately annealing primers are denatured as the kinetic energy increases, so no replication occurs until the temperature is lowered later in the procedure, allowing the primers to anneal to the proper portion of the template DNA. DMSO has been included in the reaction mixture to enhance the specificity of the primers.

The PCR temperature conditions are as follows:
- Step 1: 5 minutes at 95˚ C (pause during this step for hot start – see below)
- Step 2: 1 minute at 95˚ C
 - Step 3: 1 minute at 65˚ C
 - Step 4: 1 minute at 72˚ C
 - Step 5: repeat steps 2 - 4 twenty-nine more times
- Step 6: hold at 4˚ C

5) To initiate hot start PCR, denature the DNA by incubating the tubes for 5 minutes at 95˚ C (Step 1), maintain the tubes at 95˚ C while you add 0.4 µl Taq DNA polymerase to each tube. Do not allow the tubes to cool and do not take time to mix the reaction mixture after adding the Taq polymerase.

6) Resume the same PCR program with the heated lid enabled.
7) When the PCR is completed, the tubes are removed and stored at 4˚ C.

D1S80 factoids
• >80% of all populations tested are heterozygous
• 28 alleles have been published
• Repeat unit is 16 nucleotides long
• If there were zero repeat units, the PCR product would be 142 bp long
• PCR products range from 430 to 814 base pairs long
• 41 repeated units have been observed in the largest allele
• Primer sequences²:
 - #1 5' GAAACTGGCCTCCAAACACTGCCCGCCG 3'
 - #25' GTCTTGGAGATGCACGTGCCCTTG 3'

The PCR Results
Add 2.5 µl of the 10X loading dye to each PCR reaction tube and electrophorese the DNA on a 1.5% agarose gel using 0.5X TBE and 200 ng/ml ethidium bromide. We usually run these gels at 90-100 volts for 1 - 1.5 hours. The exact time and voltage will depend on the gel box configuration and appropriate conditions can be refined accordingly.

While the gel is running, we will learn how to calculate the molecular weights of bands.
How to calculate the molecular weight (MW) of a molecule that has been separated in a gel

The \(\log_{10} \) of a molecule's molecular weight is proportional to the distance that molecule has migrated. Therefore, the first step is to generate a standard curve using molecules of known size (the molecular weight markers).

When using semilog paper (see the next page), the molecular weights (in units of base pairs (bp) for DNA; kiloDaltons (kDa) for proteins) is plotted on the Y-axis and the distance the molecule migrated (in mm) is plotted on the X-axis. When generating a standard curve, you will obtain a straight line (use a best-fit line).

Once your standard curve is ready, measure the distance traveled by your molecule of interest. Find that distance on the X-axis, and go up until you intersect with your standard curve. Move over to the Y-axis and that will indicate the molecular weight of the molecule you are studying.

Use the first graph paper on the next page and the DNA gel shown to the right to determine the molecular weight of the unknown band indicated with an arrow.

The second graph is for you to use on your PCR DNA “fingerprint.”

Footnotes:
Using Microscopes

| Focused Reading: | p 63-64 “Microscopes…”
| | Figures 4.2 (pg. 63) and 4.4 (pg. 64) |
| Special Note: | You will be working with iodine in this lab and there is a risk of staining your clothing, so you may want to wear old clothes. |

Goals for This Exercise

During this session, you will learn how to use a compound microscope that has the ability to view specimens in bright field, dark field, and phase-contrast illumination. You also will learn about a model research organism, *Chlamydomonas*. *Chlamydomonas* is a unicellular green alga that has two flagella and can reproduce asexually by mitosis, or sexually after undergoing gametogenesis.

Care and Use of the Compound Microscopes

A compound microscope is illustrated in Figure 1 and can magnify from 40 to 2000 times (40 – 2000X). Microscope quality, however, depends on resolving power in addition to magnification. Resolving power is the ability to distinguish between two points in the field of view. Thus, if you can magnify 1000-fold yet cannot resolve detail, then your microscope would be of little value. Even more important may be the abilities of the microscopist to learn the capabilities of her/his microscope and to gain proficiency in the use of the instrument.

Important things to know when using a microscope:

1. Always carry a microscope with both hands, one grasping the handhold in the back and one grasping the bottom.
2. Do not swing the microscope and do not bang it onto the bench top.
3. Never place the microscope near the edge of the bench and keep electrical cords out of the way.
4. All of our compound microscopes are parfocal, which means that the objects remain in focus as you change from one objective lens to another. Examine your material first using the lower power objective (i.e. 10X); then use a higher power objective (i.e. 20X or 40X). Because the objectives are parfocal, you need to use only the fine focus knob to fine tune your image. Never use the coarse adjustment to focus downward. Replace and remove a slide only after the lowest power objective has been rotated into viewing position.
5. Never attempt to repair a microscope or force an adjustment knob. You may severely damage the instrument.

Parts of a Microscope:

Ocular: The piece you look through. Sometimes called an ocular lens or eyepiece, this unit is really a series of lenses. Our microscopes are binocular, having two oculars. Learn to use both eyes; focus your eyes as if you were looking at an object about five to ten meters in front of you. You should adjust the width of the oculars to match the width of your eyes.

Objective lens: Sometimes called the objective; a set of self-contained lenses. The objective gathers light and directs it through the tube to the oculars. These microscopes have three phase contrast objectives (10X, 20X, and 40X with red lines on them) and one bright field objective (20X with no red line).
Nosepiece: The rotating turret to which objectives are mounted. There are preset positions for each objective, detected by slight pressure changes while turning the nosepiece and usually a clicking noise. You should not grab the objectives to turn the nosepiece – use the black ring instead.

Stage: The flat surface upon which slides are placed. On your microscopes, the stage moves up and down and the slide is manipulated by a geared device. A moveable stage is sometimes called a mechanical stage. The slide is moved left/right and front/back by two knobs projecting downward from the stage.

Condenser: A lens system under the stage that gathers light from the light source and focuses it on the specimen. There is a diaphragm in one part of the condenser that can be adjusted to allow the viewer to see different parts of the cell when using bright field illumination. You should experiment with this control. These condensers also have phase rings but you should not have to make any adjustments to them.
Condenser Adjustment Control: Under the stage on the left side is a small knob that is used to adjust the height of the condenser. Usually, the condenser always will be all the way up.

Light Switch Control: The light switch and intensity controls are on the right side of the microscope base, about half way up the side. There is an on/off switch as well as a brightness control. Use only as much light as necessary to illuminate the specimen.

Light Source: On our microscope the light source is built into the base and is directly under the condenser.

Adjustment (Focus) Knobs: Both coarse (large) and fine (small, inner) adjustment knobs are found on both sides of our microscopes. Remember that the coarse adjustment is used only with the low-power objective. These knobs control a gear mechanism that raises and lowers the stage.

Types of Microscopy

There are three different ways that we can view specimens with these microscopes. The type of illumination with which people are most familiar is called **Bright Field**. Think of the light source as producing a solid tube of light that travels up to and through the condenser. When you view specimens with all of this light, you are using bright field illumination.

Dark Field: Dark field illumination seems like an oxymoron, but in this case it describes an unusual way of viewing specimens in some compound microscopes. The light that passes directly through the condenser does not enter the objective lens. Only light that has been scattered or reflected by the specimen enters the objective. As a result, you wind up seeing bright objects on a dark background.

Phase-Contrast: Phase-contrast microscopy allows us to see otherwise transparent organelles and structures. We will make extensive use of this for viewing flagella. In a phase-contrast scope, the light hits the specimen and some of the light continues in a direct path. Other portions of the light pass through membranes that redirect the light. This redirected light is slowed down by 1/4 a wavelength (a phase shift of 1/4) by passing through a special filter. This special filter is shaped like a doughnut and is called a phase ring. The redirected and out of phase light eventually reaches your eyes but not at the same time as the unaltered light that passed straight through. The end result is that you can see transparent structures because they altered the pathway of light as it went through the structures. This phase shift allows us to view subcellular structures within living cells.

Viewing A Specimen:

Everyone will follow the procedure for viewing a specimen as a group. Your instructor will demonstrate how to make a wet mount (see below) and show you the differences between bright-field, dark-field, and phase-contrast microscopy using a microscope that is equipped with a camera and projector. In this session, we will be looking primarily at wet mounts. A **wet mount** is a specimen mounted in an aqueous solution but you do not expect to keep the slide for very long. If your preparation begins to dry out while you are working with it, make a new one.

Every time you work with a microscope:

1) Position the scope so it is directly in front of you and your chair is adjusted so that you do not have to strain to view a specimen.
2) Make sure the light intensity control is turned all the way off before turning on the microscope.
3) Make sure the 10X objective is in place over the specimen.
4) If you are making a wet mount, clean the microscope slide by fogging it with your breath and then wiping it with a Kimwipe.

Bright Field
1. Switch on the light source and then dial the adjustment knob to about 4.0. Start with the oculars set so they are at equal heights.
2. Turn the condenser so that the “O” is facing you. This position is the bright field slot on the condenser.
3. Position the low-power (10X) objective over the specimen and, looking from the side, raise the stage as high as possible. Notice how close to the objective the stage is.
4. Use the coarse adjustment to lower the stage away from the glass slide while looking through the oculars until the specimen comes into focus. Adjust the focus to its sharpest with the fine adjustment knob.
5. Now it is time to make sure both oculars are focused. Use the fine focus while looking through the right ocular and close your left eye. Pick one object to focus on. Then close your right eye and focus the left ocular by turning it up and down with the focusing ring for the left eye but do not touch the fine focus control during this time.
6. Readjust the light intensity to reduce glare and center the specimen in the field of view by moving the stage.
7. Use the knob on the left side of the condenser to move the condenser up as high as possible. You may also want to adjust the condenser’s diaphragm to maximize the resolution but minimize the “graininess” of the image.
8. Place the 20X objective (no red line) over the specimen and sharpen the focus with the fine adjustment knob (only!) as necessary. Readjust light.
9. Adjust the condenser’s diaphragm to maximize the resolution of the structure you are trying to see. The actual setting will depend on what you are trying to see. Small translucent objects will be seen more easily with the diaphragm closed substantially while large pigmented structures are easier to see with the diaphragm wide open.
10. Repeat steps 8 and 9 but use the 40X objective instead of the 20X.

Dark Field
1. Turn the condenser ring clockwise so that the “D” is facing you. This position will permit you to see objects in dark field illumination. You also must adjust the condenser so that it is as high as it can go - use the knob on the left side of the scope. You can use dark field illumination with any of the four objective lenses.

What structures can you see now that you could not see in bright field?
What is difficult to see in dark field that was easy to see in bright field?

Phase-Contrast
12. When you use phase-contrast, you must match the objective lens with the phase ring in the condenser. Therefore, you must follow this table:

<table>
<thead>
<tr>
<th>Objective Lens</th>
<th>Phase Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X, 20X (red lines)</td>
<td>10</td>
</tr>
<tr>
<td>40X (red line)</td>
<td>40</td>
</tr>
</tbody>
</table>

A Reminder: only the objectives with red lines can be used for phase. The 20X objective
that does not have a red line on it is not equipped with phase rings.

13. Select the appropriate objective lens and phase ring pair. You might need to increase the amount of light since images do not appear as bright in phase. When you have done this, you should adjust the condenser vertically with the knob on the left side of the condenser. When these adjustments are made, using a phase-contrast microscope is similar to using a bright field scope.

What structures can you see now that you could not see in bright field? Dark field? What is difficult to see in phase-contrast that was easier to see in bright field? Do you see the same colors in phase that you saw in bright field? Dark field?

Lab Notes
The dynamics of flagellar regeneration

Focused Reading: pp 81-82 “Microtubules…” to “Centrioles…”
Figures 4.21 (pg. 80) & 4.23 (pg. 82)

Overview:
Over the next three weeks we will become comfortable with a fundamental tool in biology - the compound microscope. We will conduct a series of experiments on a unicellular green alga, *Chlamydomonas reinhardtii*, or Chlamy for short. Chlamy is a biflagellated green plant that reproduces asexually (by mitosis) and sexually (via meiosis, mating, and zygote formation).

Background Information on Chlamy
There are several reasons why *Chlamydomonas* is such a useful model organism. It is a haploid organism, which means there is only one copy of each chromosome. Therefore, the genotype is always expressed in the phenotype (unlike diploids that may have a recessive mutation that is not revealed in the phenotype). It has a generation time of two weeks (from mating of one generation to when the next generation can mate). Finally, there are hundreds of mutant strains (stored at Duke University) that have been generated over the years and can be used for research. For example: *ac-17* cannot fix carbon during photosynthesis, *arg-7* requires the amino acid arginine to be added to the medium since it cannot synthesize its own; *act-1* is resistant to the translational inhibiting drug cycloheximide; and *pf14* has straight and paralyzed flagella so it cannot swim.

Each person should:
A) Place 25 µl of Chlamy on a clean (use a Kimwipe) glass microscope slide and cover with a coverslip. Do not press down on the coverslip or else you will crush the cells. Place the slide on the stage of the microscope and use the 10X objective lens to observe the cells swimming around. Start with bright field, then try dark field and phase-contrast.
 1. Can you see the flagella?
 2. Which form of illumination allows you to see them the best?
 3. What is the total magnification you are using with a 10X objective lens and the 10X oculars?

B) Increase the magnification by using the 20X objective lens. Again, view the cells in bright field, dark field, and phase-contrast. Remember to use lenses with the red ring for phase and the 20X without the red ring for bright-field.
 1. What is your total magnification now?
 2. Can you see the flagella? Which form of microscopy is the best for seeing flagella?
 3. Can you see any other organelles in these cells? (Try all three forms of illumination.)
 4. How can you see flagella better without staining them?
 5. What colors do you see in Chlamy cells?
 6. What structures are responsible for the colors?
 7. How do you calculate the total magnification you are using on a microscope?

C) On the same slide but separate from the previous sample, place 12.5 µl of mt* cells into 12.5 µl of Lugol’s fixative [Lugol’s fixative is a dye that stains the sugars that are covalently bound to the proteins (sugar coated proteins are called glycoproteins) on the surface of the flagella]. Examine this preparation of stained cells under the microscope. View the cells at all three magnifications with each form of illumination.
What structure(s) can you see better with fixed cells than with live, unstained cells? Give two possible reasons why.

Goals for this Session:
During this session, you will collect data on the regeneration of flagella on Chlamy. These cells will have been deflagellated before you come to lab and you will measure the length of the flagella over a one hour time period. You will learn how to use an imaging program called ImageJ to capture images of the cells and measure their flagella on the computer.

This set of experiments requires a lot of teamwork. You should have decided who will do which job(s) in order to make the necessary observations, and record all the information. [However, in the interest of your own edification and getting more bang for the buck, each person should sneak time to make observations for yourself because there will be test questions which are based on your laboratory work.] Do not waste time at the beginning of lab. The cells have just lost their flagella which means they cannot follow the best light in order to eat, or escape predators. They will start regenerating their flagella ASAP. On the other hand, do not begin the experiments below until you are ready - you may have to repeat the entire process if you begin before organizing yourselves because, “I thought you were keeping the time!”

You will want to measure the length of the flagella as a function of time. At each time point, two people should each measure the length of 20 flagella (total of 20 flagella on 20 cells). Once the cells have been fixed with Lugol’s solution, the data are safe and you do not need to rush. With this point in mind, you might want to rotate the job of measuring flagella. You should organize yourselves so that aliquots are fixed every 15 minutes. You will use the same ingredients, reagents, as last week so stain them with Lugol’s to fix the cells and flagella and to enhance visualization.

Detailed Protocol:

A) Your instructor has laboriously removed the flagella from about 5.0 X 10^{12} Chlamy cells

B) Because there are four people in a group, each person should have a job:
 • Person #1 should record all the data and make sure that no time points are missed.
 • Person #2 should be the time keeper and fix all the aliquots at the right times.
 • Persons #1 & 2 should prepare all the slides for the other two team members.
 • Do not make the slides until you are ready to measure them (avoid dried out slides).
 • Persons #3 & 4 should measure the length of the fixed flagella using ImageJ.

C) • Person #1: fill microfuge tubes with 50 µl Lugol’s fixative labeled with 0, 15, 30, etc.
 • Person #2: At the appropriate times add 50 µl of deflagellated Chlamy to the appropriate microfuge tube and move the flask back to the light shelf.
 • People #3 and #4: measure the longest flagella of > 20 fixed cells.

D) This cycle of events should happen every 15 minutes. **DO NOT** record averaged data in your lab book. Enter the raw data; there will be time to average the results later and a good scientist keeps all data in their notebooks, not just the averaged results. (Though published data is usually averaged data not raw data.) If you were working in a research lab and you recorded only averaged results in your lab notebook, you could find yourself in jail for misrepresenting your data. It’s far better to take too many lab notes than too few.
E) After you have collected all the data you should clean up. Clean your area, turn off the microscopes, throw away any trash, and return any equipment to where you found it. This step is important because so many people use this equipment and room. If you work in any research lab, you must show good lab etiquette by cleaning up and returning things properly or you could become unemployed.

<table>
<thead>
<tr>
<th>time (min.)</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>90</th>
</tr>
</thead>
</table>

General Information about *Chlamydomonas* Flagella

To remove Chlamy flagella we use the pH shock method. As it so happens, Chlamy is very sensitive to changes in its environment. If we manipulate the pH of the growth medium by adding acetic acid until the pH decreases from about 7.2 to 4.5, the cells shed their flagella. Scientists have investigated why this event happens. We know that cells will not shed their flagella if there is no calcium in the growth medium. (Calcium can be removed from any solution by adding in a compound commonly referred to as EGTA. EGTA has a very high affinity for calcium and acts as a chelator, like a molecular sponge, to absorb ionically all the calcium, which means Chlamy cells can not use or sense any calcium ions if EGTA is present.) Other researchers have shown that if one can experimentally elevate the level of calcium in the cytoplasm of Chlamy cells, they shed their flagella. Hypothesize what is going on when Chlamy cells shed their flagella when pH shocked in the presence of calcium. Can you devise an experiment to test your hypothesis?

By now you may be wondering why anyone would care about the dynamics of pond scum flagellar regeneration. Chlamy is a model organism for studying flagella and much of our understanding of cilia and flagella is due in large part to our understanding of Chlamy flagella. As you read in your textbook, the flagella are comprised of many (~200) different proteins, but the predominant protein is tubulin. Each Chlamy flagellum is built upon the 9+2 structure of microtubules (see the figure below). The outer nine microtubules are “doublets”, consisting of a complete circle of 13 protofilaments fused with a partial circle of 10 protofilaments. The two centrally located microtubules consist of a “singlet” of 13 protofilaments. Therefore, each flagellum contains (9x(13+10)) + (2x13) protofilaments. Each protofilament is composed of dimers of α tubulin and β tubulin. Each monomer of a globular tubulin molecule has a 4 nm (4·10⁻⁹ meters) diameter and is comprised of 450 amino acids. Therefore, the α / β dimer has a diameter of 8 nm and is made of 900 amino acids. Although there are multiple genes for tubulin, for the sake of simplicity let’s assume a single gene for each form of tubulin (one for α and one for β). These prototypical genes are about 1800 bases long. Remember that Chlamy is haploid so one allele = one gene = one locus.
Diagram of tubulin structure in flagella. Compare with Figures 4.21 and 4.23 in your text.

Study questions:

1) Based on your results for flagella regeneration, calculate how many amino acids are being polymerized per minute into the tubulin component of the regenerating flagella.

2) Assume that all of the mRNA needed for this process is being synthesized de novo, from scratch. How many mRNA bases (assume no introns) must be transcribed per minute if every mRNA is translated only once? What if each mRNA is translated 100 times?

3) If RNA polymerase can travel no faster than 2500 bases per minute, is it possible for all of the RNA to be transcribed de novo? Explain your answer.

Note: You will not be able to answer these questions with your experimentally determined rate because that rate will not be determined for another two weeks. However, make the assumption that flagella regenerate at 0.17 µm per minute. Once you have determined the rate in your experiment, you should try the calculations again.
Measuring flagellar lengths with ImageJ

Wake the computer from sleep mode by tapping the space bar a couple times. If the computer is off, turn on the computer by pressing the power button on the monitor. Do not push any buttons on the computer box itself.

Find the visicapture icon in the tool bar at the bottom of the viewing area. Click once on this icon to launch the program. Visicapture is the tool that allows you to capture images from the microscope.

Put the stage micrometer on the stage and turn on the microscope. Use bright field optics to view the micrometer with the 10X objective. When the microscope is on and you have a slide in place with the 10X objective, pull out the lever (sometimes called a stop) that sends light up to the digital camera. Find the object and focus the microscope. Now hold down the Apple () key and type a “G” which we will abbreviate as “G”. When you simultaneously hit these two keys you activate the camera if it is off or take a picture when the camera is on. You can use G as a toggle switch between live and captured image modes.

1) Because these cameras can capture color images, you want to set the white balance properly. To do set the white balance, move the microscope stage until you reach a clear part of the slide (with no Chlamy or dirt) have a white area showing. Turn up the light to the brightness you want. Now click and drag to form a box in the white area, as shown at left.

2) Next, select “Show Properties...” from the Image menu. Click on the AWB button if you have already selected an area to be designated as “white.” This will take a few seconds for calibrating the digital camera. When this is complete, you should not have to adjust the white balance any more. If colors look funny to you later, then you can reset the AWB as needed.

Now change the objective lens to the 40X power and refocus using only the fine focus knob. When the stage micrometer is in place, you will see something similar to the image below. Notice that you can distinguish the long and short lines in this image. Make sure you can see the difference in the long and short lines in your image. Move the stage if necessary.
In the File menu, choose “Save As”. You will see a dialog box similar to the one below. Save the image as a tiff file, which is the most complete form of the image. If you wanted to post the image on a web site, save as a jpeg file (.jpg). Save the image to your desktop folder for now. You can move it another folder later.

It is time to calibrate the computer so it can apply real, physical dimensions to the number of pixels on the computer monitor. To do this, you must launch ImageJ. You can either click on the icon in the dock one time or drag the tiff file you just created onto the icon. If ImageJ is already launched, then you can still “drag and drop” the file onto the ImageJ icon in the dock.

9) Now it is time to draw a line on your calibration image. To do this, select the straight line tool from the ImageJ menu window:

If you cannot find this menu, just hit the return key and it will reappear.

Draw a line from the middle of one long bar to the middle of the next long bar:

Notice that the yellow calibration line barely touches the tops of the four short bars. This helps ensure that the calibration line is fairly straight, even though the image is at an angle. Also notice that the yellow calibration lines goes from the middle of the long bar on the left to the middle of the long bar on the right. (Think about why it would not be accurate to draw a calibration line from the middle of one bar to the left or right side of the other bar.)

Tell ImageJ that the line you have just drawn is exactly 50 µm (micrometers or microns; often abbreviated as microns) long. To do this, select “Set Scale…” from the Analyze menu. You will see a dialog box similar to the one at left.

This converts pixels on the monitor to microns. Once you have calibrated ImageJ for this session at a given magnification, you do not need to recalibrate.

Test your calibration by drawing a line from the middle of one short bar to the middle of the next short bar. Then type “M” or select “Measure” from the Analyze menu. A new window should
appear that shows you your results:

However, notice there are three columns that are irrelevant. To get rid of these three columns, while the Results are still displayed, choose “Set Measurements…” from the Edit menu. Deselect all the options as shown:

Close the Results window by clicking on the red dot in the top left corner. Then type “M” again. If you do not see the Results window, choose “Results under the Window menu. Your data should just appear as length in microns, as you have calibrated ImageJ.

Now you are ready to measure flagella. Rotate the objective to 10X, remove the stage micrometer slide and store it safely. Put a wet mount of Chlamydomonas cells on your stage and find the cells in 10X before increasing magnification to 40X. When you see a flagellum you want to measure, type “G” to capture the image and then ImageJ to measure the flagellum. However, because flagella are not straight, you will need to select the Free Hand tool from the ImageJ window:

Trace the flagellum from one end to the other, then type “M”. CAUTION: Sometimes Java programs are unstable and may crash (true on all platforms). Therefore, we recommend that someone record the lengths as they are measured so you won’t have to repeat any measurements if ImageJ crashes.

You will need to capture at least 20 images of flagella (only count one flagellum per cell and measure only the longer of the two). Each time you capture the image in VisiCapture, you will need to measure it in ImageJ. Repeat this process until all your measurements are collected.
Luckily, ImageJ can perform some calculations for you. When you have all your measurements collected, choose “Summarize” from the Edit menu:

You will find the mean, standard deviation as well as the maximum and minimum lengths you measured.

When you are ready to measure another round of flagella, you can choose “Clear Results” from the Edit menu to clean out the results table.

Preparing for Next Week’s Experiment:

At this time, each laboratory group will formulate an hypothesis and design an experiment to test that hypothesis. To formulate an hypothesis, you might just wonder aloud, “What if we....?” For instance, what if we prevent the cells from transcribing any new RNA? What if we prevent the cells from translating any new proteins? What if these plant cells are put in the dark? What would happen in the presence of added ATP? caffeine? glucose? amino acids? EGTA? When your lab team has agreed upon a question that interests you, you then should use your knowledge of molecular and cellular biology to formulate a probable answer to your question. For example, if we block translation with the drug cycloheximide, then you might hypothesize that flagella will not grow at all. This hypothesis is a good one because a good hypothesis can be tested. A bad hypothesis might be, “Chlamy cells do not like to have their flagella removed and are happier when the flagella are regenerate.” This hypothesis is practically impossible to test. Formulate your hypothesis so that you can design an experiment to test it. To help you formulate a testable hypothesis consider the reagents that we can make available to you in lab next week:

<table>
<thead>
<tr>
<th>NAME</th>
<th>FUNCTION</th>
<th>STOCK Conc.</th>
<th>FINAL Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloheximide</td>
<td>translation inhibitor</td>
<td>2 mg/ml</td>
<td>10 µg/ml</td>
</tr>
<tr>
<td>Actinomycin D</td>
<td>transcription inhibitor</td>
<td>5 mg/ml</td>
<td>50 µg/ml</td>
</tr>
<tr>
<td>Caffeine</td>
<td>cyclic nucleotide (cAMP) phosphodiesterase (PDE) inhibitor</td>
<td>66 mM</td>
<td>6.6 mM</td>
</tr>
<tr>
<td>Calcium</td>
<td>signal transduction/second messenger</td>
<td>100 mM</td>
<td>1 mM</td>
</tr>
<tr>
<td>Lithium chloride</td>
<td>disrupts production of IP₃ (NOTE: lithium is a teratogen)</td>
<td>1M</td>
<td>20 mM</td>
</tr>
</tbody>
</table>

Remember to include good controls in your experimental design. A good control is an experimental condition that will give you a standard or predictable result against which you can
compare the results of the condition you are actually interested in studying. For example, if you wanted to see the effects of disco music on the regeneration of flagella, you would design an experiment that had two experimental conditions:

1) Cells regenerating their flagella in the presence of disco music
2) Control cells regenerating their flagella in the presence of non-disco music at the same volume, beat, etc. (*Notice the difference between the control and experimental is only one variable - the presence or absence of disco music.*)

Your hypothesis probably might be that disco will prevent flagella from growing. This hypothesis is a testable hypothesis because you can measure the length of the flagella in the two situations (with and without disco). Let’s look at a hypothetical set of results. When the cells are subjected to disco, the flagella did not grow. When the cells were grown in the presence of normal music, they did not grow either. How should these results be interpreted? Did disco prevent the regeneration? What do the results of your control condition tell you? Why must every experiment have good controls?

Each group should decide upon a question to answer next week, formulate an hypothesis, design the experiment, and discuss the protocol with your instructor. This meeting will give us a chance to answer any major questions you might have and order the reagents you will need.

Your written protocol must be turned in today and it should be specific enough so that next week, you can come into the lab and begin immediately by following your own directions. Your instructor will look over your protocol and give you feedback.

You also should have the following in your lab notebook:
1) The data from today’s experiment.
2) Answer all the questions asked of you in the protocol above (with the exception of the optional question regarding the moon).
3) You should note any observations you think note worthy - use your best judgment.
Evaluating Parameters that Affect Chlamy Flagellar Regeneration

<table>
<thead>
<tr>
<th>Review Reading:</th>
<th>pp 119-123; pp 290-292; pp 296-299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Note:</td>
<td>You will be working with iodine in this lab and there is a risk of staining your clothing, so you may want to wear old clothes.</td>
</tr>
</tbody>
</table>

You will perform the experiments you have designed. If any modifications were made to your written protocols, you should talk to your instructor before you begin your experiment. Today will be a busy session of performing your experiment and collecting data. Do not worry about analyzing your data today. You will spend the next lab session analyzing data.

Control Data

<table>
<thead>
<tr>
<th>time (min.)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Experimental Data

<table>
<thead>
<tr>
<th>time (min.)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
Before you leave lab today:

Start thinking about the next set of experiments we will be conducting. Using a modified version of the Ames test, we will be testing the mutagenicity of various compounds. By next week's laboratory session, bring something (Your Favorite Potential Mutagen - YFPM) you have been curious about or have heard “might cause cancer”: tobacco, hair dyes, smoked meats, fried bologna, charcoal, pesticides, insecticides, rat poison, UV light, caffeine, ethidium bromide, mustard, green M&Ms, peanut butter - be creative! We will prepare these materials for you so you can test their mutagenicity.

When your read about the Ames test, be sure to think about controls (positive and negative) and how you can determine the dose response of your agent. Do your protocol as before: state a hypothesis, determine how many conditions you are going to test (and thus how many petri plates you will use), and be detailed enough in your outline of procedures so that you know what you are doing.

Lab Notes
A Beginner’s Guide to Descriptive Statistics

Special Note: You must bring your potential mutagen to lab today

At the start of lab your instructor will give you directions for preparing YFPM (your favorite potential mutagen) for the Ames test next lab. You will spend the rest of the lab period discussing statistical analysis and preparing your lab reports.

When you have collected a large set of data, you need to use some descriptive statistics to convey the important aspects of the distribution of your data. Two features of the distribution that you should describe include:

1) The central tendency
2) The spread of your data

Mean (a.k.a. average)
A simple measure of the central tendency of the data is the mean (or average):

\[\text{Mean} = \frac{\text{sum of all the data}}{\text{sample size}} \]

For example, with the data set (1,1,1, 5), \(n = 4 \); the mean is \(8 ÷ 4 = 2 \).

Range
The simplest measure of the spread of your data is the range, which tells you the distance between your most extreme data values, but does not address the issue of how frequent these extreme values are. The formula for calculating the range is:

\[\text{Range} = \text{value of maximum data point} - \text{value of minimum data point} \]

For example, with the data set (1,1,1, 5), the range is \(5 - 1 = 4 \).

Variance (Var)
The variance of your data is a measure of spread that will take into account both the deviations of your data (away from the mean) and how frequently these deviations occur. The formula for calculating variance is:

\[\text{Variance} = \frac{\text{the sum of (each data point minus the mean)}^2}{\text{sample size}} \]

For example, with the data set (1,1,1, 5):

\[(1-2)^2 + (1-2)^2 + (1-2)^2 + (5-2)^2 = 12 \]

The variance is \(12 ÷ 4 = 3 \).

Standard Deviation (SD)
The standard deviation of your data is the square root of the variance, and therefore it reflects both the deviation from the mean and the frequency of this deviation. Standard deviation often is used instead of the variance because the scale of the variance tends to be larger than the scale of the raw data, while the standard deviation is on the same scale as most of the data. The formula for standard deviation is:

\[\text{Standard deviation} = \sqrt{\text{variance}} \]

For example, with the data set (1,1,1, 5), the standard deviation is the square root of 3, which is 1.73.
Standard Error of the Mean (SEM)

The standard error of the mean is another common way to describe the deviation from the mean and the frequency of this deviation, but it also takes into account the size of your data set. The formula for standard error is:

$$\text{Standard error} = \sqrt{\frac{\text{variance}}{n}}$$

(n = sample size)

For example, with the data set (1,1,1, 5), the standard error is the square root of $3 \div 4 = 0.866$.

To see why standard error is a useful statistical description, let's consider another data set where the variance equals 3 but $n = 30$.

$$\text{Standard Error} = \text{square root of } 3 \div 30 = 0.316.$$

The same variance of 3 gave different standard errors (if $n = 4: 0.866$ versus if $n = 30: 0.316$) because of the difference in sample size. However, if you look closely at standard error and standard deviation, you will notice that standard error has taken the sample size into account twice. To some extent, this calculation is statistics at its worst. Standard error is a statistical analysis of one set of data treated as if you had actually repeated the same experiment many times and gotten a range of means. In other words, standard error is a statistical approach that attempts to look at the variance of this imaginary range of means and determine the variance of these means. Many scientists use standard error to make their data look better than it really is.

What we would like to be able to say is we are $\geq 95\%$ sure that if we were to repeat a particular experiment another time, the mean value would fall within a certain range. Excel can generate a 95% confidence interval as well. To calculate the 95% confidence interval, the following formula is used:

$$\chi \pm 1.96\left(\frac{\sigma}{n}\right)$$

where χ is the average, σ is the standard deviation, and n is the sample size.
Using Microsoft Excel for Statistical Analysis

Rather than calculating averages, standard deviations, etc. manually, we will enter our data into Excel and have Excel calculate these values for us. As you know, you also can use this program to graph the results as well.

Enter your data and save the file.

Start a new column called average length and click on the first open cell:

Click on the Insert menu and select “Function…” as shown in the image below left. You will then get a window like the one shown below center. Select “Statistical” and then “Average” and click on the OK button. You will then get a dialog box like the one below right. At the top is the formula for averaging the data entered in boxes B2 through U2. You want to make sure all the boxes that you want to have averaged are within the range you have selected. Do not select A2 because that has your time values in it. Then click OK.
Put your cursor on the box in the lower right corner of the box that just calculated your average length at time zero. If you drag the cursor down to your bottom row and then let go, you will have calculated the averages for your remaining rows.

Create a new heading called Standard Deviation in the column next to your averages. Click on the first empty box in this column and insert a function that calculates standard deviations. Then you will get another dialog box. Enter the same range as before. In our example, we are using B2:U2 so we would type “B2:U2” or we could just go to the spreadsheet and highlight cells B2 to U2.

When you click on OK, the standard deviation will appear in that box. Again, you can apply the formula to all the rows below simply by dragging the square on the lower right corner of the cell with the formula.

Enter a new column heading called 95% confidence. Under this heading, click on the first empty cell. Again, go to the Insert menu and select “Function...”. Select “statistical” and “confidence” as shown in the image below left. After you click “OK” will get a new dialog box as shown below right. You will need to enter some information into this dialog box:

1) The alpha number is the percentage of confidence you want. For 95% confidence enter 0.05. (If you wanted a 90% confidence you’d enter 0.1, for 75% confidence 0.25, etc.)
2) The Standard_dev is can be obtained by typing in the box location where the first standard deviation was pasted W2.
3) The size is your sample size, or n value. In this example n=20, because we measured 20 flagella per time period.
When you click OK, you will get either a number or a “#NUM!” if a standard deviation was zero. This prompt is Excel’s way of telling you that zero is an unacceptable value for standard deviation. Ignore that and drag the box down to calculate all the confidence values through 60 minutes. After you have obtained all the values, change any “#NUM!” values to zero. FYI: The standard deviation has to be greater than zero to calculate the confidence value.

You now are done analyzing your data. Obviously, though, the data are not easy to present in this tabular format. It is much more clear to present such data as a graph.

To graph your data, click on the Chart Wizard icon on the top menu bar as you’ve done before. Your graph might look something like the image below.

But your averaged data points do not include any indication of the variation in your data that you just calculated in two ways (standard deviation and 95% confidence). By adding “error bars” to the averaged data points you can indicate how “tight” or “broad” your averaged values were. Very small/short error bars indicate that the averaged values were very similar, while large/tall error bars indicate that values averaged were quite different.

To add error bars double click on any one of the data points (diamonds in the example graph above). You will get a window similar to the one shown below left. Select the Y Error Bars tab and select “both” under the display options. Click on Custom: + box. Use the cursor to select the cells on your worksheet containing either the 95% confidence or standard deviation values. When you release the clicker, this information will be transferred to the Custom: + box. Repeat this process for the Custom: - box, making certain that you selected the very same values. When you click OK you will see that error bars have been added to the data points on your graph as illustrated in the graph below left. Remember that error bars can represent confidence.
intervals, standard deviation, or standard error of the mean, but you will need to tell your audience what your error bars represent. Your figure legend should include a short sentence that indicates what exactly your error bars represent.
Pouring Agar Plates for Next Week’s Lab

Focused Reading: Figure 13.6 on page 264

NOTE: You do not need to wear gloves while pouring the agar plates, because no mutagenic chemicals or bacteria are involved in this procedure.

1. Use the work area with absorbent bench paper. Label your petri dishes with a small identifying mark on the edges of the dishes.

2. Look in the water bath on your table for a flask of Davis Minimal Agar (DMA). It has been autoclaved to make it sterile and is being kept at 47°C to keep it liquefied.

3. Think about these important points in pouring a petri plate before doing it:
 a) You must work quickly, because once the container of minimal agar is removed from the bath, it will start to harden within 2-3 minutes.
 b) When pouring agar into the petri dish, pour just enough to fill the dish about half way.
 c) Although you must work fairly quickly, pour the agar gently to minimize the number of bubbles (bubbles look amazingly similar to colonies when the agar hardens).

4. When you are ready to pour:
 a) Pull out the container of DMA and remove the cap.
 b) Open the cover of the petri dish halfway and pour in the agar to just cover the bottom of the dish. Try to minimize the introduction of bubbles.
 c) Repeat for all the dishes.
 d) Immediately rinse the flask with warm water to facilitate washing the flask.

5. Let the plates harden 15 minutes before moving them. These plates will be stored “upside down” until next week’s lab.
The Spot-Overlay Ames Test

Focused Reading: pp 251-255 “Point Mutations...” to “Chapter Summary"
Web Reading: Sodium Azide Mutagenesis: ntp-server.niehs.nih.gov/htdocs/LT-studies/tr389.html

Goals for This Session:
During this session, you will pour agar plates to be used in next week’s experiments. You will become familiar with the Ames test, which is a worldwide standard for testing new compounds to determine if they are mutagenic. The method you will use this week was developed here at Davidson College and allows us to screen more compounds quickly and cheaply. Next week, we will use the traditional method to quantify the degree of mutagenicity for selected compounds.

NEWS ITEM: Dr. Bruce Ames was awarded the Japan Prize ($210,000 cash) for his lifelong work with carcinogens. "When people ask me if I’m the ‘Ames’ of the Ames test, I say: ‘That was so long ago, that was my father.’" Dr. Ames is professor of biochemistry and molecular biology at UC-Berkeley and his research is focusing on the relationship of aging, nutrition, and cancer. You can find four papers by his group in the April 1, 1997 issue of Proceedings of the National Academy of Sciences in the library.

Background
Our environment is full of potential carcinogens (cancer-causing agents) such as UV light, industrial pollutants, pesticides, food additives, and natural products such as tobacco. These carcinogens can induce cancers because they are mutagens (chemicals that cause mutations), which change the nucleic acid sequence of DNA. It is important to have a rapid and inexpensive assay for testing chemicals we suspect are carcinogenic, including the large number of new synthetic chemicals being produced each year.

It is estimated that 90% of all carcinogens are also mutagens, and with this thought in mind, Bruce Ames and his colleagues developed a test in the 1970s that uses special bacteria that are very sensitive to mutagenic agents. The Food and Drug Administration (FDA) now uses the Ames test to screen many chemicals rapidly and inexpensively. Those few chemicals that appear to be mutagenic by the Ames test are tested further in animals to assess their ability to cause cancer.

Wild-type cultures of the bacterium Salmonella typhimurium grow in media without the addition of any amino acids. This growth is possible because they have metabolic pathways for making all of their own amino acids. Each amino acid has a separate pathway for its synthesis. For example, Figure 1 shows the pathway for histidine synthesis, which begins with catabolic intermediate C and uses nine enzymes (numbered 1-9 in figure 1) to convert C into histidine.
Figure 1. Schematic overview of Salmonella typhimurium metabolism and the effect of a non-repaired point mutation in the histidine synthesis pathway. (Top) Metabolism of a normal (prototrophic) S. typhimurium that can make its own histidine. The catabolism (breakdown) of the food source produces a precursor (C) that is needed for histidine synthesis. The formation of each intermediate (a-i in ovals) in the histidine synthesis pathway is catalyzed by a different enzyme (arrows 1-9). Each enzyme is a protein encoded by a separate gene. The absence of any one of the nine enzymes would prevent histidine synthesis. (Bottom) Metabolism of an auxotrophic (His-) mutant that cannot make its own histidine. Here the catabolism of food still produces the precursor (C), but enzyme 4 is not made due to a point mutation in the encoding DNA. Consequently histidine synthesis is interrupted because intermediate (c) cannot be made, preventing the rest of the enzymes from binding to their substrates and synthesizing the appropriate products. In order for this auxotroph to grow histidine must supplied in the medium it is growing in.
The Ames test uses a mutant strain of *Salmonella typhimurium* that cannot grow in the absence of the amino acid histidine because a mutation has occurred in a gene that encodes one of the nine enzymes necessary for histidine biosynthesis (see Figure 1, bottom). The mutation prevents translation of a functional enzyme #4, and thus the cell cannot complete the conversion of the catabolic intermediate \(\mathbf{C} \) to histidine. Therefore, the Ames mutants only can grow if histidine is supplied in the growth medium. These auxotrophic mutants are called *histidine-dependent* or his’ (pronounced hiss-minus) mutants because they depend on an external source of histidine to grow. Auxotrophs are mutant individuals that cannot make all the metabolic products that wild-type (prototrophic) individuals of the same species can make.

There are several different mutant strains of *S.typhimurium* that have different mutations in their DNA. We will use a variety of different mutant strains that have important distinctions that make them suitable for detection of different types of mutagens. Below is a list of the available strains and the type of mutation each strain carries:

- **TA 1535** has a base substitution that produces a missense mutation in the gene coding for the first enzyme of histidine synthesis. The mutant enzyme has a proline where a leucine is in the wild-type enzyme.
- **TA 100** is very similar to TA 1535, but is supposed to detect a different range of mutagens.
- **TA 1537** has a frameshift mutation (deletion of one nucleotide) in a different gene than is mutated in TA 1535.
- **TA 1538** has a different frameshift mutation (insertion of one nucleotide) in the same gene that is mutated in TA 1537.
- **TA 98** is similar to TA 1538 but is supposed to detect more mutagens than TA 1538 does.
- **TA 102** is significantly different from the others. It has an ochre mutation which means that it has a nonsense mutation. This mutation occurs in the same gene that is mutated in the strain TA 1535.

In addition to the mutations listed above, there are two other important traits shared by each of these strains. 1) These mutant strains lack a DNA excision-repair (proof-reading) mechanism that exists in wild-type bacteria and would normally repair any new mutations in the DNA that are caused by exposure to mutagens during our experiments. The result of this defect is that DNA errors are not corrected, thus enhancing the strain’s sensitivity to mutagens. 2) These strains have a defective lipopolysaccharide layer that allows chemicals to penetrate more easily into the cell than is true with wild-type bacteria.

In summary, we have mutant strains of *Salmonella typhimurium* that cannot synthesize histidine, are very susceptible to additional mutations because they lack the normal repair mechanisms found in bacteria, and are more permeable than wild-type bacteria to external chemicals, including potential mutagens. In order for these cells to survive on a plate that lacks histidine, they must "learn" how to synthesize histidine by undergoing another mutation that corrects the original mutation that prevented the production of the missing enzyme. This type of mutation is known as a back mutation, or reversion, because this second mutation returns the mutant to the wild-type
genotype. This reversion can happen spontaneously or as the result of a mutagen. To be considered a mutagen, a compound must result in a mutation rate more than double the spontaneous mutation rate. Note that many mutations, in many different genes, may be occurring in the bacteria. We, however, can detect only the mutations that result in a phenotypic reversion.

A brief note about mutations: a mutation is any change in a DNA sequence from the original sequence of nucleic acids, and mutations happen all the time in your cells. Sometimes it is because a mutagen comes from the outside of the cell and in some manner creates changes in the DNA. Often the mutations are just errors that occur during DNA replication when cells divide. In fact, there is an average of nearly one mutation (error) in your DNA every time one cell divides. Your cells have ways to repair the mutated DNA, and they usually do, but if the mistake is overlooked, the change in the DNA is maintained in future replications in the cell. This scenario represents one way that a “spontaneous” mutation can occur; there was no obvious cause on which to blame the mutation.

To determine the number of revertants following exposure to a mutagen, we must have a way to differentiate the mutant strain we started with (his auxotrophs) and the new mutants we may generate (his - revertants). The Ames test uses a chemically defined medium for this purpose, meaning the amounts of each ingredient are known, and the medium is lacking one nutrient necessary for bacterial growth. If a his culture is placed on a chemically defined minimal agar lacking histidine, only those cells that have mutated to his (revertants), will grow and form colonies. In theory, the number of colonies that revert and grow is proportional to the mutagenicity of the test chemical.

The chemically defined medium used for the Ames test actually has just a trace (growth limiting) amount of histidine added only to the soft agar overlay. Trace amounts of histidine in the medium are necessary because some mutagenic agents act preferentially on actively replicating DNA. When Ames mutants are plated on this medium, they grow until they run out of histidine (only 2-3 cell divisions lasting about one hour), and the result is a faint, nearly invisible lawn of growth within the overlay. Conversely, revertant bacteria should form large colonies because their growth is not limited because they can produce their own histidine. Each large colony represents one revertant bacterium and its offspring.

By definition in the Ames test, a mutagen is any chemical agent that results in twice the number of mutants as occurred spontaneously, and thus is potentially carcinogenic for humans.

What you have read is an overview of the theory behind the Ames test that we will use. Many chemicals in nature, however, are not carcinogenic/mutagenic until after they are consumed by an animal. One job of the liver is to detoxify harmful chemicals, but in the process some chemicals are converted into very potent mutagens. For this reason, all test chemicals used in the Ames test by the FDA are routinely incubated with rat liver extract in an oxygenated environment so that liver enzymes, such as oxygenases, will “activate” the chemical being screened; the “activated” chemical then is added to the bacteria. Due to the potential hazards associated with this step, we will not pre-treat our potential mutagens with liver extracts. Instead, we determine if various agents are mutagenic in their “unactivated” states.

NEWS ITEM: Remember the vole found near Chernobyl that was resistant to mutations and also had high levels of IDH (mentioned earlier in the lab manual)? It is speculated that the particular allele carried by these mutation-resistant voles is more effective at inactivating oxygen radicals formed by the radiation. Oxygen radicals can “activate” chemicals and cause them to become mutagenic. Hmmm.....
Overview of the Experimental Series with the Ames Test

The ultimate goal of the laboratory series on the Ames test is to have you design experiments to test an unknown potential mutagen. For the first week, we will use a new variation of the Ames test that was developed at Davidson College during the summer of 1997. This new variation is called the **Spot-Overlay Assay** and it is designed to allow us to screen a number of different chemicals quickly and cheaply. Every lab group will use sodium azide as one of its potential mutagens because we know that this chemical is a powerful mutagen (positive control). The second week, we will use the standard overlay assay developed by Dr. Ames to quantitate any mutagens detected by the spot-overlay assay. To perform the Ames test successfully, you will have to be careful to maintain sterile conditions, because you want only *Salmonella typhimurium* in your petri dish and not other contaminating strains from the air, your fingers, lips ... you get the picture. Furthermore, you must be very careful in this laboratory series:

THIS LAB HAS POTENTIAL HAZARDS!

1) Does “*Salmonella*” sound familiar to you? It is the bacteria that turns your stomach inside out after eating bad potato salad.

2) You will be handling potential or known carcinogenic/mutagenic materials.

YOU MUST WEAR GLOVES AT ALL TIMES WHEN HANDLING THE CHEMICALS AND BACTERIA USED IN THESE EXPERIMENTS.

We have faith in your abilities to use your common sense and be careful in what you do with test tubes, pipet tips, etc. that have come in contact with the bacteria and chemicals. Enough warnings, now on to the good stuff.

In your experimental designs for both weeks, the use of controls will be important, just as it is in every experiment. A **positive control** is a condition that will test positive in your assay; in this case, that means adding a chemical (a known mutagen) that should allow the cells to grow and reproduce, thus bacterial colonies will grow in a minimal media lacking histidine. **Negative controls** are conditions that should not cause anything to happen. For our experiments, this control would be a condition where no mutations should occur above the rate of spontaneous reversions (such as water). It is very possible that more than one positive and negative control might be needed for each chemical and bacterial strain tested.

Perhaps the best way to think about what controls are needed is to look at the possible results for your “test condition” (i.e. what happens when you add your favorite potential mutagen?) and make sure that you could explain the results. For example, what would happen if you saw no colonies in any of your spot-overlays? What if there were bazillions of cells in every spot-overlay? Your control condition spot-overlays should be designed so that you can interpret these results.

How will you determine the “spontaneous” mutation rate? When you develop an answer to this question, you can look at the possible outcomes of this experiment. There are only two: either you will see more colonies with a potential mutagen present, or you won’t. Take the first possible outcome: if you see more colonies in your spot-overlay with a potential mutagen (due to new mutations) than you see in the spot-overlay with no added chemicals, can you be sure that it was due to the potential mutagen and nothing else? What control(s) do you have to perform to make sure this interpretation is true?
Now the second scenario: let’s say you get few, if any, colonies with your potential mutagen present. Can you be sure that this chemical is not a mutagen? What other variables could be different, or go wrong, to give the result of no colonies? If you were testing bleach and no colonies grew, what could you conclude?

After thinking through the possibilities and discussing them in class, we will have several controls, both positive and negative, to include in our experimental design for this first week.

CAUTION! (Do we have your attention?)
Pay attention to what you are handling. If it is a container containing bacteria or chemicals, be sure and wear gloves. PLEASE have only those people handling these things wear gloves, to conserve their use. You can consume only one pair for the entire lab period if you think.

1) Be aware of where you should throw away used gloves, pipet tips, etc. that have come in contact with bacteria and chemicals **BEFORE** you use them. All trash, including tubes with bacteria and pipet tips go in the orange biohazard bags, which will be autoclaved. The metal caps are cleaned and reused.

2) When handling anything that is supposed to be sterile, such as the pipet tips, petri plates, tubes of distilled water, bacteria, agar, etc., be sure to uncover or uncap items for as brief a time as possible. Also, be sure and keep the caps of tubes and lids of petri plate facing down towards the floor when you are holding them to reduce the possibility of contamination.

Spot-Overlay Protocol
1. Obtain six pre-poured petri plates containing minimal agar (this medium contains no histidine at all). Label on the bottom of the plate your group name, the date, and what strain of cells will be tested. Divide each plate into six equal parts. Label each pie-shaped section with the chemical to be tested in that area. Labeling petri dishes is tricky: we recommend writing small, and around the perimeter.

2. Locate the tubes that contain the soft-agar overlay in the water bath on your table - each group will have 36 (six plates with six spots on each) of these. These tubes have been autoclaved to sterilize them and put at 47˚C to keep them liquefied.

3. Locate the tubes containing the different strains of *Salmonella* that will be kept at room temperature on the lab bench.
4. If you will be touching tubes, pipets, or plates that contain bacteria, you must PUT ON GLOVES.

5. Locate your chemicals to be assayed and any solvents you may be adding to the overlay soft agar tubes.

NOTE: Now you must work quickly to make sure the soft agar overlay does not harden in the tube. Make sure you understand all aspects of step 6 before proceeding.

6. Sterilely add your test chemical and bacteria to the overlay tube and spot this mixture onto the minimal agar.

 a) Set your pipettor to the appropriate volume of test chemical (to be determined after discussions with your instructor). Open the box of sterile pipet tips, aseptically put one on, and take an aliquot of your test chemical (or solvent used as a control) into the micropipettor.

 b) Remove the cap from the overlay tube, and discharge your aliquot of the test chemical into the overlay tube.

 c) Using one strain at a time, swirl the tube containing the bacteria, remove **60 µl of S. typhimurium tester strain** and aseptically add it to the overlay tube from step b above.

 d) After swirling the tube to mix the bacteria and test chemical, withdraw **200 µl of the mixture**.

 e) Lift the top of the petri plate (open end facing down) and quickly but gently discharge the bacteria/chemical/agar onto the minimal agar - you should create a small puddle.

 f) Repeat this step until each strain has been tested with each potential mutagen.

 g) Invert the plates (i.e., store with the lid on the bottom) and place in a 37°C incubator for 48-72 hours.
Analysis of Results (see the start of next week’s lab)

References

Lab Notes
Quantitating Potential Mutagens

Focused Reading: pp 352-355 “Most cancers…” to "Treating Genetic Diseases"

Goals for This Session:
This week, you will count the colonies on each spot on each plate from last week. Each group will post its results on the board and all results will be discussed as a group. We will determine which strains and YFPM suggest that a compound is mutagenic. Then, each group will design a new experiment to quantify the potential mutagen.

Introduction
We will start this week by looking at each group’s data from last week’s spot overlay experiments. Each group should list their results on the front whiteboard. List the number of colonies observed for each strain and test chemical on the board. We will discuss these results together, then each lab group will determine which substance(s) will be quantitatively analyzed with further experimentation today.

Analyzing Your Results
After an appropriate incubation period, your plates were removed from the warm incubator and stored at 4°C. (Ask your instructor for the precise incubation time.) Today you will count the number of visible colonies in each spot-overlay, including your negative control spot-overlay and put those numbers in the table below. Even though the size of the colonies may vary greatly, each colony still arose from only one bacterium that has reverted, thus “all colonies are created equal”. A colony consists of a distinct white spot that you clearly can distinguish from a bubble or other similar looking phenomena. Your definition of a colony (anything that shows up versus only really big ones, etc.) is less important than being consistent in counting colonies from one plate to another. When you have finished counting, record your results in the table provided. Discard your plates in the orange bags provided in the lab.

<table>
<thead>
<tr>
<th>Negative Control</th>
<th>Sodium azide</th>
<th>YFPM 1</th>
<th>YFPM 2</th>
<th>YFPM 3</th>
<th>YFPM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 1535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 1537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 1538</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Be prepared to list the number of colonies in your test conditions and controls for the class to analyze today.

Design a Follow-Up Experiment
Your team should follow up on the most interesting results with another experiment. Develop an experimental protocol and check with your instructor before you proceed to the next steps. Use the space on the next page to write out and/or diagram your experiment.
Plate Incorporation Protocol
This method is different from last week’s, though the principle is the same.

1. Each group will need at least eight plates that you poured last week. Label them with your group name, and what condition will be tested on it. We recommend writing small, and around the perimeter of the bottom. Experimentals and controls will be on different plates.

2. Locate the tubes of the soft-agar overlay tubes (the volume will be 5 ml instead of last week’s volume of 1 ml) in the water bath on your table - each group will have at least eight of these. These tubes have been autoclaved to sterilize them and put at 47˚C to keep them liquefied.

3. Locate the tubes containing the appropriate strains of *Salmonella* that will be kept at room temperature on the lab bench. You will probably test of strains strain that were the most sensitive based on your results from last week.

4. If you will be touching tubes, pipets, or plates that contain bacteria, you must WEAR GLOVES.

5. Locate your chemical to be assayed and any solvents you may be adding to the overlay soft agar tubes.

NOTE: Now you must work quickly to make sure the soft agar overlay does not harden in the tube. Make sure you understand all aspects of step 6 before proceeding.

Step 6 is not the same as it was last week.
6. Sterilely add your test chemical to the overlay tube.

 a) Set your pipet to the appropriate volume of test chemical. Open the box of sterile pipet tips, aseptically put one on, and take an aliquot of your test chemical (or solution being used as a control) up into the pipet.

 b) Remove the cap from the overlay tube, and discharge your aliquot of the test chemical into the overlay tube.

 c) Sterilely add 60 µl of the proper strain of *Salmonella typhimurium* to the appropriate overlay tube. Mix the bacteria, chemical and agar by thumping the tube for a few seconds or so.

 d) Lift the top of the petri plate and quickly but gently pour the entire contents of the overlay onto the agar surface (try to do it gently and prevent the introduction of bubbles).

 e) Gently swirl the plate with the soft agar overlay until it completely covers the surface of the agar base layer.

 f) Put the plate down on a flat surface and allow the agar to harden at least five minutes before moving the plate again.

 g) Repeat steps a-f.

 h) Invert the plates (i.e., store with the lid on the bottom) and place in a 37°C incubator for 48-72 hours.

Analyzing Your Results

After the appropriate incubation period, make plans with your instructor to count the number of visible colonies on each plate. An exact size definition of a colony is less important than each group being consistent in counting colonies from one plate to another.

Study Questions:

1. Each group tested different concentrations of sodium azide. Based on your results, was the mutagenicity of sodium azide proportional to the amount present? Explain your answer.

2. In your experiment testing the mutagenicity of your unknown substance, please explain the ingredients and the purpose of the positive and negative controls.

3. If you added a known mutagen such as sodium azide to the rich medium that contained histidine, what would you expect to see? Explain.

4. If you knew that 5 µM of sodium azide was highly mutagenic, what would you expect to see if you added 50 mM sodium azide? (The exact amount is not the critical issue here. The main point is that you are added a whole lot more.)

5. Davis Minimal Agar (DMA) has none of the 20 amino acids in it. Sodium azide causes base substitution mutations at locations all over the bacterial DNA, not only at the single nucleotide that is wrong in the his- gene of this mutant bacteria. What if sodium azide caused a base substitution mutation in a gene coding for an enzyme needed to make a different amino acid, such as leucine, instead of the base substitution for the wrong nucleotide in the gene for the enzyme needed to make histidine? What would you see on your petri dish of mutant bacteria on DMA and why.