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V I E W P O I N T

Systems Biology and New Technologies Enable
Predictive and Preventative Medicine

Leroy Hood,1* James R. Heath,2,3 Michael E. Phelps,3 Biaoyang Lin1

Systems approaches to disease are grounded in the idea that disease-perturbed
protein and gene regulatory networks differ from their normal counterparts; we have
been pursuing the possibility that these differences may be reflected by multi-
parameter measurements of the blood. Such concepts are transforming current
diagnostic and therapeutic approaches to medicine and, together with new tech-
nologies, will enable a predictive and preventive medicine that will lead to per-
sonalized medicine.

Biological information is divided into the dig-

ital information of the genome and the envi-

ronmental cues that arise outside the genome.

Integration of these types of information leads

to the dynamic execution of instructions as-

sociated with the development of organisms

and their physiological responses to their en-

vironments. The digital information of the

genome is ultimately completely knowable,

implying that biology is unique among the

sciences, in that biologists start their quest

for understanding systems with a knowable

core of information. Systems biology is a sci-

entific discipline that endeavors to quantify

all of the molecular elements of a biological

system to assess their interactions and to in-

tegrate that information into graphical net-

work models (1–4) that serve as predictive

hypotheses to explain emergent behaviors.

The genome encodes two major types of

information: (i) genes whose proteins exe-

cute the functions of life and (ii) cis control

elements. Proteins may function alone, in

complexes, or in networks that arise from

protein interactions or from proteins that

are interconnected functionally through small

molecules (such as signal transduction or

metabolic networks). The cis control ele-

ments, together with transcription factors,

regulate the levels of expression of individual

genes. They also form the linkages and ar-

chitectures of the gene regulatory networks

that integrate dynamically changing inputs

from signal transduction pathways and pro-

vide dynamically changing outputs to the

batteries of genes mediating physiological

and developmental responses (5, 6). The

hypothesis that is beginning to revolutionize

medicine is that disease may perturb the nor-

mal network structures of a system through

genetic perturbations and/or by pathological

environmental cues, such as infectious agents

or chemical carcinogens.

Systems Approaches to Model Systems
and Implications for Disease

A model of a metabolic process (galactose

utilization) in yeast was developed from exist-

ing literature data to formulate a network hy-

pothesis that was tested and refined through a

series of genetic knockouts and environmental

perturbations (7). Messenger RNA (mRNA)

concentrations were monitored for all 6000

genes in the genome, and these data were

integrated with protein/protein and protein/

DNA interaction data from the literature by a

graphical network program (Fig. 1).

The model provided new insights into the

control of a metabolic process and its in-

teractions with other cellular processes. It

also suggested several concepts for systems

approaches to human disease. Each genet-

ic knockout strain had a distinct pattern of

perturbed gene expression, with hundreds

of mRNAs changing per knockout. About

15% of the perturbed mRNAs potentially en-

coded secreted proteins (8). If gene expres-

sion in diseased tissues also reveals patterns

characteristic of pathologic, genetic, or envi-

ronmental changes that are, in turn, reflected

in the pattern of secreted proteins in the

blood, then perhaps blood could serve as a

diagnostic window for disease analysis. Fur-

thermore, protein and gene regulatory net-

works dynamically changed upon exposure

of yeast to an environmental perturbation (9).

The dynamic progression of disease should

similarly be reflected in temporal change(s)

from the normal state to the various stages

of disease-perturbed networks.

Systems Approaches to Prostate
Cancer

Cancer arises from multiple spontaneous

and/or inherited mutations functioning in

networks that control central cellular events

(10–12). It is becoming clear from our re-

search that the evolving states of prostate

cancer are reflected in dynamically changing

expression patterns of the genes and proteins

within the diseased cells.

A first step toward constructing a systems

biology network model is to build a com-

prehensive expressed-mRNA database on

the cell type of interest. We have used a

technology called multiple parallel signature

sequencing (MPSS) (13) to sequence a com-

plementary DNA (cDNA) library at a rate of

a million sequences in a single run and to

detect mRNA transcripts down to one or a

few copies per cell. A database containing

more than 20 million mRNA signatures was

constructed for normal prostate tissues and

an androgen-sensitive prostate cancer cell

line, LNCaP, in four states: androgen-starved,
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androgen-stimulated, normal conditions, and

an androgen-insensitive variant. In com-

paring the androgen-sensitive (typical of

early-stage cancer) and androgen-insensitive

(typical of late-stage cancer) stages (14, 15),

thousands of changes in mRNA expression

were identified but, out of 554 expressed

transcription factors, 112 changed between

the early- and late-stage cell lines (80% of

which were missed when

cDNA arrays were used),

and a similar number

changed between the can-

cerous cells and normal

tissue. By comparing the

prostate database with a

tissue-wide database of 58

million MPSS signatures

from 29 normal tissues from

Lynx Therapeutics, about

300 prostate-specific genes

(Fig. 2) were identified, ap-

proximately 60 of which

possessed signal peptides,

suggesting that they may

be secreted (8). Antibodies

to one of these proteins rec-

ognized, by blood analy-

ses, 5 out of 10 early and

5 out of 10 late prostate

cancers (16). In contrast,

the standard prostate cancer

blood marker, PSA, recog-

nized no early cancers but

many of the late prostate

cancers, including all of

those missed by our marker.

Thus, two markers are better

than one, and by extension a

panel of multiple markers

might recognize most early

and late prostate cancers.

Several groups have

documented the fact that

(unidentified) molecules in

blood serum, detected by

mass spectrometry, reflect

various stages of cancer

(17–20). Aebersold’s group

has succeeded in identifying

many of these biomarkers

through the use of a glyco-

protein capture method, cou-

pled with isotopic labeling

and analyses by mass spec-

trometry (21, 22). Molecular

diagnostics will increasingly play a key role in

providing direct measures of disease biology for

selecting and following therapeutic responses.

Given enough measurements, one can

presumably identify distinct patterns for

each of the distinct types of a particular

cancer, the various stages in the progression

of each disease type, the partition of the

disease into categories defined by critical

therapeutic targets, and the measurement of how

drugs alter the disease patterns. The fascinating

question is how many parameters need to be

measured in order to stratify and follow the

progression of various prostate cancers, or

to stratify and follow the progression of the

most frequent 20 or 30 cancers, or eventu-

ally the most common diseases. Finally,

changes in the tissue-specific markers might

identify critical points within the network. It

is the key nodal points within these per-

turbed networks that may be affected by

drugs, either to convert the diseased net-

work back toward normalcy or to permit the

specific killing of the diseased cells. Thus,

multiparameter blood measurements will not

only be invaluable for diagnostics but also for

rationalizing the discovery of appropriate

drug targets. In this scenario, molecular

diagnostics will become an invaluable tool

for molecular therapeutics.

Toward Analyses of Single Cells and
Single Molecules

The systems biology approach toward con-

structing a predictive network model of a

metabolic process in yeast required È105

measurements. For the

prostate cancer example,

roughly 108 measure-

ments were sufficient to

begin constructing a large

set of cancer markers that

could be correlated back

to the digital code of the

genome. However, for

constructing a predictive

model of human disease,

methods that can address

the heterogeneity that

characterizes biology—

from the differences in

how individual cells re-

spond to environmental

perturbations, to the di-

versity of cell types and

environments within real

tissues—will be critical.

In the prostate, there

are neuroepithelial cells,

various stromal cells, en-

dothelial cells, and epi-

thelial cells (from which

95% of cancers arise),

each of which exhibits a

continuous developmen-

tal cycle. One cannot reli-

ably generate information

for networks from mixed

populations of cells. Var-

ious investigators have

used cell sorting (23),

manual dissection (24),

or laser capture micro-

dissection (LCM) (25) to

obtain relatively homo-

geneous populations of

cells. However, cell sort-

ing and LCM themselves

may cause processing-

induced changes in gene

expression (26, 27), and

manual microdissection

rarely provides complete-

ly homogeneous cell types. Furthermore,

even cells of one type typically represent dif-

ferent stages of a developmental or phys-

iological process. Biologists would like to

analyze individual cells for the key mea-

surements of systems biology, so that net-

work hypotheses could be generated from

individual cells. The mRNAs from single

cells have been analyzed after polymerase
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Fig. 1. A network perturbation model of galactose utilization in yeast. This model
reflects the integration of mRNA levels for the 6000 yeast genes in each of 20
different genetic and environmental perturbations, as well as thousands of protein/
protein and protein/DNA interactions from the literature. The software program
Cytoscape (54) integrated these data into a network where the nodes represent
proteins (encoded by genes) and the lines represent interactions (blue straight lines,
protein/protein interactions; yellow lines with arrows, protein/DNA interactions). A
gray scale represents the levels of mRNA, with black being abundant levels and white
very low levels. The red node indicates that this network model reflects the knockout
of the corresponding gene (and protein) gal 4—a key transcription factor. rProtein,
ribosomal protein; nt, nucleotide; synth, synthesis.

G E N E S I N A C T I O NG E N E S I N A C T I O N

www.sciencemag.org SCIENCE VOL 306 22 OCTOBER 2004 641

S
P

E
C

IA
L

S
E

C
T

IO
N



chain reaction (PCR) amplification, but

there is no similar amplification technique

for proteins. Thus, techniques are needed

that are highly parallel, allow for multiple

types of measurements (genes and proteins)

and operations (such as cell sorting) to be

integrated, are miniaturized (to analyze sin-

gle cells and single molecules), and are

automated. Here we highlight just a few of

the technologies that are being driven by the

needs of systems biology.

Microfluidics has existed as a useful bio-

technology for some time (28–30). How-

ever, multilayer

elastomer micro-

fluidics (Fig. 3) is

a powerful new

technology that al-

lows for the in-

tegration of many

pumps, valves, and

channels within an

easily fabricated

microchip. This

means that multiple

operations, such as

cell sorting (31,

32), DNA purifica-

tion, and single-cell

gene expression

profiling (33), can

be executed in par-

allel. This tech-

nology provides a

bridge between

biological mate-

rials and systems

biology through

large-scale multi-

parameter analysis,

with applications

ranging from mo-

lecular dissections

of single cells (for

example, from needle biopsies) and very small

cell populations to multiparameter disease di-

agnostics from cells and blood.

Nanomechanical (34) and nanoelectronic

(35, 36) devices are emerging as highly sen-

sitive, label-free, and real-time detectors of

genes, mRNAs, and proteins. To date, demon-

strations of these nanotechnologies have been

at the single- or few-device level, but the

reported detection sensitivities and dynamic

ranges (37, 38) have been spectacular. Nano-

fabrication methods for constructing large

libraries of these devices (39–43) and inte-

grating nanotechnologies with elastomer mi-

crofluidics (44) are moving forward. It is

likely that within the next couple of years,

miniaturized and automated microfluidics/

nanotech platforms that integrate operations

such as cell sorting and serum purification

with measurements of 5 to 10 biomarkers

from single cells or very small fluid volumes

will emerge. New measurement types, such

as quantifying the forces associated with

protein/protein, protein/DNA, and protein/

drug interactions, are possible. Other emerg-

ing nanotechnologies include tools for the
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Fig. 2. A prostate-specific marker identified through quantitative
profiling of all mRNAs across all 29 major organs in the human body.
The gene HOXB13 is expressed at 432 transcripts per million in the

prostate tissue but is not expressed in the other 28 normal tissues. This
method has been used to identify approximately 50 potential serum-
based protein biomarkers for prostate cancer.

Fig. 3. Microfluidic and nanotechnology platforms. (A) An integrated microfluidics environment for single-cell gene expression studies.
A single cell is introduced (i) into a 100-6m-wide channel. Before the cell is introduced, an affinity column (beads covered with
oligo dT) is loaded [dark regions in (ii)]. The orange-colored regions in (ii) are valves that separate, for example, the empty
chamber at the right from the region in which the column is being constructed. Three such valves constitute a peristaltic pump
(not shown). Data from a real-time PCR analysis of the isolated mRNA (iii) illustrate the power of this integrated microfluidics
approach. Lanes 3 and 4 correspond to one and nine cells, respectively, whereas the other lanes correspond to various controls
[adapted from (33)]. (B) Array of nanomechanical biomolecular sensors. The cantilevers are fabricated to be only a few nanometers
thick, with a molecular probe (such as single-stranded DNA) bonded to their top surface. DNA hybridization leads to steric
crowding that forces the cantilever to bend. The bending can be detected optically or electronically [adapted from (34)]. (C) An
electron micrograph showing a library of 16-nm-wide silicon nanowire biomolecular sensors. The scale bar is 200 nm, and the
structures on top of the nanowires are electrical contacts. Nanowire sensors operate by binding molecular probes (such as
antibodies) to the surface of a semiconducting nanowire. When the target protein binds to the probe, the conductivity
properties of the nanowire are altered, and so the binding event is electronically detected. Both nanocantilevers and nanowires
are capable of real-time biomolecular detection [adapted from (55)].
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rapid sequence analysis of individual DNA

molecules (45) and even nanoparticle-based

in vivo cancer imaging probes (46).

These various technologies will be har-

nessed to generate preliminary network hy-

potheses for analyzing human diseases within

the next few years. Those hypotheses must

ultimately be tested in vivo. Such testing

typically means molecular imaging, which

encompasses methods ranging from bio-

luminescence and fluorescence (47–50) to

positron emission tomography (PET) (49–52)

and magnetic resonance imaging (MRI) (48).

The challenge is to reduce the large numbers

of elements delineated in the network ana-

lyses to one of a few targets of molecular

imaging biomarkers that can provide critical

tests of the network. For example, specific

metabolic enzymes that are selectively ex-

pressed in prostate cancer cells would con-

stitute such a target. We searched the genes

that were differentially expressed between

early- and late-stage prostate cancer cell

lines (15) and determined that L-lactate de-

hydrogenase A, which catalyzes the forma-

tion of pyruvate from (S)-lactase, was only

expressed, and at a high level, in the late-

stage cancer cells. A specific PET tracer based

on this reaction would serve to validate this

finding and might also allow the identi-

fication of prostate cancer metastases. Mo-

lecular imaging is already being aligned with

molecular therapeutics in the use of labeled

drug candidates to provide direct measure-

ments in patients by imaging pharmacoki-

netics of the drug throughout the body,

titration of drugs to their disease targets,

and measuring therapeutic effects on the

biological processes of disease (49–53).

The Future

The medicine of today is reactive, with a focus

on developing therapies for preexisting dis-

eases, typically late in their progression. Over

the next 10 to 20 years, medicine will move

toward predictive and preventive modes. New

technologies will allow individuals to have the

relevant portions of their genomes sequenced,

and multiparameter informative molecular

diagnostics via blood analysis will become a

routine procedure for assessing health and dis-

ease status. During this period, there will also

be extensive correlations of genetic variations

with disease, and this combination of advances

will allow for the determination of a probabi-

listic future health history for each individual.

Preventive medicine will follow as disease-

perturbed networks can be used to identify

drug targets—first for therapy and later for

prevention. Pharmacological intervention will

focus on preventing disease-mediated transi-

tions, as well as reversing or terminating

those that have occurred. This will require

building a fundamental understanding of the

systems biology that underlies normal bio-

logical and pathological processes, and the

development of new technologies that will be

required to achieve this goal.

Predictive and preventative medicine will

lead naturally to a personalized medicine that

will revolutionize health care. Drug companies

will have the opportunity for more effective

means of drug discovery guided by molecu-

lar diagnostics, although the paradigm will

shift to partitioning patients with a particu-

lar disease into a series of therapeutic win-

dows, each with smaller patient populations

but higher therapeutic effectiveness. Health

care providers will move from dealing with

disease to also promoting wellness (preven-

tion). Finally, the public must be educated as

to their roles in a very different type of med-

icine, as must the physicians who practice it.

There will be enormous scientific and en-

gineering challenges to achieve this vision—

far greater than those associated with the

Human Genome Project. Predictive, preven-

tive, and personalized medicine will transform

science, industry, education, and society in

ways that we are only beginning to imagine.
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