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INTRODUCTION

Bacteria in the environment are exposed to variations in
temperature and nutrient and water availability and the pres-
ence of toxic molecules that originate from their abiotic and
biotic surroundings (including deleterious molecules that orig-
inate from their own metabolism). These changes can make
their living conditions far from optimal. Survival in this unsta-
ble environment requires a wide range of rapid, adaptive re-
sponses which are triggered by regulatory proteins. These reg-
ulators respond to specific environmental and cellular signals
that modulate transcription, translation, or some other event in
gene expression, so that the physiological responses are mod-
ified appropriately (32, 52, 64, 104, 107, 145, 244, 311, 312, 326,
330, 379, 397, 409, 427).

In most cases, the adaptive responses are mediated by tran-
scriptional regulators. Most microbial regulators involved in
transcriptional control are two-domain proteins with a signal-
receiving domain and a DNA-binding domain which trans-
duces the signal (1, 18, 145, 152, 170, 207, 271, 292–294, 298,
303, 345, 369, 428, 431) (Table 1). In other cases, the sensing of
signals that trigger a transcriptional process involves two pro-
teins, as in two-component regulatory systems such as CzcR/
CzcS; DcuS/DcuR; NifL/NifA; NtrB/NtrC; PhoP/PhoQ; and
TodS/TodT (75, 139, 200, 206, 233, 234, 257, 307, 309, 316, 409,
423). One protein is usually a membrane-linked kinase that,
upon sensing the appropriate signal, phosphorylates a DNA-
binding protein that mediates transcription from its cognate
promoter. Structural analyses have revealed that the helix-
turn-helix (HTH) signature is the most recurrent DNA-
binding motif in prokaryotic transcriptional factors, since al-
most 95% of all transcriptional factors described in
prokaryotes use the HTH motif to bind their target DNA
sequences (12, 19, 27, 41, 43, 104, 135, 136, 302, 335, 343).

Prokaryotic transcriptional regulators are classified in fami-
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lies on the basis of sequence similarity and structural and func-
tional criteria (49, 84, 106, 108, 120, 121, 138, 145, 146, 237,
274, 308, 313, 324, 342, 370, 377). Table 1 lists the most im-
portant families of microbial transcriptional regulators, the
type of DNA binding motifs they exhibit, whether the members
of the family are preferentially repressors or activators, and
whether they show a dual action.

This review focuses on the TetR family, a family of tran-
scriptional regulators that is well represented and widely dis-
tributed among bacteria with an HTH DNA-binding motif
(210, 211, 246, 288).

Members of the TetR family of repressors are identified by
a profile (see below) which can be easily used to recognize
TetR family members in SWISS-PROT and TrEMBL and in
all available proteins from prokaryotic genome sequences. Af-
ter compiling data from protein and nucleic acid databases, the
TetR family of regulators was found to include 2,353 nonre-
dundant sequences (as of December 2004). The specific func-
tion regulated by members of the TetR family is known for
only about 85 members (Table 2). These proteins control genes
whose products are involved in multidrug resistance, enzymes
implicated in different catabolic pathways, biosynthesis of an-
tibiotics, osmotic stress, and pathogenicity of gram-negative
and gram-positive bacteria (Table 2). The most relevant infor-
mation on these proteins is collected in a database available at
http://www.bactregulators.org (235). The database also supplies
information for each member of the family, including identifi-
ers, names, sequences, source, function, COG (clusters ortholo-
gous groups), position and orientation of the corresponding gene
in the genome, and, when available, three-dimensional structures.

DEFINING THE TetR FAMILY
TetR Family Profile

The TetR family is named after the member of this group
that has been most completely characterized genetically and
biochemically, the TetR protein (141, 148, 150, 168, 288, 395).

This protein controls the expression of the tet genes, whose
products confer resistance to tetracycline (150, 183, 209, 210,
337, 434, 435). Members of the TetR family exhibit a high
degree of sequence similarity at the DNA binding domain (see
below). Interpro (258) assigns proteins to the TetR family
based on PROSITE signature PS01081 (364), PRINTS motif
PR00455 (15, 16), and Pfam Hidden Markov Model (HMM)
profile PF00440 (26, 27). To establish a single criterion defin-
ing the TetR family, we decided to develop a conventional
profile, because conventional profiles are easy to manage and
their sensitivity is equivalent to that of HMM profiles.

To develop the TetR family profile, we first selected a set of
120 sequences as belonging to the TetR family based on two
criteria: a positive score for PROSITE signature PS01081, and
a high score for PF00440 HMM. The 120 sequences were
clustered into 42 groups using BLAST, and a representative
sequence was selected and aligned for each cluster using
CLUSTAL (http://clustalw.genome.ad.jp/). This revealed that the
most conserved region corresponded to the HTH domain de-
scribed in the TetR and QacR crystals (120, 150, 287, 288, 289,
349, 350, 351). The initial HTH motif was progressively extended
until the global score of the multialignment diminished. Figure 1
shows the final alignment of the sequences. This conserved
stretch corresponded in TetR and QacR crystals to the al-
most complete �-helix 1, the HTH domain formed by �-he-
lices 2 and 3, and five residues of �-helix 4 that connect the
DNA-interacting region with the core of the protein (see
Fig. 2 for the three-dimensional structure of TetR).

The final alignment shown in Fig. 1 was used as a seed for
the construction of a conventional profile to detect TetR fam-
ily members. The TetR profile was built using the pfmake pro-
gram available at the Swiss Institute of Bioinformatics (http:
//npsa-pbil.ibcp.fr/cgi-bin/npsa__automat.pl?page�/NPSA
/npsa__pfmake.html) (45, 46). The TetR profile was confront-
ed against the 660,992 bacterial and archaeal proteins in the
SWISS-PROT and TrEMBL databases (released December

TABLE 1. Prokaryotic regulator families

Family Action Some regulated functions DBD motif Position Reference(s)

LysR Activator/repressor Carbon and nitrogen metabolism HTH N-terminal 145, 342
AraC/XylS Activator Carbon metabolism, stress response and

pathogenesis
HTH C-terminal 109, 394

TetR Repressor Biosynthesis of antibiotics, efflux pumps,
osmotic stress, etc.

HTH C-terminal 9, 10, 11

LuxR Activator Quorum sensing, biosynthesis and
metabolism, etc.

HTH C-terminal 106, 298, 317

LacI Repressor Carbon source utilization HTH N-terminal 54, 420
ArsR Repressor Metal resistance HTH Central 49, 432
IcIR Repressor/activator Carbon metabolism, efflux pumps HTH N-terminal 265, 319, 321, 378
MerR Repressor Resistance and detoxification HTH N-terminal 144, 377
AsnC Activator/repressor Amino acid biosynthesis HTH N-terminal 103
MarR Activator/repressor Multiple antibiotic resistance HTH Central 4, 13, 352, 376
NtrC (EBP) Activator Nitrogen assimilation, aromatic amino

acid synthesis, flagella, catabolic
pathways, phage response, etc.

HTH C-terminal 200, 257

OmpR Activator Heavy metal and virulence (response
regulator of a two-component system)

Winged helix C-terminal 237

DeoR Repressor Sugar metabolism HTH N-terminal 311, 405, 450
Cold shock Activator Low-temperature resistance RNA binding

domain (CSD)
Variable 42, 205, 344

GntR Repressor General metabolism HTH N-terminal 138, 318, 324
Crp Activator/repressor Global responses, catabolite repression

and anaerobiosis
HTH C-terminal 54, 110, 244
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TABLE 2. Specific functions regulated by members of the TetR family of repressors

No. SPTRa Name Organism Function Gb Reference(s)

1 P34000 AcrR Escherichia coli Represses the expression of the acrAB operon which
confers multidrug resistance and probably also con-
trols the gene micF

1 102, 164, 223, 224, 314, 325,
425

2 Q53901 ActII Streptomyces coelicolor Located in the act cluster, which contains regulatory and
antibiotic export genes

1 50, 96

3 Q9F8V9 AmeR Agrobacterium tumefaciens Negatively regulates the ameABC operon, which en-
codes proteins similar to nodulation-cell division
(RND)-type efflux systems

1 301

4 Q9RG61 AmrR Pseudomonas aeruginosa Probably regulates amrAB genes encoding an efflux sys-
tem involved in aminoglycoside impermeability pheno-
type in Pseudomonas aeruginosa

1 423

5 Q9KJC4 ArpR Pseudomonas putida S12 Seems to be a repressor for the expression of the ar-
pABC operon; ArpABC in Pseudomonas putida S12 is
involved only in multidrug resistance and not in toler-
ance towards organic solvents.

1 178

6 Q6VV70 BpeR Burkholderia pseudomallel Controls expression of the BpeAB-OprB efflux pump
that extrudes gentamycin, streptomycin erythromycin,
and acryflavine

1 53

7 P31676 EnvR E. coli K-12 Regulates the acrEF efflux pump operon, which is rele-
vant to multidrug resistance in E. coli. Its substrate
specificity (antibiotics, basic dyes and detergents) is
similar to that of AcrAB

1 186

8 P96222 EthR Mycobacterium tuberculosis Ethionamide resistance 1 28, 90, 111
9 P72185 HemR Propionibacterium freudenreichii Probably regulates hemX, which appears to be involved

in heme transport
1 137

10 Q93QZ7 HydR Tn5398 from Clostridium difficile Involved in erythromycin resistance 1 93
11 O68442 IfeR Agrobacterium tumefaciens

1D1609
Seems to be a repressor that controls the expression of

the putative ifeABR isoflavonoid efflux system
1 296

12 Q9ZGB7 LanK Streptomyces cyanogenus Probably a landomycin A resistance regulator 1 315, 424
13 LfrR Mycobacterium segmatis Control of the lfrA gene whose end product confers re-

sistance to fluoroquinolones, ethidium bromide, and
acryflavine

1 212

14 O34619 LmrA Bacillus subtilis Probable repressor of the lincomycin-resistance operon 1 197, 198, 260
15 P39897 MtrR Neisseria gonorrhoeae A transcriptional repressor that regulates transcription

of the mtrCDE genes, which encode a multidrug efflux
pump; MtrR acts directly or indirectly as a positive
regulator of farAB gene expression

1 72, 130, 131, 220, 221, 297,
333, 334, 339, 447, 448

16 Q9F0Y2 Pip Streptomyces coelicolor Pristinamycin I-induced regulator that controls mutidrug
resistance genes

1 99

17 Q9F147 PqrA Streptomyces coelicolor Probably the repressor of pqrB, which encodes an efflux
pump conferring resistance to paraquat

1 61

18 P23217 QacR Staphylococcus aureus Regulates the QacA multidrug efflux pump 1 119, 120, 249, 299, 300, 332,
350, 351, 390

19 O52558 RifQ Amycolatopsis mediterranei Located in the rifamycin biosynthetic gene cluster and
probably related to the adjacent gene that encodes a
rifamycin efflux protein

1 17

20 Q9KIH5 RmrR Rhizobium etli plasmid B Probably regulates the operon rmrAB related to a multi-
drug efflux pump involved in sensitivity to phytoalex-
ins, flavonoids, and salicylic acids

1 113

21 Q9AMH9 SimReg 2 Streptomyces antibioticus Included in the Streptomyces antibioticus simocyclinone
biosynthetic gene cluster; probably regulates the puta-
tive export protein SimEX

1 396

22 Q8KLP4 SmeT Stenotrophomonas maltophilia A repressor of the Stenotrophomonas maltophilia multi-
drug efflux pump SmeDEF

1 340, 452

23 Q9R9T9 SrpR Pseudomonas putida Probable regulator of the solvent resistance pump
SrpABC of strain S12

1 163, 179, 180, 422

24 P39885 TcmR Streptomyces glaucescens A regulator of the tetracenomycin C resistance repress-
ing the gene tcmA, which encodes an export pump

1 126, 127

25 P09164 TetR Escherichia coli Controls the expression of tetracycline resistance mediated
by the gene tetA, which encodes an efflux pump that acts
as an antiporter by coupling the export of [MgTetra-
cycline]� out of the cell with the uptake of protons

1 29, 30, 36, 38, 39, 142, 143,
148, 149, 150, 183, 189,
259, 286, 287, 288, 289,
393, 402, 430

26 Q9AIU0 TtgR Pseudomonas putida Regulates the TtgABC efflux pump mediating organic
solvent tolerance and resistance to ampicillin, tetracy-
cline, chloramphenicol, and nalidixic acid

1 81, 391

27 Q93PU7 TtgW Pseudomonas putida ttgW is a pseudogene 1 327, 329
28 Q9RP98 UrdK Streptomyces fradiae Tu2717 Probably regulates an urdamycinA efflux pump 1 94
29 Q9AJL5 VarR Streptomyces virginiae Regulates transcription of varS, the virginiamycin S-spe-

cific transporter in a virginiamycin S-dependent manner
1 263

30 P96676 YdeS Bacillus subtilis Similar to a regulator of antibiotic transport complexes
in Streptomyces hygroscopicus

1 34

31 Q54189 ArpA Streptomyces griseus Represses the expression of adpA; AdpA activates the
expression of strR, and the StrR protein activates the
expression of streptomycin biosynthetic genes. ArpA
also controls morphogenesis

2, 5, 8 157, 278, 282, 283, 285, 375,
412, 438

Continued on facing page
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TABLE 2—Continued

No. SPTRa Name Organism Function Gb Reference(s)

32 Q93M20 Aur1B Streptomyces aureofaciens Included in the Streptomyces aureofaciens auricin
polyketide biosynthesis gene cluster

2 275

33 Q9LBV6 BarA Streptomyces virginiae Probably involved in regulation of virginiamycin bio-
synthesis

2 175, 262

34 Q8KNI9 CalR1 Micromonospora echinospora Included in the calicheamicin gene cluster 2 2
35 O66129 CprB Streptomyces coelicolor CprB is involved in the control of actinorhodin and

undecylprodigiosin biosynthesis and morphogenesis
2 264, 284

36 O24741 FarA Streptomyces lavendulae FRI-5 IM-2-specific receptor; plays an important role in the
regulation of secondary metabolism and the biosyn-
thesis of the antibiotics showdomycin and minimycin
in Streptomyces lavendulae; FarA acts as a negative
transcriptional regulator for the biosynthesis of nu-
cleoside antibiotics and blue pigment, switching on
their expression in the presence of IM-2; also acts
as a positive transcriptional regulator for the biosyn-
thesis of D-cycloserine, switching off its expression in
the presence of IM-2

2 184, 185, 413

37 Q939Q2 JadR� Streptomyces venezuelae Included in the cluster for the biosynthesis of the
dideoxysugar component of jadomycin B

2 416

38 Q56153 JadR2 Streptomyces venezuelae Represses the biosynthesis of jadomycin B and seems
to control cellular pigmentation

2 442, 443

39 Q9ZN97 MphB Escherichia coli plasmid
pTZ3721

Repressor of antibiotic biosynthesis 2 172, 272

40 Q9XDF0 NonG Streptomyces griseus sbsp.
griseus

Probably related to nonactin biosynthesis 2 414

41 Q9RF02 PhlF Pseudomonas fluorescens A repressor of the phlABCD operon responsible for
the biosynthesis of the antifungal 2,4-diacetylphloro-
glucinol (PHL)

2 346

42 Q9ZHP8 TylQ Streptomyces fradiae Butyrolactone receptor TylQ is a potential regulator
of production of the macrolide antibiotic tylosin

2, 8 371

43 Q8VQC6 VanT Vibrio anguillarum Positively regulates serine metalloprotease, pigment
and biofilm production

2, 5 71

44 Q9RPK9 TarA Streptomyces tendae Hypothetical receptor of gamma-butyrolactone, which
regulates nikkomycin synthesis

2, 8 86

45 Q9XCC7 TylP Streptomyces fradiae Regulates tylosin production and morphological differ-
entiation, and is probably a gamma-butyrolactone
receptor

2, 5, 8 25, 371, 372

46 Q59213 BM1P1 Bacillus megaterium Probably acts as positive regulatory protein involved in
the expression of the P450BM-1 gene by interfering
with the binding of the repressor protein, Bm3R1,
to the regulatory regions of P450BM-1

3 358, 361, 362

47 O68276 Bm1P1 Bacillus megaterium ATCC
14581

Negatively affects basal-level expression of P450BM-1,
a barbiturate-inducible P450 monooxygenase; cyto-
chromes P450BM-3 and P450BM-1 catalyze the hy-
droxylation of fatty acids

3 140, 214, 215, 295, 356, 358,
359, 362

48 P43506 Bm3R1 Bacillus megaterium A transcriptional repressor involved in the regulation of
barbiturate-inducible proteins in Bacillus megaterium

3 87, 88, 89, 140, 213, 214, 295,
356, 357, 358, 359, 361, 362

49 Q9AJ68 ButR Streptomyces cinnamonensis Putative transcriptional repressor of crotonyl-CoA re-
ductase

3 218, 219

50 Q93TU7 CampR Rhodococcus sp. NCIMB 9784 Probably regulates 6-oxocamphor hydrolase 3 123
51 Q51597 CamR Pseudomonas putida plasmid

CAM
A negative regulator of the cytochrome P-450cam hy-

droxylase operon
3 9, 10, 105

52 O33453 CymR Pseudomonas putida A repressor which controls expression of both the cym
and cmt operons and is inducible by p-cumate but
not p-cymene

3 62, 82, 83, 279

53 Q9RAJ1 DhaR Mycobacterium sp. GP1 Appears to function as a repressor of dhaA expres-
sion, dhaA is an haloalkane dehalogenase gene in-
cluded in the 1-clorobutane catabolic gene cluster

3 306

54 Q9RA03 KstR Rhodococcus erythropolis
strain SQ1

A repressor of kstD expression that encodes a 3-ketos-
teroid �-dehydrogenase protein involved in the deg-
radation of steroid intermediates in phytosterol deg-
radation

3 404

55 Q8VV87 LexA-like Terrabacter sp. strain DBF63 Probably involved in degradation of dibenzofuran 3 171
56 AcnR Corynebacterium glutamicum Repressor of the acn gene encoding aconitrase and

controlling the tricarboxylic acid cycle
3 195

57 Q9FA56 PaaR Azoarcus evanssi Probably regulates the paa genes, which are responsi-
ble for the aerobic phenylacetic acid catabolic path-
way

3 256

58 Q9XDW2 PsbI Rhodopseudomonas palustris Included in the cluster of genes participating in aero-
bic biodegradation of p-cumate

3 310

Continued on following page
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TABLE 2—Continued

No. SPTRa Name Organism Function Gb Reference(s)

59 O85706 ThlR Clostridium acetobutylicum
DSM 792

Possibly acts as a transcriptional repressor of the thlRBC
operon, which is involved in the biosynthesis of thiolase

3 429

60 Q59431 UidR E. coli A repressor of the uidRABC (gusRABC) operon that
comprises a beta-D-glucuronidase (uidA), a glucuro-
nide permease (uidB) and a membrane-associated
protein (uidC)

3 40

61 P22645 YDH1 Xanthobacter autotrophicus Probably regulates the dhlA gene involved in 1,2-dichlo-
roethane degradation

3 162

62 P17446 BetI Escherichia coli A choline-sensing repressor of the bet regulon involved
in osmotic stress

4 8, 201, 202, 331

63 Q8NLK1 McbR Corynebacterium glutamicum In absence of L-methionine, represses the expression of
six key enzymes for the biosynthesis of the sulfur-
containing amino acids L-cysteine and L-methionine
including sulfonate utilization and sulfite reduction

4 322

64 Q9EVJ6 MphR Escherichia coli Represses the mph(A)-mrx-mphR(A) operon in the ab-
sence of erythromycin; erytromycin induces the syn-
thesis of macrolide 2�-phosphotransferase I [Mph(A)],
which inactivates erythromycin

4 273

65 Q9F9Z7 PhaD Pseudomonas oleovorans Biosynthesis of medium-chain-length (MCL) poly-3-hy-
droxyalkanoates (PHAs) as intracellular storage material

4 188, 451

66 Q9ZF45 Q9ZF45 Lactococcus lactis Regulates the operon purDEK, which encodes enzymes
in the de novo pathway of purine nucleotides

4 269

67 P06969 TtK Escherichia coli Co-transcribed with the dut (deoxyuridine triphos-
phatase) gene

4 85, 415

68 P32398 Yhgd or
YixD

Bacillus subtilis Probably related to protoheme IX biosynthesis 4 132

69 Q9F6W0 CasR Rhizobium etlli A repressor of the casA gene, which encodes the calm-
odulin-like protein calsymin involved in bacteroid de-
velopment during symbiosis and in symbiotic nitrogen
fixation

5 433

70 Q9RQQ0 IcaR Staphylococcus aureus A repressor of the operon ica which is responsible for
an intercellular polysaccharide compound that acts as
the slime in biofilm formation

5 70, 163

71 Q8GLC6 IcaR Staphylococcus epidermidis A repressor of the operon ica, which is reponsible for
an intracellular polysaccharide compound that acts as
the slime in biofilm formation

5 60, 66, 67, 190, 456

72 Q8KX64 LitR Vibrio fischeri Important for the normal induction of luminescence,
plays a positive role in modulating the ability to colo-
nize juvenile squid, and may control the opacity/trans-
lucent phenotype of the colony

5, 8 97

73 P21308 LuxR Vibrio harveyi Required for expression of the luxCDABEGH (lucif-
erase) operon, responsible for bacterial luminescence

5 23, 24, 51, 57, 167, 232, 240,
250, 251, 253, 254, 255,
355, 365, 380, 381, 382

74 Q9ANS7 LuxT Vibrio harveyi Activates the expression of LuxO, the phosphorelay
protein that regulates luminescence in Vibrio harveyi

5 216

75 O50285 OpaR Vibrio parahaemolyticus A transcriptional regulator that controls the opaque
morphology in Vibrio parahaemolyticus colonies

5 240, 355

76 Q9XDV7 Orf2 Streptomyces griseus Probably related to carbon-source-dependent differen-
tiation in Streptomyces griseus

5 398

77 Q9L8G8 SmcR Vibrio vulnificus Appears to play an important role in starvation adapta-
tion and in the regulation of many growth phase-regu-
lated genes, including some virulence factors (pro-
tease, hemolysin); ScmR represses motility, fimbria
production, and biofilm production

5
6

63, 242, 243, 355

78 O30343 HapR Vibrio cholerae A transcriptional regulator with a central role in control
of the virulence of Vibrio cholerae, in a cell density-
dependent way

6 165, 194, 196, 240, 455

79 Q8KU49 Ef0113 Enterococcus faecalis Located in a pathogenicity island in vancomycin-resis-
tant Enterococcus faecalis

6 354

80 Q63B57 HlyIIR Bacillus cereus Regulates expression of hlyII whose gene product has
haemolytic activity

6 47

80 O24739 BarB Streptomyces virginiae Regulates virginiamycin biosynthesis 7 182
81 O86852 ScbR Streptomyces coelicolor Acts as the cytoplasmic receptor that specifically binds

SCB1 gamma-butarylactone and negatively regulates
transcription of the scbA gene, responsible for gam-
ma-butyrolactone SCB1 synthesis

2, 7, 8 3, 385, 386

82 Q9JN89 MmfR Streptomyces coelicolor plasmid
SCP1

Putative lactone-dependent transcriptional regulator 8 437

83 Q9S3L4 AmtR Corynebacterium glutamicum Regulator of nitrogen control 9 48,161
84 Q9EX90 PsrA Pseudomonas putida Involved in the regulatory cascade controlling rpoS

gene regulation in response to cell density
9 192

85 P36656 YjdC Escherichia coli Probably involved in copper tolerance 10 101

a Swiss-Prot and TrEMBL accession number.
b 1, regulation of efflux pumps and transporters involved in antibiotic resistance and tolerance to toxic compounds; 2, regulation of antibiotic biosynthesis; 3,

regulation of catabolic pathways; 4, biosynthesis of products important for bacteria (e.g., osmoprotectants, nucleotides, amino acids, PHAs, protoheme); 5, regulation
of differentiation (sporulation, mycelium formation), colony phenotype, biofilm formation; 6, regulation of genes involved in virulence; 7, regulation of butyrolactone
synthesis; 8, butyrolactone or autoinducer receptors; 9, global regulation; 10, other.
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FIG. 1. Alignment of 42 members of the TetR family that exemplify the TetR family profile. The blue column indicates �-helix residues
involved in DNA contacts in the crystal structure of TetR and QacR. The yellow column indicates turns. The most conserved residues are shaded.
Abbreviations are as follows: BACME, Bacillus megaterium; BACSU, Bacillus subtilis; ECOLI, Escherichia coli; HAEIN, Haemophilus influenzae;
LACLA, Lactobacillus lactis; MYCTU, Mycobacterium tuberculosis; RHIME, Rhizobium meliloti; STRGA, Streptomyces sp.; VIBHA, Vibrio
haemophilus; XANAU, Xanthomonas sp.
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2004) using the pfsearch program available at http://bioweb
.pasteur.fr/seqanal/interfaces/pftools.html#pfsearch (46). The
program, which proposes a tentative threshold Z-score of 8.5
to consider a protein a member of the TetR family, selected
2,357 proteins as putative members of the TetR family.

To verify the quality of this TetR profile for specificity (false
positives) and sensitivity (false negatives), we implemented a
new tool called Provalidator which uses Interpro, Swiss-Prot,
Prodom, TIGRfam, CoGnitor, NCBI-RPS-BLAST, and PSI-
BLAST resources (68, 128, 154, 323, 348, 387, 449). In the first
step, we searched for false positives among the 2,353 proteins

we assigned to the TetR family. Interpro assigned 2,315 pro-
teins to the TetR family, and these 2,315 were considered true
positives. The remaining 38 proteins were analyzed with other
resources such as TIGRfam, Prodom, NCBI-RPS-BLAST and
PSI-BLAST (128, 449). This allowed us to assign 34 proteins
to the TetR family. Three of the false positives (Q89RN6,
Q988I6, and Q6N8G8) that we found were protein members of
the AraC/XylS family of transcription activators (109, 394).
These proteins have two HTH motifs at the C-terminal end,
typical of AraC/XylS family members (109, 229). These three
proteins were identified as potential TetR members because

FIG. 2. Ribbon diagram of a TetR homodimer. Monomers are shown in blue or red. Two tetracycline molecules, each bound to a monomer,
are shown in grey. �-Helices 2 and 3 in the blue monomer and �2� and �3� in the red monomer constitute the shared HTH DNA binding domain.
�-Helix 1 and part of helix �-4, together with �-helices 2 and 3, comprise the sequence that best defines the TetR family profile. (Adapted from
Hinrichs et al. [150] with permission of the publisher.)
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one of its HTH is highly similar to the DNA-binding domain in
TetR. The fourth false positive is a transposase (Q981E7).

Provalidator detected 15 false negatives (Q742Y2, Q8CJK3,
Q73ZY1, Q6D1J7, Q8KU64, Q9A917, Q880T2, Q6D2Z4,
Q885G7, Q8PC90, Q9A466, Q9S6C0, Q9ZH26, Q6A626, and
Q8G822), which are proteins assigned to the TetR family by
INTERPRO but whose Z-score was between 6.407 and 8.487.
In summary, the TetR profile with a Z-score threshold of 8.5
identified proteins that were not detected by INTERPRO, and
among the 660,992 proteins analyzed, only four false positives
were found. These results indicate that the new algorithm is
highly effective for the detection of members of the TetR
family.

Identification of TetR Family Members in DNA
and Protein Databases

Using the profile defined above for the TetR family, we
searched for members of this family in the Swiss-Prot and
TrEMBL databases and also searched the 196 complete and
incomplete microbial genomes available in NCBI (Release
December 2004). We detected 73 TetR proteins in Swiss-Prot,
2,277 in TrEMBL, and 2,410 in the translated open reading
frame corresponding to 196 microbial genomes. To select non-
redundant sequences the set of 4,758 TetR proteins was
analyzed using the SEQUNIQ program developed in our lab-
oratory (Molina-Henares et al., unpublished results). This pro-
gram integrates the set of sequences available in nucleic acid
and protein databases. We found 2,353 sequences in the TetR
family that surpassed the threshold Z-score of 8.5. The HTH in
2,348 members of the family was located at the N-terminal end
of the proteins.

Table 3 shows that members of the TetR family were de-
tected in 144 microbial genomes belonging to 80 genera and
113 species of gram-positive and �-, �-, and �-proteobacteria,
cyanobacteria, and archaea, indicating wide taxonomic distri-
bution. We have found that proteins of the TetR family are
encoded both in chromosomes and in plasmids, and the mo-
bility of the latter elements could be a source of the spread of
genes in this family via horizontal transfer (147, 383), as is also
the case with catabolic genes (77, 160, 236, 410, 426), antimi-
crobial resistance determinants (20, 100, 124), and 16S rRNA
genes (347).

We found that TetR family members are particularly abun-
dant in microbes exposed to environmental changes, such as
soil microorganisms (i.e., Nocardia, Streptomyces, Bradyrhizo-
bium, Mesorhizobium, Pseudomonas, Bacillus, and Ralstonia
spp.); plant and animal pathogens (i.e., Agrobacterium, Bru-
cella, Escherichia coli, Bordetella, Mycobacterium, and Salmo-
nella spp.), extremophiles (i.e., Deinococcus), and methano-
genic bacteria such as Methanosarcina acetivorans. In contrast,
TetR family members do not appear in intracellular pathogens
such as chlamydias, mycoplasmas, and endosymbionts such as
Buchera, in agreement with their life style in nonchanging
environments (52). However, it should be noted that Dugan
et al. (80) recently found that Chlamydia suis can acquire tet-
racycline resistance via horizontal gene transfer of genomic
islands bearing the tet genes.

As a general collorarium, we can say that it seems that
proteins of the TetR family are involved in the adaptation to

complex and changing environments. This in turn correlates
with the fact that many members of the TetR family are found
among microbes with abundant extracytoplasmic function
sigma factors (52, 227, 236, 277, 444).

PROTEINS WITH KNOWN THREE-DIMENSIONAL
STRUCTURES

The high degree of primary sequence identity in the stretch
that defines the HTH region of the TetR profile probably
reflects a common three-dimensional structure in this domain
in members of the family. This is supported by the almost
identical three-dimensional structure of the HTH of TetR,
QacR, CprB, and EthR, as deduced from the superimposition
of these regions, and the high degree of sequence conservation
in the alignment (79, 264, 349). As in other families of tran-
scriptional regulators, no sequence conservation was found
outside the HTH domain, which probably reflects differences
in the kind of signal sensed by different regulators of the
family, i.e., antibiotics with dissimilar structures, barbiturates,
homoserine lactones, organic solvents, and choline (see Table
2). Nonetheless, some striking global structural conservation in
the three-dimensional structure was found.

In addition, given that all members of the family whose
function is known are repressors, they probably function in a
similar way. Binding of an inducer molecule to the noncon-
served domain of a TetR family member probably causes con-
formational changes in the conserved DNA-binding region
that result in release of the repressor from the operator and
thus allow transcription from the cognate promoter. To gain
insights into the mechanisms of action of the TetR family
members, we analyzed in detail the three-dimensional struc-
ture of the four members of the family, TetR, QacR, CprB,
and EthR, whose crystal structures have been obtained
(150, 264, 286–289, 349–351), in order to identify common
and differential features of the TetR family members.

TetR Regulator

Tetracycline resistance and the role of the transcriptional
regulator TetR. Tetracyclines are among the most commonly
used broad-spectrum antibiotics (209, 210). They act by bind-
ing to the small ribosomal subunit, thereby interrupting poly-
peptide chain elongation by an unknown mechanism. Many
gram-negative bacteria have developed mechanisms of resis-
tance against this antibiotic. The most frequent mechanism
involves a membrane-associated protein (TetA) that exports
the antibiotic out of the bacterial cell before it inhibits poly-
peptide elongation (169, 211, 389, 434, 435, 453).

Adjacent to tetA and divergently oriented is tetR (112),
whose gene product tightly controls expression of both tetA
and tetR (148, 150). The intergenic region between the tetR and
tetA genes contains two identical operators separated by 11 bp.
TetR binds to these operators and thus prevents transcription
from both promoters (Fig. 3) and (288). In all TetR crystal
structures elucidated to date (PDB identifiers: 2TCT; 2TRT;
1A6I; 1BJO; 1BJY; 1BJZ; 1ORK; and 1RP1), this repressor
appears as a homodimer (29, 30, 159, 183, 287–289, 366). The
TetR homodimer binds to the operator (Fig. 3). Each 15-bp
operator shows an internal palindromic symmetry with an extra
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TABLE 3. Distribution of TetR proteins in microbes

Microorganism Genome
size (Mbp)

No. of
members Microorganism Genome

size (Mbp)
No. of

members

Nocardia farcinica IFM 10152 6.21 151
Streptomyces coelicolor A3(2) 9.05 150
Streptomyces avermitilis MA-4680 9.12 116
Mycobacterium avium subsp. paratuberculosis k10 4.83 108
Agrobacterium tumefaciens C58 11.35 61
Bradyrhizobium japonicum USDA 110 9.11 59
Mycobacterium bovis AF2122/97 4.35 51
Mycobacterium tuberculosis CDC1551 4.40 51
Mycobacterium tuberculosis H37Rv 4.41 51
Bacillus licheniformis ATCC 14580 8.44 48
Mesorhizobium loti MAFF303099 7.60 47
Rhodopseudomonas palustris CGA009 5.46 40
Pseudomonas aeruginosa PAO1 6.26 38
Bacillus cereus ATCC 10987 5.22 36
Bacillus anthracis ‘Ames Ancestor’ 5.50 32
Bacillus anthracis A2012 5.37 32
Bacillus anthracis Sterne 5.23 31
Bacillus anthracis Ames 5.23 30
Bacillus cereus ZK 5.30 30
Bacillus cereus ATCC 14579 5.43 29
Bordetella bronchiseptica RB50 5.34 28
Pseudomonas syringae pv. tomato DC3000 6.40 28
Sinorhizobium meliloti 1021 6.69 28
Bacillus thuringiensis serovar konkukian 97-27 5.24 27
Clostridium acetobutylicum ATCC 824 4.13 27
Caulobacter crescentus CB15 4.02 26
Lactobacillus plantarum WCFS1 3.31 26
Pseudomonas putida KT2440 6.18 25
Burkholderia pseudomallei K96243 7.25 24
Ralstonia solanacearum GMI1000 5.81 24
Photobacterium profundum SS9 6.40 23
Oceanobacillus iheyensis HTE831 3.63 22
Bordetella parapertussis 12822 4.77 21
Burkholderia mallei ATCC 23344 5.84 21
Bacillus halodurans C-125 4.20 20
Bacillus subtilis subsp. subtilis 168 4.21 20
Acinetobacter sp. strain ADP1 3.60 19
Bordetella pertussis Tohama I 4.09 17
Chromobacterium violaceum ATCC 12472 4.75 17
Shewanella oneidensis MR-1 5.13 17
Vibrio vulnificus CMCP6 5.13 17
Escherichia coli CFT073 5.23 16
Gloeobacter violaceus PCC 7421 4.66 16
Methanosarcina acetivorans C2A 5.75 16
Streptococcus mutans UA159 2.03 16
Vibrio parahaemolyticus RIMD 2210633 5.17 16
Vibrio vulnificus YJ016 5.26 16
Xanthomonas axonopodis pv. citri 306 5.18 16
Corynebacterium glutamicum ATCC 13032 3.31 15
Deinococcus radiodurans R1 3.28 15
Erwinia carotovora subsp. atroseptica SCRI1043 5.06 15
Xanthomonas campestris pv. campestris ATCC 33913 5.08 15
Escherichia coli O157:H7 5.59 14
Corynebacterium efficiens YS-314 3.15 13
Escherichia coli O157:H7 EDL933 5.53 13
Lactococcus lactis subsp. lactis I11403 2.37 13
Leifsonia xyli subsp. xyli CTCB07 2.58 13
Listeria monocytogenes 4b F2365 2.91 13
Salmonella enterica subsp. enterica serovar Typhi CT18 5.13 13
Salmonella typhimurium LT2 4.95 13
Treponema denticola ATCC 35405 2.84 13
Corynebacterium diphtheriae NCTC 13129 2.49 12
Escherichia coli K12 4.64 12
Listeria innocua Clip11262 3.01 12
Listeria monocytogenes EGD-e 2.94 12
Salmonella enterica subsp. enterica serovar Typhi Ty2 4.79 12
Shigella flexneri 2a 301 4.61 12
Vibrio cholerae O1 biovar eltor N16961 4.03 12
Nostoc sp. strain PCC 7120 7.21 11
Enterococcus faecalis V583 3.22 10
Mycobacterium leprae TN 3.27 10
Shigella flexneri 2a 2457T 4.60 10
Geobacter sulfurreducens PCA 3.81 9
Leptospira interrogans serovar Copenhageni Fiocruz L1-130 4.63 9
Leptospira interrogans serovar Lai 56601 4.69 9
Propionibacterium acnes KPA171202 2.56 9
Staphylococcus aureus subsp. aureus MRSA252 2.90 9

Shigella flexneri 2a 301 4.61 12
Vibrio cholerae O1 biovar eltor N16961 4.03 12
Nostoc sp. strain PCC 7120 7.21 11
Enterococcus faecalis V583 3.22 10
Mycobacterium leprae TN 3.27 10
Shigella flexneri 2a 2457T 4.60 10
Geobacter sulfurreducens PCA 3.81 9
Leptospira interrogans serovar Copenhageni Fiocruz L1-130 4.63 9
Leptospira interrogans serovar Lai 56601 4.69 9
Propionibacterium acnes KPA171202 2.56 9
Staphylococcus aureus subsp. aureus MRSA252 2.90 9
Bifidobacterium longum NCC2705 2.26 8
Brucella melitensis 16M 3.29 8
Brucella suis 1330 3.32 8
Photorhabdus luminescens subsp. laumondii TTO1 5.69 8
Staphylococcus aureus subsp. aureus Mu50 2.90 8
Symbiobacterium thermophilum IAM 14863 3.57 8
Yersinia pestis biovar Medievalis 91001 4.80 8
Yersinia pseudotuberculosis IP 32953 4.84 8
Bacteroides fragilis YCH46 5.31 7
Bacteroides thetaiotaomicron VPI-5482 6.26 7
Bdellovibrio bacteriovorus HD100 3.78 7
Desulfovibrio vulgaris subsp. vulgaris Hildenborough 3.77 7
Fusobacterium nucleatum subsp. nucleatum ATCC 25586 2.17 7
Staphylococcus aureus subsp. aureus MSSA476 2.80 7
Staphylococcus aureus subsp. aureus MW2 2.82 7
Staphylococcus aureus subsp. aureus N315 2.84 7
Yersinia pestis CO92 4.83 7
Desulfotalea psychrophila LSv54 3.66 6
Lactobacillus johnsonii NCC 533 1.99 6
Mannheimia succiniciproducens MBEL55E 2.31 6
Rhodopirellula baltica SH 1 7.15 6
Streptococcus agalactiae NEM316 2.21 6
Yersinia pestis KIM 4.60 6
Aquifex aeolicus VF5 1.59 5
Methylococcus capsulatus Bath 3.30 5
Streptococcus agalactiae 2603V/R 2.16 5
Streptococcus pyogenes MGAS10394 1.90 5
Streptococcus pyogenes MGAS8232 1.90 5
Clostridium perfringens 13 3.09 4
Methanococcus maripaludis S2 1.66 4
Staphylococcus epidermidis ATCC 12228 2.50 4
Streptococcus pyogenes M1 GAS 1.85 4
Streptococcus pyogenes MGAS315 1.90 4
Streptococcus pyogenes SSI-1 1.89 4
Thermus thermophilus HB27 2.13 4
Clostridium tetani E88 2.80 3
Haemophilus influenzae Rd KW20 1.83 3
Methanosarcina mazei Go1 4.10 3
Nitrosomonas europaea ATCC 19718 2.81 3
Pasteurella multocida subsp. multocida Pm70 2.26 3
Porphyromonas gingivalis W83 2.34 3
Streptococcus pneumoniae R6 2.04 3
Streptococcus pneumoniae TIGR4 2.16 3
Synechocystis sp. strain PCC 6803 3.57 3
Thermoanaerobacter tengcongensis 2.69 3
Wolinella succinogenes DSM 1740 2.11 3
Haemophilus ducreyi 35000HP 1.70 2
Halobacterium salinarum NRC-1 2.57 2
Legionella pneumophila str. Lens 3.41 2
Legionella pneumophila str. Paris 3.64 2
Legionella pneumophila subsp. pneumophila Philadelphia 1 3.40 2
Methanothermobacter thermautotrophicus Delta H 1.75 2
Neisseria meningitidis MC58 2.27 2
Neisseria meningitidis Z2491 2.18 2
Thermotoga maritima MSB8 1.86 2
Xylella fastidiosa 9a5c 2.73 2
Archaeoglobus fulgidus DSM 4304 2.18 1
Campylobacter jejuni subsp. jejuni NCTC 11168 1.64 1
Coxiella burnetii RSA 493 2.00 1
Helicobacter hepaticus ATCC 51449 1.80 1
Mycoplasma penetrans HF-2 1.36 1
Picrophilus torridus DSM 9790 1.55 1
Pyrococcus abyssi GE5 1.77 1
Sulfolobus solfataricus P2 2.99 1
Sulfolobus tokodaii 7 2.69 1
Ureaplasma parvum serovar 3 ATCC 700970 0.75 1
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FIG. 3. Binding of TetR to its operator site. A) tetR operator and contact regions. The tetR operator is a palindromic sequence. Horizontal bars
show nucleotides contacted by each monomer of the TetR dimer. B) Interaction of TetR residues with specific nucleotides (arrows) and phosphate
backbone (blue lines) in the operator region. The amino acids involved in DNA binding extend from residues 27 to 48. Contacts established with
the operator were confirmed by footprint assays, by analysis of TetR mutants, and by crystallographic studies (29, 30, 159, 266, 366). C)
Representation of each homodimer bound to the tet operator in a double-helix representation. (Adapted from Orth et al. [288] with permission
of the publisher.)
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central base pair (Fig. 3A). The operator sequences overlap
with promoters for tetA and tetR, thereby blocking the expres-
sion of both genes. When tetracycline complexed with Mg2�

binds to TetR (166, 384), a conformational change takes place
that renders the TetR protein unable to bind DNA. As a
consequence, TetR and TetA are expressed (286).

The TetR homodimer is constituted by two identical mono-
mers that fold into 10 �-helices with connecting turns and
loops (Fig. 2). The three-dimensional structure of the TetR
monomer is stabilized mainly by hydrophobic helix-to-helix
contacts. The global structure of the TetR homodimer can be
divided into two DNA-binding domains at the N-terminal end of
each monomer, and a regulatory core domain involved in dimer-
ization and ligand binding (150, 286–289). The DNA-binding
domains are constituted by helices �1, �2, and �3 and their
symmetric helices �1�, �2�, and �3� (a prime denotes the second
monomer). Helices �4 and �4� connect these domains with the
regulatory core domain composed of helices �5 to �10 and their
symmetric counterparts �5� and �10� (150, 287, 289). The regu-
latory domain is responsible for dimerization and contains, for
each monomer, a binding pocket that accommodates tetracycline
in the presence of a divalent cation. Helices �5, �8, and �10 and
their counterparts �5�, �8�, and �10� constitute the scaffold of the
core domain, and their structure is the most conserved in both
TetR conformations (150, 287–289).

The tetracycline-binding pocket is identical in both mono-

mers. The cavity to which the [TcMg]� complex binds is de-
picted in Fig. 4 (286, 287, 289). The entrance of this cavity is
controlled by �9� and the C-terminal end of �8� and the loop
that connects both, while the exit is closed by loop 4-5 (287–
289). When [TcMg]� enters the tunnel, its A ring makes con-
tacts with loop 4-5, and the interaction with the effector trig-
gers a cascade of conformational changes. The contacts that
His100 and Thr103, both in �6, establish with the magnesium
ion of the complex displace �6, which undergoes a conforma-
tional change in its C terminus to form a �-turn (Fig. 4). The
6-7 loop is also pushed near the inducer, so that Arg104 and
Pro105 interact with tetracycline. Translation of �6 forces �4
to move in the same direction due to van der Waals contacts.
His64 of �4, anchored to �5 and to tetracycline, acts as a pivot
point, and �4 moves like a pendulum. As a consequence of the
rotation of �4 and �4�, recognition helices �3 and �3� move
further apart, and the DNA contacts are disrupted (Fig. 5)
(286, 287, 289). Tetracycline is impeded from freeing the bind-
ing cavity, and TetR cannot bind its target DNA again. It
should be noted that residues outside the binding cavity can
influence affinity for tetracycline, as revealed by Kamionka et
al. (168), who isolated a double mutant (G96E, L205S) with
reduced affinity for the antibiotic.

The on/off switch mechanism used by TetR to respond to
specific signals may be used similarly in other TetR family
members.

FIG. 4. Representation of the TetR cavity involved in the binding of tetracycline. Left) In the absence of tetracycline. Right) In the presence
of tetracycline. The green ball represents the Mg2� ion. Specific interactions are not drawn for the sake of clarity but are described in the text.
(Adapted from Orth et al. [287, 289] and Kisker et al. [183] with permission of the publishers.)
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TetR DNA-binding domain: a symmetric TetR dimer binds
a palindromic operator. Cocrystallization of TetR with its op-
erator DNA established that the TetR homodimer binds per-
pendicularly to the longitudinal DNA axis (Fig. 3A). Two ad-
jacent DNA major groove regions covering a 6-base-pair area
on both strands are involved in the almost perfect docking with
the two TetR-interacting domains (Fig. 3A and 3B) (288). No
water molecules were found at the TetR-DNA interface,
where the crucial interactions are hydrophobic (288).

The interactions of each HTH domain with the operator
DNA are summarized in Fig. 3A and 3B. The TetR monomer
A binds the main strand from positions �4 to �7 while con-
tacting the complementary strand from operator positions �4
to �2, and the symmetric monomer A’ binds the main strand
from positions �2 to �4 and the complementary strand from
positions �4 to �7 (Fig. 3A and 3B).

Crystallographic analysis revealed that helix �3 (from Gln38
to His44) is the main element responsible for sequence-specific
recognition, since all residues in this helix contribute to it,
except for Leu41, which is part of the hydrophobic core stabi-
lizing the �1, �2, and �3 helix bundle. Thr40 residue in mono-
mer A establishes direct contacts with operator base pairs

T(�7) and C(�6) in the main DNA strand (Fig. 3A and 3B).
Trp43 interacts with T(�7) as well. Pro39 interacts with both
strands at bases T(�5) and A(�4) of the main strand and
T(�4) of the complementary strand. In the rest of the operator
half site, the �3 helix of monomer A interacts with the com-
plementary strand, Tyr42 contacting with T(�4) and Gln38
with A(�3). Helix �2 supplies an additional specific contact
with the complementary strand, namely, Arg28 contacts G(�2).

Although the TetR DNA binding domain maintains its
structure thanks to a hydrophobic core formed by residues
from the �1, �2, and �3 bundle (288), interactions with DNA
lead to changes in the TetR DNA binding domain. One such
change is that �3 forms a 310–helical turn at the N-terminal
end as a result of complex DNA contacts. The H-bonds be-
tween Arg28-G(�2), and Gln38-A(�3) increase the separa-
tion between base pairs 1 and 2 from 3.4 Å to 3.9 Å (288). The
two phosphate groups accompanying the G at position �2
establish H-bonds with side chains of Thr26, Thr27, Tyr42, and
Lys48, and with the amino groups of the main chain of Thr27
and Lys48 (Fig. 3B). These contacts draw DNA closer to TetR
near G(�2). Although the DNA is kinked away from TetR at
position �2 in both operator strands, bending toward TetR in

FIG. 5. Docking of a TetR monomer without (grey) and with (red) tetracycline. Note the alterations induced in the �1-�3 region involved in
binding to the target operators. The increase in distance between �3 and �3� with tetracycline results in the inability of TetR to maintain the specific
interactions shown in Fig. 3, and therefore the repressor is released. (Adapted from Orth et al. [288] with permission of the publisher.)
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the area corresponding to positions �3 to �6 compensates for
the DNA deviation. Crystallographic studies revealed that Lys48
located in �4, outside the HTH motif, also established contacts
with the target DNA region (Fig. 3B). This lysine is relatively
well conserved among TetR family members, and we are tempt-
ed to suggest that this residue plays an equivalent role in other
proteins of the TetR family.

QacR Regulator

Two QacR dimers bind the operator to repress the qacA
multidrug transporter gene. QacA confers resistance to mono-
valent and bivalent cationic lipophilic antiseptics and disinfec-
tants such as quaternary ammonium compounds (hence the
name Qac) (10, 11, 44, 239). The qac locus consists of the qacA
gene and the divergently transcribed qacR gene, which are
borne on a plasmid (119). In the absence of drug, the 188-
residue QacR protein represses transcription of the qacA mul-
tidrug transporter gene by binding two nested palindromes
located downstream from the qacA promoter and overlapping
its transcription start site (119, 300). Therefore, QacR seems to
repress transcription by hindering the transition of the RNA
polymerase-promoter complex into a productively transcribing
state rather than by blocking RNA polymerase binding.

The three-dimensional structure of QacR (PDB identifiers
1JTX, 1JTG, 1JTY, 1JUM, 1JUP, 1JUS, and 1JTO) revealed
that it is an all-helical protein which contains a DNA-binding
HTH motif embedded within an N-terminal three-helix bundle
and a second domain involved in drug binding and dimeriza-
tion (350, 351). It should be noted that unlike TetR, two QacR
dimers, rather than one, bind the operator site (339, 340)
(Fig. 6).

The monomers of each dimer have been called proximal and
distal to refer to their positions with respect to the center of
symmetry of the palindromic operator (Fig. 6A and 6B). It was
shown that the operator to which one dimer is bound is sym-
metric and partially overlaps that bound by the other dimer
(351) (Fig. 6 and 7). The existence within the same fragment of
DNA sequence of two overlapping partial palindromes with
identical symmetric bases is therefore surprising (Fig. 6). In
this sense the palindromic sequences recognized by QacR are
equivalent to those described for the TetR interface except for
the spacer sequence length, 3 bp for TetR versus 4 bp for
QacR, supporting the hypothesis that interactions of other
members of the family with their target sequences may be
similar, independent of the number of dimers involved.

The �3 helix of QacR A distal and B distal monomers
establish the most extensive specific interactions with the op-
erator (351). The Tyr41 residue of the A distal monomer (Fig.
6B) establishes hydrophobic contacts with base T(�10) of the
DNA main strand as well as with the phosphate at position
�11 in the main strand, while Tyr40 contacts T(�7) (Fig. 6B).
In addition, tight docking with DNA is facilitated by specific
hydrogen bonds between Lys36 and base G(�6) in the com-

plementary strand, and between Gly37 and base G(�8) in the
main strand. Gly37 is important in repression because nucle-
otide G(�8) is the transcription start site for the qacA gene.
Monomers A and B proximal also establish a series of critical
interactions. For instance, Tyr41 of B proximal contacts the
C(�6) base in the main strand, whereas Tyr40 contacts base
T(�3) and phosphate (�2) in the complementary strand (351).
Gly37 in the A proximal monomer contacts G(�4) in the
complementary strand, whereas Lys36 contacts G(�1) in the
main strand. A number of residues in �2, loop �2-�3, �3 and
the positive dipole of the �1 (N terminus) also interact with the
phosphate backbone of both DNA strands (351).

Figure 6C shows how each dimer engages the DNA major
groove in a face almost opposite to the other dimer, forming an
angle between the two dimer axes of less than 180° (Fig. 7).
Studies of QacR binding to DNA have indicated that the two
dimers bind DNA cooperatively (120, 121, 351). Analysis of the
three-dimensional structure suggested that such cooperativity
does not arise from protein-protein interactions, as the closest
approach of the dimers is 5.0 Å. Rather, binding cooperativity
appears to be mediated through conversion of the DNA struc-
ture from a B-DNA conformation to the high-affinity under-
twisted configuration observed in the crystal structure. Con-
version of the DNA conformation is necessary because the
optimal distance between each of the HTH motifs of the QacR
dimer is 37 Å. This requires expansion of the 34-Å distance
between successive major groove regions on one edge of the
canonical B-DNA. It has been suggested that binding of the
first QacR dimer forces this energetically unfavorable confor-
mational change, which in turn produces an optimal DNA
conformation for the easy binding of the second dimer (351).
Experimental data reported by Grkovic et al. (121, 122) sug-
gested that the two dimers must bind simultaneously and co-
operatively to the operator in order to maintain the DNA
deformation detected in the crystal.

Schumacher and Brennan (349) noticed that TetR and
QacR achieve the same degree of specificity in DNA binding
through different mechanisms. They noted that TetR, recruits
Arg28, located outside its recognition helix, to make a base
pair-specific contact (288), whereas QacR does not employ
residues outside �3 to ensure DNA binding specificity. They
also noted that TetR kinks its binding site and induces a 17°
bend towards the protein to optimize the position of its HTH
motifs for specific base interactions within each DNA half site;
whereas QacR widens the major groove of the entire IR1
binding site smoothly and bends its DNA site by only 3°. These
distinctions are reflected in the different HTH center-to-center
distances observed in QacR (37 Å). Thus, an important lesson
derived from comparisons of the QacR-DNA and TetR-DNA
structures is that even structurally homologous proteins of the
same family that share a similar function, i.e., repression, can
utilize slightly different mechanisms of action.

FIG. 6. Binding of QacR to its operator site. A) Interaction of QacR with the qac operator. B) Contacts established by residues at �-helix 3
of QacR homodimers A and B with specific nucleotides (arrows) and phosphate backbone (blue lines) in the synthetic operator used for
QacR-DNA cocrystal (349, 350). C) Representation of the two QacR homodimers bound to the qac operator in a double-helix representation.
(Adapted from Schumacher et al. [351] with permission of the publisher.)
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QacR as a model for multidrug recognition. QacR is re-
leased from the qacA operator by its interaction with a number
of cationic lipophilic drugs such as rhodamine 6G, crystal vio-
let, and ethidium (119). More recently, Grkovic et al. (122)
showed that effector recognition of QacR can be extended to
several bivalent cationic dyes and plant alkaloids. In spite of
the existence of two binding pockets, only one drug molecule is
bound by each homodimer, as determined by equilibrium
dialysis studies and isothermal titration calorimetry for the
QacR-R6G complex (350). The QacR crystal bound to differ-
ent drugs revealed another remarkable finding: the presence of
an expansive and multifaceted drug-binding pocket with a
volume of 1,100 Å3, so that different drugs partially overlap
different subpockets (349, 351). A similar cavity able to bind
multiple drugs was reported by Yu et al. (445, 446) for the
AcrB multidrug transporter.

Crystallographic studies by Schumacher et al. (350) and

Murray et al. (261) have demonstrated that multidrug recog-
nition mediated by the QacR dimer is a rather simple process
that, contrary to expectations, does not require sophisticated
molecular mechanisms. Indeed, the drug binding domain of
QacR consists of six �-helices (PDB identifiers: 1JTX, 1JT6,
1JTY, 1JUP, 1JUS, 1JTO, 1RKW, and 1RPW). Entry to the
mostly buried drug-binding pocket is through a small opening
formed by the divergence of helices �6, �7, �8, and �8�. The
stoichiometry of one drug molecule for two QacR subunits led
to this asymmetric induction process, in which the drug-bound
monomer undergoes a major structural change. Comparison of
the drug-bound structure with the DNA-bound structure re-
veals that drug binding triggers a coil-to-helix transition of
residues 89 to 93, which extends helix �5 by a turn. This
transition removes the drug surrogates Tyr92 and Tyr93 from
the hydrophobic core of the protein. Expulsion of these tyro-
sines also leads to the relocation of nearby helix �6 and its

FIG. 7. Ribbon representation of the two QacR homodimers bound to target DNA in a double-helix representation (A) and details of the
contacts established by �-helix 3 of monomers of different homodimers when recognizing overlapping sites (B). (Adapted from Schumacher et al.
[351] with permission of the publisher.)
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tethered DNA-binding domain. The result of this structural
transition is a 9-Å translation and a 37° rotation of the DNA-
binding domain, effectively rendering the QacR dimer unable
to bind its target DNA.

Three-Dimensional Structure of CprB

The gram-positive bacterial genus Streptomyces uses �-buty-
rolactones as autoregulators or microbial hormones, together
with their specific receptors (�-butyrolactone receptors), to
control morphological differentiation, antibiotic production, or
both (150, 151). The most representative of the �-butyrolac-
tone autoregulatory factors is 2-isocapryloyl-3R-hydroxymeth-
yl-�-butyrolactone, known as A-factor, which is essential for
aerial mycelium formation, streptomycin production, strepto-
mycin resistance, and yellow pigment production (133, 134,
155) in Streptomyces griseus. However, the A-factor receptor
protein, known as ArpA, has proved to be difficult to purify. In
contrast, the CprB protein from Streptomyces coelicolor A3(2),
which is 30% identical to ArpA (284), has been purified and
crystallized (264), although the ligand for CprB is still unknown.
Nonetheless, CprB binds the same nucleotide sequence as
does ArpA (375) and indeed CprB also serves as a negative
regulator for both secondary metabolism and morphogenesis
in S. coelicolor, as ArpA does in S. griseus (264, 284).

The CprB dimer is omega shaped, and the two subunits in
the dimer are related by a pseudo-twofold axis. Each monomer
of CprB is composed of 10 �-helices and has two domains: a
DNA-binding domain (residues 1 to 52) and a regulatory do-
main (residues 77 to 215). The three-dimensional structure of
CprB is essentially similar to that of QacR bound to DNA ex-
cept for the lack of �10 (350, 351). In addition, the DNA-
binding domains of the two proteins are very similar, so much
so that the two DNA-binding domains can be superimposed
with an rms deviation of 1.48 Å for 71 C� atoms (264). Al-
though no information on CprB-operator DNA is available,
the high degree of sequence conservation allowed the authors
to predict that the core of the DNA-binding domain is com-
posed of Ile14, Ile15, Ala18, Phe22, Leu32, Ile35, Leu46, and
Phe50.

It has been suggested that a CprB dimer binds to its target
DNA as found in the TetR–DNA complex (150, 287, 288). This
is because structure-based amino acid sequence alignment
shows that at the amino acid sequence level the DNA-binding
domains of CprB and TetR are highly identical. This suggests
that there is an evolutionary relationship between the DNA-
binding domains of the two proteins. The regulatory domain of
CprB is composed of six �-helices (helices �5 to �10) (264),
which can also be superimposed on the corresponding domain
of TetR (286, 287, 289) (PDB code 1JT0).

EthR Structure

Ethionamide has been used for more than 30 years as a
second-line chemotherapeutic treatment in tuberculosis pa-
tients who have developed resistance to first-line drugs such as
isoniazid and rifampin. Activation of the prodrug ethionamide
is regulated by the Baeyer–Villiger monooxygenase EthA and
the TetR family repressor EthR, whose open reading frames
are separated by 75 bp in the genome of Mycobacterium tuber-

culosis. EthR has been shown to repress transcription of the
activator ethA gene by binding to the intergenic region and
contributing to ethionamide resistance.

The expression of ethA is regulated by EthR in M. tubercu-
losis. Overexpression of ethR leads to ethionamide resistance,
whereas chromosomal inactivation of ethR promotes ethio-
namide hypersensitivity (28). EthR was found to bind directly
and specifically to DNA sequences corresponding to the ethRA
intergenic region (28, 90). The large EthR operator, which
comprises 55 bp in comparison with the 15-bp operators rec-
ognized by most other family members, is organized as a pu-
tative highly degenerated palindrome containing pairs of over-
lapping inverted and tandem repeat sequences (90). In the
absence of DNA, EthR forms a homodimer in solution, and
surface plasmon resonance measurements suggest that EthR
octamerizes when bound to DNA (90).

The EthR monomer is an all-helical, two-domain molecule
(79). The N-terminal domain comprises helices 1 to 3, with
helices 2 and 3 forming the HTH DNA-binding motif seen in
other TetR family protein structures. The larger C-terminal
domain, which in QacR and TetR has been dubbed the drug-
binding domain, consists of helices 4 to 9, and its function in
EthR is unknown. The crystal structure revealed that the
dimerization interface, a conserved structural feature among
the TetR class of repressors, is primarily formed by helices 8
and 9 (288, 351).

One of the most striking features of the EthR structure is a
narrow tunnel-like cavity formed by helices 4, 5, 7, and 8 that
opens to the bottom of the molecule (79). The tunnel measures
about 20 Å in length and is lined predominantly, albeit not
exclusively, by aromatic residues, with helices 5 and 7 consti-
tuting the majority of side chains. The loop connecting helices
4 and 5 restricts the opening of the hydrophobic tunnel, and
the electron density in this loop is only poorly defined, indi-
cating a certain degree of structural flexibility in the loop. This
cavity may serve as the binding site for an as yet unknown
ligand.

Crystal structure of TetR family members with unknown
functions. New genomic/proteomic approaches are leading to
the crystallization of a number of proteins, many of which have
no assigned function. The following proteins of the TetR fam-
ily have been crystallized: Cgl2612 of Corynebacterium glutami-
cum (pdb 1V7B); YbiH of Salmonella enterica serovar Typhi-
murium (pdb 1T33); YcdC of Escherichia coli (pdb 1PB6); and
YfiR and YsiA from Bacillus subtilis (pdb 1RKT and 1VIO,
respectively).

DNA-BINDING PREDICTIONS BASED ON TetR
AND QacR CRYSTAL STRUCTURES

There is a perfect overlap of the DNA binding domains of
QacR, TetR, CprB, and EthR, and no gaps were found in the
�-helices involved in contacts with DNA in the multialignment
of the 2,353 members of the TetR family in this domain. Based
on these findings, we hypothesized that residues at the same
position in the multialignment of all family members may play
equivalent roles. This prompted us to analyze each amino acid
in the multialignment within the DNA binding domain.
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Relationship between Profile Positions and
Structural Positioning

Analysis comparison of the cocrystal of QacR and TetR with
their corresponding operators revealed that residues corre-
sponding to positions 22, 33, 34, 35, 37, 38, 39, and 43 in the
family multialignment are involved in interactions with target
operator DNA (Fig. 1). We analyzed the occurrence of each
amino acid at these positions in the multialignment of all
members of the TetR family (Table 4).

We found two types of position, one in which the residue was
highly conserved and another in which the residue was poorly
conserved, if at all. Positions 37, 39, and 43 were well con-
served, whereas at positions 22, 33, 34, 35, and 38 the profile
aligned different residues.

Tyr42 in TetR and Tyr40 in QacR corresponded to position
37 in the profile sequence displayed in Fig. 1, where a Tyr
residue appeared in 74.16% of the aligned proteins (Table 4).
The next most highly represented residues in this position are
also aromatic amino acids: phenylalanine (8%) and histidine
(4%) (Table 4). Tyr-42 in TetR and Tyr40 in QacR appear at
the center of �-helix 3 and contact a thymine located at the
center of the palindrome forming the operator and also con-
tact a phosphate one position towards the center of the palin-
drome (Fig. 3B and 6B).

The residue at position 39 of the profile in the multialign-
ment corresponds to His44 in TetR and His42 in QacR. In the
corresponding cocrystals, these residues established contacts
with the phosphate backbone (Fig. 3B and Fig. 6B). In the
multiple sequence alignment of all family members, either
histidine or tyrosine appears at position 39. We are tempted to
propose that this residue is critical for interactions with the
phosphate backbone.

A lysine-DNA phosphate interaction is shared at residues
Lys48 in TetR and Lys46 in QacR, which correspond to posi-

tion 43 in the multialignment and are located in the amino end
of the �4 helix. A lysine residue is present in 77% of TetR
proteins, and their interactions with DNA phosphates seem to
be crucial to adjust the HTH domain to contact DNA (Fig. 3B
and 6B). At position 22 of the profile (Thr27 in TetR and
Thr25 in QacR), five residues are the most abundant (Val,
Leu, Met, Ile, and Thr). Thr27 in TetR and Thr25 in QacR are
involved in interactions with the phosphate backbone.

Thus, in the TetR family, the contacts established by the
residue aligned at position 37 in �3 (tyrosine present in 74% of
the cases) and 39 in �3 (His or Tyr present in 98% of the cases)
and a residue at position 43 in �4 (Lys present in 77% of the
cases) probably orient the HTH motif to interact with the
DNA major groove and anchor the protein to the phosphate
backbone.

Glycine at position 16, located at the end of �1, in the
multialignment is highly conserved and is involved in changing
the polypeptide direction in the TetR and QacR crystals to
orient the HTH DNA binding domain properly.

Positions 33, 34, 35, and 38 of the profile align many differ-
ent residues (Table 4). In TetR and QacR, the corresponding
residues establish specific contacts with different DNA bases
except Asn38 of QacR (position 35 in the multialignment),
which contacts the phosphate backbone. Based on the high
variability of these positions in the corresponding multiple
alignment of the family, we are tempted to propose that
these positions endow specificity to each protein so that it
can recognize its operator through specific protein-DNA
interactions.

SOME REGULATORS ARE PART OF COMPLEX
REGULATORY CIRCUITS

Published data indicate that the specific function of 85
members of TetR family is known (Table 2). More infor-

TABLE 4. Amino acid frequency at each of the positions critical for operator recognition by TetR family membersa

Frequency at position:

22 33 34 35 37 38 39 43

AA % AA % AA % AA % AA % AA % AA % AA %

V 21.95 K 29.26 G 37.79 T 34.30 Y 74.16 R 22.75 H 44.50 K 77.25
L 20.60 R 20.07 A 18.93 S 20.87 F 8.05 Y 16.44 Y 33.83 R 10.07
M 18.66 P 10.27 P 12.55 A 19.6 H 4.63 H 13.29 R 4.90 L 2.82
I 17.65 Q 6.04 S 8.39 L 5.84 L 3.09 N 8.39 F 3.56 I 1.88
T 13.22 V 5.30 R 6.71 N 5.30 T 2.48 K 6.11 A 2.15 M 1.88
F 2.15 A 4.56 T 5.10 G 4.30 S 1.95 W 5.84 N 1.95 V 1.81
H 1.74 T 4.30 Q 3.56 V 2.28 N 1.88 A 5.64 Q 1.88 T 0.94
A 1.61 L 4.23 M 2.35 M 2.08 R 1.21 L 3.56 E 1.48 G 0.94
Y 1.28 E 3.36 N 1.07 Q 1.34 Q 0.6 S 3.56 L 1.34 Q 0.74
S 0.54 I 2.89 K 1.01 Y 1.28 A 0.47 F 2.89 W 1.21 A 0.47
P 0.40 H 2.89 V 0.81 I 1.14 I 0.47 Q 2.55 S 0.94 H 0.34
N 0.13 S 2.01 D 0.47 P 0.54 G 0.27 T 2.35 T 0.74 F 0.27
E 0.07 N 1.61 L 0.47 R 0.40 M 0.27 E 1.68 V 0.54 P 0.20

G 1.07 E 0.40 E 0.20 V 0.2 V 1.61 C 0.40 S 0.13
D 1.01 F 0.27 H 0.20 K 0.13 G 1.41 K 0.27 Y 0.07
Y 0.67 I 0.07 K 0.13 C 0.07 D 1.07 I 0.13 E 0.07
M 0.27 H 0.07 D 0.13 P 0.07 I 0.54 D 0.07 N 0.07
C 0.13 C 0.07 C 0.20 G 0.07
F 0.07 M 0.07

P 0.07

a The amino acid (AA) frequency is expressed as a percentage and refers to the 2,353 TetR family members.
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mation about each TetR protein is available at http://www
.bactregulators.org (235). We have clustered the functions reg-
ulated by TetR family members into 10 groups (Table 2). The
most frequent function performed by TetR family proteins is
the regulation of efflux pumps and transporters involved in
antibiotic resistance and tolerance to toxic chemicals. We have
also observed that TetR family members often regulate their
own synthesis, this feedback control ensures the transcriptional
repressor level within optimal concentration limits (31, 73, 231,
338, 392). In this simple regulatory scheme, synthesis of the
repressor and of the regulated protein(s) is derepressed in the
presence of an inducer molecule.

However, TetR family proteins also participate in other
types of regulatory networks that underlie complex processes,
such as homeostasis in metabolism (biosynthesis of amino ac-
ids, nucleotides, protoheme, and reserve material), synthesis of
osmoprotectants, quorum sensing, drug resistance, virulence,
and processes related to growth phase-dependent differen-
tiation (sporulation and biosynthesis of antibiotics) (Table
2) (www.bactregulators.org) (235).

Figure 8 shows a series of schemes in which a TetR family
member plays a role in complex circuits. Below, for the sake of
brevity, we have analyzed only some representative sets of
regulatory networks, including proteins involved in drug resis-
tance (AcrR of E. coli and MtrR of Neisseria gonorrhoeae),
biosynthesis of an osmoprotectant (BetI), a key protein in-
volved in idiophase antibiotic production and differentiation in
Streptomyces (ArpR), a protein involved in pathogenesis in
Vibrio (HapR), and some proteins involved in quorum sensing.

AcrR Regulator Is the Local Specific Regulator
of the acrAB Efflux Pump

Multiple antibiotic resistance in Escherichia coli has at-
tracted recent attention, promoting the elucidation of a num-
ber of mechanisms that contribute to this phenomenon. One of
these is the transport of diverse substrates out of the cell by the
AcrAB-TolC efflux transporter, leading to a multiple antibi-
otic resistance (Mar) phenotype (267). The set of antibiotics
to which AcrAB can confer resistance includes ampicillin,
chloramphenicol, erythromycin, fluoroquinolones, �-lactams,
novobiocin, tetracycline, tigecycline, and rifampin (151, 187,
223, 267, 268, 276).

AcrB is a large cytoplasmic membrane protein (224, 226,
445, 446) which associates with AcrA, a membrane fusion
protein (281), and TolC, a protein that forms a channel for the
extrusion of substrates into the medium (102, 193). The acrA
and acrB genes form an operon (224) whose transcription is
regulated by the acrR gene product. The acrR gene is diver-
gently transcribed from the acrAB operon. Overexpression of
AcrR represses the transcription of acrAB. This observation is
consistent with the function of AcrR as a repressor for acrAB
transcription. Evidence for this function has come also from
gel shift mobility assays, which provided direct evidence for the
binding of AcrR to the promoter region of acrAB. DNA se-
quencing (92) of certain isolates that overexpressed acrB
mRNA revealed that the mutant strains had insertions that
disrupted the acrR gene or point mutations that rendered a
nonfunctional regulator, i.e., an amino acid substitution of
cysteine for arginine at position 45 of AcrR. This biochemical

and genetic evidence provides support for the regulatory role
of AcrR.

MarA, SoxS, and Rob are related transcriptional activators
of the AraC/XylS family (7, 112, 367) that activate acrAB
expression, although they are not involved in the regulation of
acrAB in response to general stress conditions (13, 14, 21, 35,
110, 224) because the acrAB operon can be activated in re-
sponse to these stresses in genetic backgrounds lacking mar
and sox (223–225). It was also found that general stress con-
ditions increased the transcription of acrAB in the absence of
functional AcrR, and these conditions, surprisingly, increased
the transcription of acrR to a greater extent than that of acrAB.
These results suggest the existence of a mar-sox-independent
pathway to control acrAB expression in response to the general
stress conditions. This transcriptional control of acrAB is also
AcrR independent. Therefore, a major role of AcrR is to
function as a specific secondary modulator to fine-tune the
level of acrAB transcription and prevent unwanted overexpres-
sion of the efflux pump. This represents a novel mechanism for
regulating gene expression in E. coli.

Mtr Circuit of Neisseria

The MtrCDE efflux pump of Neisseria gonorrhoeae provides
gonococci with a mechanism to resist structurally diverse an-
timicrobial hydrophobic agents and antibiotic peptides that
adopt �–sheet (protegenin 1) or two-helix (PC-8 and LC37)
structures (130, 228, 238, 353). Mutations that render no ex-
pression or inactivation of mtrR, encoding a transcriptional
repressor, resulted in high expression of the mtrCDE operon,
concomitantly increasing resistance to hydrophobic agents (69,
130, 220, 221, 297, 353, 447). It was also found that strains of
N. gonorrhoeae that display hypersusceptibility to hydrophobic
agents often contained mutations in the mtrCDE efflux pump
genes (406).

The mtrR gene is divergently transcribed with respect to the
mtrCDE operon (Fig. 8F). The promoters of mtrR and mtrC
overlap in their �35 boxes, and footprinting analysis showed
that MtrR binds a 40-bp region within the �10 to �35 region
of the mtrR promoter, which contains an inverted repeat (221).
MtrR bound to its target site prevented expression from the
efflux pump operon and its regulator (Fig. 8F). The expression
of mtr genes is enhanced by the AraC/XylS member MtrA,
although the mechanism of activation of this protein is un-
known.

On the other hand, Veal and Shafer (407) have recently
identified a gene that was designated mtrF, located down-
stream of the mtrR gene, that is predicted to encode a 56.1-kDa
cytoplasmic membrane protein containing 12 transmembrane
domains. Expression of mtrF was enhanced in a strain deficient
in MtrR production, indicating that this gene, together with
the closely linked mtrCDE operon, is subject to MtrR-depen-
dent transcriptional control. Genetic evidence suggests that
MtrF is also important in the expression of high-level deter-
gent resistance by gonococci, and it was proposed that MtrF
acts in conjunction with the MtrC–MtrD–MtrE efflux pump to
confer high-level resistance to certain hydrophobic agents in
gonococci. MtrR also controls the farAB operon, which en-
codes an efflux pump involved in resistance to long-chain fatty
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acids (Fig. 8F). The efflux pump FarAB uses MtrE as the outer
membrane component (208).

BetI Controls the Choline-Glycine Betaine
Pathway of E. coli

In Escherichia coli, glycine betaine serves as an osmoprotec-
tor in hyperosmotically stressed cells. This osmoprotector ac-
cumulates in large amounts in the cytoplasm, which allows cells
to maintain appropriate osmotic strength and thus prevents
dehydration. Glycine betaine is only one of several cellular
osmolytes used by E. coli, but its accumulation allows this

microbe to achieve its highest level of osmotic tolerance (199,
373). To accumulate glycine betaine, E. coli needs an external
supply of this compound or its precursors choline and betaine
aldehyde.

The osmoregulatory choline-glycine betaine pathway is en-
coded by the bet genes. The betA gene encodes choline dehy-
drogenase; betB encodes betaine aldehyde dehydrogenase;
betT encodes a transport system for choline; and betI encodes
a 21.8-kDa repressor protein involved in choline regulation of
the bet genes (Fig. 8C). The bet genes are linked, with betT
being transcribed divergently from the betIBA operon (203,
374). Primer extension analysis identified two partially over-

FIG. 8. Regulatory networks involving members of the TetR family. Although TetR and QacR cannot be considered part of a network, their
type of control is shown because it is frequently found in members of the family. The following color code was used for complex networks: dark
blue, TetR family member; orange, the gene directly regulated by the TetR family member; light blue, a regulator that modulates the expression
of a TetR family member or which assists in the regulation of the gene under the control of a TetR family member; yellow boxes, signals and
conditions influencing the system; open boxes, final results of the action of the system when the result is a scorable phenotype. References
recommended for each circuit: panel A (29, 38, 286, 288, 388, 417, 418); panel B (4, 7, 13, 31, 35, 110, 176, 191, 230, 245, 270, 436); panel C (8,
91, 201–204, 222, 290, 331); panel D (119, 120, 122, 249, 261, 332, 350–351); panel E (5, 6, 66, 67, 116, 163); panel F (228, 238, 397, 333, 353, 408);
panel G (87–89, 125, 140, 214, 215, 295, 360, 403); panel H (48, 161); panel I (78); panel J (56, 184, 185, 208, 413); panel K (133, 134, 158, 413);
panel L (127); panel M (61, 266); panel N (240, 241, 345); panel O (248); panel P (59, 63, 242, 243, 355); panel Q (23, 24, 51, 107, 232, 255); panel
R (97, 107, 117, 252, 341, 363); and panel S (107, 117, 181, 196, 217, 247).
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lapping promoters which were responsible for the divergent
expression of the betT gene and betIBA operon. The transcripts
are initiated 61 bp apart and are induced by osmotic stress, but
for full expression choline is required in the growth medium
(91, 202, 204). Because the ArcA protein represses the expres-
sion of bet genes in E. coli under anaerobiosis, the bet genes are
expressed only under aerobic conditions. An arcA mutation
caused complete derepression of the bet genes. A similar pat-
tern for derepression by ArcA has been reported previously for
other genes (sodA and arcA) which are directly regulated by
ArcA (65).

Results from different laboratories suggest that choline reg-
ulation but not osmotic regulation of the bet promoters de-
pended on BetI, a TetR family member. This was indicated by
the requirement for choline, in addition to osmotic stress, for
betT to be expressed in a mutant strain in which betI was
supplied in trans. Furthermore, this choline effect was not seen
in cells lacking betI. These findings indicate that betI encodes a
repressor that reduced the expression of betT (331).

A chimeric BetI glutathione S-transferase fusion protein
(BetI*) was purified, and gel mobility shift assays showed that
BetI* formed a complex with a 41-bp DNA fragment carrying
the intergenic betI promoter region. Footprinting revealed the
presence of two sequences of dyad symmetry which probably
constitute the BetI operator.

The Sinorhizobium meliloti bet genes have been cloned, and
their involvement in response to osmotic stress has been ana-
lyzed (304, 305, 368).

ArpA Regulator from Streptomyces

Streptomycetes are filamentous, soil-living, gram-positive
bacteria characterized for their ability to produce a wide vari-
ety of secondary metabolites, including antibiotics and biolog-
ically active substances, and for their complex morphological
differentiation culminating in the formation of chains of spores
(55). Secondary metabolite synthesis is sometimes called
“physiological” differentiation because it occurs during the id-
iophase after the main period of rapid vegetative growth and
assimilative metabolism (139, 153, 291).

The ultimate regulator of the mentioned processes in Strep-
tomyces griseus is a homodimeric protein called A-factor re-
ceptor protein (ArpA) (155–158), which regulates the switch
for physiological and morphological differentiation. The main
biologically significant target of ArpA is the adpA gene. The
AdpA protein in turn controls the expression of other genes.
These genes include strR, which serves as a pathway-specific
transcriptional activator for streptomycin biosynthetic genes
(278); an open reading frame encoding a probable pathway-
specific regulator for a polyketide compound (441); adsA,
which encodes an extracytoplasmic function sigma factor of
RNA polymerase essential for aerial mycelium formation
(438); sgmA, which encodes a metalloendopeptidase proba-
bly involved in apoptosis of substrate hyphae during aerial my-
celium development (174); ssgA, which encodes a small acidic
protein essential for spore septum formation (437); amfR, es-
sential for aerial hyphae formation (398, 440); and the sprT and
sprU genes, which encode trypsin-like proteases (173).

In vitro, ArpA binds its target DNA site at the �10/�35
region, which is a 22-bp palindrome (5�-GG(T/C)CGGT(A/T)

(T/C)G(T/G)-3�). Addition of �-butyrolactone effector to the
ArpA-DNA complex immediately releases ArpA from the
DNA. A mutant strain deficient in ArpA or producing a mu-
tant ArpA protein unable to bind to its target DNA overpro-
duces streptomycin and forms aerial mycelia and spores earlier
than the wild-type strain (282, 283). An amino acid replace-
ment at Val-41 to Ala in ArpA in the HTH motif at the
N-terminal portion of ArpA abolished DNA binding activity
but not �-butyrolactone binding activity, suggesting the in-
volvement of this HTH in DNA binding. On the other hand,
mutation of Trp-119 (Trp 1193Ala) generated a mutant un-
able to bind the �-butyrolactone, resulting in a mutant protein
that did not sense the presence of A-factor. These data suggest
that ArpA consists of an HTH DNA-binding at the N-terminal
end and an effector binding domain at the C-terminal end of
the protein.

In the streptomycin biosynthetic gene cluster in S. griseus,
StrR is the pathway-specific regulator that serves as a tran-
scriptional activator for the other genes in the cluster (320).
Expression of the strR gene was controlled by the AdpA pro-
tein, which binds the region upstream of the strR promoter and
activates its transcription (311, 312). adpA knockout mutants
produced no streptomycin, and overexpression of adpA caused
the wild-type S. griseus strain to produce streptomycin at an
earlier growth stage in a larger amount. This set of events
explains how A-factor triggers streptomycin biosynthesis.

Disruption of the chromosomal adsA gene encoding 	AdsA

resulted in loss of aerial hypha formation but not streptomycin
production, indicating that this sigma factor is involved in
morphological development (401, 438).

Several receptor proteins for �-butyrolactone-type auto-
regulators have been described in other species of Streptomy-
ces. For example, CprA and CprB are involved in secondary
metabolism and aerial mycelium formation in S. coelicolor
A3(2) (284). The virginiae butanolyde receptor BarA is in-
volved in virginiamycin biosynthesis in Streptomyces virginiae
(280), and the IM-2 receptor, FarA is involved in blue pigment
production in another Streptomyces strain (413).

FarA in Streptomyces lavendulae senses the concentration of
�-butyrolactone IM-2 and also transduces this signal, thus de-
repressing antibiotic and blue pigment biosynthesis. In addi-
tion, FarA also seems to be necessary for IM-2 biosynthesis
(Fig. 8J).

The role of ScbR protein in the quorum-sensing circuit of
Streptomyces coelicolor is similar to that of FarA in S. lavendu-
lae. ScbR is also involved in three functions: positively regu-
lating SCB1 synthesis (the �-butyrolactone that acts as signal),
receiving the signal, and transducing this signal, thereby dere-
pressing the production of the antibiotics actinorhodin and
U-prodigiosin (Fig. 8M).

HapR Regulates Virulence Genes in Vibrio cholerae

The development of cholera in humans is directly related to
the production of two virulence factors: toxin-coregulated pilus
(TCP), which mediates colonization, and cholera toxin (CT),
responsible for the severe diarrhea, characteristic of this dis-
ease. The coordinated expression of TCP and CT occurs
though a complex regulatory cascade (Fig. 8S) in which the
regulators AphA and AphB synergistically activate tcpPH tran-
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scription (194). The TetR family protein HapR negatively reg-
ulates the expression of AphA and indirectly diminishes the
production of TCP and CT.

HapR, in turn, is regulated by quorum-sensing signals that
are sensed and transmitted by LuxO. The quorum-sensing ap-
paratus in Vibrio cholerae is unusually complex and is com-
posed of three parallel signaling systems (247). In contrast to
other bacteria, in which high cell density triggers virulence
gene expression, in Vibrio cholerae low cell density is the con-
dition that activates the production of the pathogenic factors
CT and TCP (455). At high cell density HapR positively reg-
ulates the expression of a hemagglutinin protease (Hap) that
promotes detachment of Vibrio cholerae from the gastrointes-
tinal epithelium (365) and exerts a negative effect on biofilm
formation. Taking into account the regulatory functions of
HapR and considering that some pathogenic biotypes lose
HapR expression whereas others lose the aphA binding site,
it appears that HapR expression is related to diminished tox-
icity and colonization capacity. These features offer potentially
fruitful avenues of research to design drugs to modulate Vibrio
cholerae pathogenicity.

Other Quorum-Sensing Circuits

Within the genus Vibrio, some TetR family proteins, i.e.,
LuxT, LuxR, and LitR, are involved in complex quorum-sens-
ing circuits. In Vibrio harveyi, LuxT and LuxR participate in the
circuit that regulates luminescence. This strain senses two au-
toinducers, AI-1 and AI-2 (58, 216). AI-1 is an acyl-homo-
serine lactone, as in other gram-negative bacteria. However,
AI-2 is a novel autoinducer produced by many species that
appears to be related to interspecies cell density detection.
These two autoinducers use the same phosphorelay system to
transduce the signal for bioluminescence regulation. Expres-
sion of luxR is in turn regulated by LitR (Fig. 8R).

BIOTECHNOLOGICAL APPLICATIONS
AND FUTURE PROSPECTS

The Tet system is at present the most widely used system for
conditional gene expression in eukaryotic cells (37). The sys-
tem is based in the high affinity (10�9 M) of TetR for its
operator, tetO, the favorable pharmacokinetics of tetracyclines
(they diffuse through biological membranes), and their long
record of safe clinical use. Cloning of the tetO elements adja-
cent to the TATA box of the target gene (114) was used
successfully to control genes expressed by RNA polymerase I
in Leishmania donovani and by RNA polymerase III in yeast
and plant cells (76, 400). However, this system is not efficient in
mammalian cells. For this reason, and based on the knowledge
acquired about how TetR binds to its target operator, several
chimeric versions of TetR fused to eukaryotic regulatory do-
mains were constructed, such as the acidic activation domain
(tTA) (22, 115, 403) and repression domains (tTS) (33, 336).
Based on hybrid transregulators, transgenic mice able to pro-
duce diphtheria toxin or the regulated expression of Shiga
toxin � to induce apoptosis in mammalian fibroblastic cells
were obtained.

The tet system has also been used to study cancer and neu-
rological disorders (95, 98, 419). In the future, advances to

approach multifactorial biological processes like development
and diseases are expected, which will be relevant for the treat-
ment of complex diseases (37).

Solvent efflux pumps generally exhibit a broad substrate
specificity, but some of them are highly specific and remove a
certain number of chemicals. One such efflux pumps is the
TtgABC pump of Pseudomonas putida DOT-T1E, which re-
moves toluene, m-xylene, and propylbenzene as well as styrene
and other aromatic hydrocarbons (327) in addition to several
antibiotics. This efflux pump is under the control of the drug
binding repressor TtgR, a member of the TetR family (391),
and has applications in the safe development of solvent-resis-
tant bacteria. Therefore, it is potentially suitable for the bio-
transformation of water-insoluble compounds into added-
value products. One such system has been exploited to produce
catechols from xylenes/toluenes in double-phase systems (328).
Because these efflux systems are energy consuming, their ex-
pression in heterologous hosts has to be tightly controlled by
their cognate repressor, which in turn has to be able to respond
to the presence of the aromatic solvent. These types of pumps
are presumed to be useful if transferred to a wide variety of
bacteria that carry suitable biotransformation machineries.

As shown in Fig. 8, TetR family members are key players in
multidrug resistance, virulence, and pathogenicity processes in
certain bacterial pathogens. The development of drugs that
bind irreversibly to the repressors and prevent their release
from their cognate operators may be a strategy to fight these
pathogens. Suitable screening procedures to search for these
drugs can be envisaged based on current tools for gram-nega-
tive bacteria (74).
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