Bio-Math Strategies
(sample for Chapter 3)

This document is an instructor’s guide and resource for the Bio-Math Explorations
in ICB. The following characteristics of each BME are summarized below the title.

Goal: why this BME is useful for understanding the biological information.

Prerequisites: what mathematical skills students need to be able to understand the
BME.

Difficulty Level: On a scale from 1 to 5, how difficult this BME is expected to be for
most students (1 = very easy, 2 = fairly easy, 3 = moderate, 4 = fairly difficult, and 5
= very difficult). Because students may find BME’s more or less difficult for different
reasons, some justification for the difficulty level is provided.

Special Features: Many BME'’s are linked with Excel files. Some BME’s reference
interactive web pages. These supplementary resources that allow students to
experiment with the data and concepts explained in the BME.

Stages: Instructors may wish to cover less than the entire BME, due to time
constraints or difficulty that builds over the course of the BME. Stages help the
instructor find appropriate stopping places within each BME.

Following this summary information are solutions to BME IQ’s, in addition to
supplementary figures and text to help instructors explain the concepts in the BME
and the BME IQ’s.

BME 3.1: A Mathematical Model of Cell Growth

Goal: Understand and interpret the distribution of cell volumes in Figure 3.1
to discover an important fact about E. coli cell growth.

Prerequisites: Basic arithmetic, proportion, area of a triangle.
Difficulty Level: 2 (application of basic math concepts to building a
mathematical model, application and interpretation of the new concept of a

frequency function)

Special Features: Excel implementation allows students to experiment with
the model.



Stages: (1) Understanding the frequency function, (2) Building a mathematical
model that matches experimental data, (3) Applying the model to infer that

growth rate depends on volume.

Supplementary information and solutions to BME Integrating Questions:

A histogram for these same data might look like this:
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In a histogram, the proportion of
cells in one of the chosen volume
ranges is easy to determine by
simply reading the height of the
bar. For example, in this histogram,
you can see that about 12% of the
cells are between 0.5 and 0.67 um3.

BME IQ 3.1a: The triangles needed to compute the proportions are shown below.

Because these three
ranges cover nearly the
entire range of volumes,
the proportions should
add to nearly 1. In any
frequency function, the
area under the curve
over the entire range of
values on the horizontal
axis should always be 1,
because the area
represents cumulative
proportion.

Frequency function of
volume, A (volume)

BME IQ 3.1b: A histogram
is easier to read, but the
person who makes the
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histogram makes all the choices of how to display the data. In a frequency function,
the reader can calculate the percentage of cells in any range of volumes. For
example, using the method described in the BME, the reader can compute the
proportion of cells between 0.5 and 0.7, as shown here, or in the smaller interval
between 0.5 and 0.6, or the even smaller interval between 0.5 and 0.55. So the
frequency function is more powerful, but calculating areas is tedious, and the
histogram saves the reader from doing this work.



BME IQ 3.1c: The curve produced by the model, shown below, is close to the same
shape as the curve in Figure 3.1. The minor differences are caused by primarily by
the fact that the model is discrete, rather than continuous, so there are “jumps” in
values that the actual volumes do not exhibit.
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BME IQ 3.1d: Growth rates are a constant 0.024 pm3 per minute for cell volumes up
to 0.8 um3. This translates to 0.024/6 = 0.004 pm3 per 10 second time step. If cells
are uniformly spread across the various volumes in an interval, then 0.004 divided
by the size of the interval will be the proportion of cells that grow out of the interval.
This explains how the proportions in line 6 of the spreadsheet are calculated. As the
volume increases from 0.8 um3, the growth rates increase to 0.03, for one interval,
then to 0.06 (nearly triple the rate of 0.024 for the smallest volumes) for volumes
between 1.0 and 1.6 pum3.

The cell division rates follow a similar pattern, but the peak in growth rate occurs
just before the peak in the cell division rate. Specifically, the proportion of cells in
each category that divide is 0 until the cells reach 1.1 um3, at which point the
proportion gradually increases up to 0.5.

BME IQ 3.1e: Changing the growth rate to a constant 0.04 um3 across all volume
categories produces a very different shape distribution curve. The new curve, with
the original in light grey, is shown below.
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BME 3.2: How much variation is there in random mating outcomes?

Goal: Understand the random variation in genetic data, illustrating the
importance of Mendel’s choice to isolate one trait at a time, and count large
samples of peas.

Prerequisites: Read and interpret a histogram, change values in a spreadsheet.

Difficulty Level: 1 (enter values in spreadsheet and describe what you observe,
no calculations, no new concepts, no dependence on previous concepts)

Special Features: Excel simulation allows students to experiment with random
mating of heterozygotes.

Stages: This BME is short and consists of only one stage.

Supplementary information and solutions to BME Integrating Questions:

There will typically be more yellow than green peas in this simulation, because the
probability that a pea has at least one dominant allele is 0.75, and therefore each pea
is much more likely to be yellow than it is to be green. Because 34 of the peas are
expected to be yellow, and % are expected to be green, the average yellow:green
ratio should be about 3, but the average varies wildly for small number of peas. For
example, when there are 19 peas, don’t be surprised if you see yellow:green ratios
as small as 0.9 (9 yellow and 10 green) or as large as 8.5 (18 yellow and 2 green) or
even 19 (19 yellow and 1 green).

Histogram of observed yellow:green ratios
BME IQ 3.2a: A typical histogram resulting in 1000 trials
from counting the smallest number of peas
(19) from a plant in Table 3.4 is shown
here. The smaller numbers of peas tend to
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Typical histograms resulting from counting the largest number of peas (97) from a
plant in Table 3.4, and from the total number of peas (478) is shown below. The
larger numbers of peas tend to produce histograms that are narrower and more
peaked near the expected yellow:green ratio of 3.
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BME 3.3: What are the chances?

Goal: Learn the basic rules for when you can add and multiply probabilities to
find the probability of particular genotypes and derive the 3:1 expected
phenotype ratio. The rules explained in this BME will be used again in the text,
in particular in BME 3.4 and BME 6.3.

Prerequisites: Basic arithmetic, and understanding of genetics terms and
concepts.

Difficulty Level: 3 (the calculations are simple, but the concepts of independent
and mutually exclusive events are somewhat sophisticated, and some 1Q’s
require combinations of new rules explained in this BME)

Special Features: This BME is self-contained and requires only pencil-and-
paper calculations.

Stages: (1) Finding the probability of a particular mating outcome, which
requires the multiplication rule for independent events, (2) Finding the
probability of a set of mating outcomes (such as those which lead to
expression of the dominant trait, or those that imply heterozygosity or
homozygosity), which requires the addition rule for mutually exclusive events.

Supplementary information and solutions to BME Integrating Questions:

Students often confuse the concepts of independence and mutually exclusive
because the common language of both terms sound like the events “have nothing to
do with each other.” To help clarify the difference, it may be useful to point out that
mutually exclusive events are as far from independent as you can get. If A and B are
mutually exclusive, then knowing that event A has occurred means that event B is
impossible. But for A and B to be independent, knowing that event A has occurred



should have no effect on the occurrence of event B. But making another event
impossible is certainly a huge effect! Almost all genetics probability problems deal
with independent events, because they are considering different alleles that are
assumed to assort independently. However, many problems consider situations that
are not mutually exclusive, such as the event of getting a Y from the pollenoraY
from the egg.

BME1Q 3.3a: P(yy) =Y%2x Y2 =Y. P(Yy) = Y2x % =%.P(yY) =% x Y2 = Y.

BME IQ 3.3b: The probability of flipping heads on both the nickel and the dime is the
probability of flipping heads on the nickel, multiplied by the probability of flipping
heads on the dime. That is, P(HH) = %2 x %2 = %. The nickel represents the pollen, the
dime represents the egg, and flipping the coin represents choosing an allele with a
50-50 chance of getting either one. For example, flipping heads can represent
getting the Y allele.

BME 1Q 3.3c: P(homozygous) = P(YY) + P(yy) = % + Y4 = %. P(heterozygous) = P(Yy)
+ P(yY) = %4 + % = %. Homozygosity is analogous to flipping the same way on both
coins (either both heads or both tails). Heterozygosity is analogous to flipping
opposite faces on the two coins.

BME 1Q 3.3d: P(yellow) = P(YY) + P(Yy) + P(yY) = %4 + Y4 + % = 34. Even though you
want the probability of getting Y from the pollen or Y from the egg, you cannot just
add these two probabilities because these are not mutually exclusive events (it is
possible to get Y from the pollen and Y from the egg). Also, the sum of these
probabilities is 1, which means that the outcome is certain. The analogous outcome
with coins is that you flip at least one heads when you flip both a nickel and a dime.

BME IQ 3.3e: For an F3 pea to be heterozygous, it must be a heterozygous outcome
from the self-fertilization of a heterozygous parent in the F> generation. This is a
combination of an event in the F; generation and the F3 generation. Since half of the
F2 peas are heterozygous, the probability in the F2 generation is %2. The probability
that the F2 heterozygote produced a heterozygous offspring in the F3 generation is
also Y. Therefore, the probability that a randomly chosen pea in the F3 generation
is heterozygous is %2 x %2 = %. These peas are 6 of the 12 yellow peas in the
rightmost block of peas in Figure 3.15.

BME IQ 3.3f: There are two mutually exclusive ways for an F3 pea to be yy. One is
that the F2 parent is yy, in which case the F3 offspring is guaranteed to be yy.
Therefore the probability of this way of being yy in the F3 generation is %2 x 1 = 4.
The other way is that the F> parent is heterozygous, in which case the F3 offspring is
yy with probability %. Therefore, the probability of this way of being yy in the F3
generation is %2 x % = 1/8. Adding the probabilities of these two mutually exclusive
events gives the desired probability: %2 + 1/8 = 3/8. In Figure 3.15, you can see that
3 out of 8 columns, or 3/8 of the F3 peas, are true-breeding green peas.



BME 3.4: How many genotypes and phenotypes are there?

Goal: Develop formulas for counting the number of genotypes and phenotypes
in a Punnett square using the multiplication principle, rather than drawing
the square and counting the boxes with each genotype and phenotype.

Prerequisites: Multiplication principle from BME 1.1, multiplication rule for
probability from BME 3.3.

Difficulty Level: 1 (stage 1) - 3 (stage 3)

Special Features: This BME is self-contained and requires only pencil-and-
paper calculations.

Stages: (1) Calculate the size of a Punnett square, (2) Calculate the number of
possible progeny genotypes, (3) Calculate the number of possible progeny
phenotypes, and find their relative frequencies to derive the famous 9:3:3:1
ratio, and extend this result to a trihybrid cross.

Supplementary information and solutions to BME Integrating Questions:

These formulas are an alternative way to discover the 9:3:3:1 ratio of phenotypes in
a dihybrid cross, with the advantage that they immediately extend to the trihybrid
cross, or even a cross of parents that are heterozygous at 7 traits.

BME IQ 3.4a: Considering a third trait to be the height, in which tall is dominant,
each gamete can be one of 8 genotypes: YST, YSt, YsT, Yst, yST, ySt, ysT, yst. To
calculate this number using the multiplication principle, note that each trait can be
one of two alleles, so you can multiply the possibilities for each trait in turn: 2 x 2 x 2
=23=8.

BME IQ 3.4b: When the parents are heterozygous for 7 traits, the multiplication
principle says thereare 2x2x2x2x2x2x2=27=128 possible genotypes for
each gamete. In general, when the parents are heterozygous for n traits, there are 27
possible genotypes for each gamete.

BME IQ 3.4c: There are 8 x 8 = 64 boxes in the Punnett square when the parents are
heterozygous for 3 traits. For 7 traits, the number is 128 x 128 = 16,384. In general,
for n traits, there are 27 x 2" = 227 = 47 hoxes in the Punnett square.

BME IQ 3.4d: YYSS, YYSs, YYss, YySS, YySs, Yyss, yySS, yySs, yyss.

BME IQ 3.4e: In a trihybrid cross, there are 3 x 3 x 3 = 33 = 27 possible progeny
genotypes. They are:



YYSSTT, YYSSTt, YYSStt,
YYSsSTT, YYSsTt, YYSstt,
YYssTT, YY¥YssTt, YY¥sstt,
YySSTT, YySSTt, YySStt,
YySsTT, YySsTt, YySstt,
YyssTT, YyssTt, Yysstt,
yySSTT, yySSTt, yySStt,
yySsTT, yySsTt, yySstt,
yyssTT, yyssTt, yysstt

BME 3.4f: In a trihybrid cross, there are 2 x 2 x 2 = 23 = 8 possible progeny
phenotypes. Three of them are dominant for two traits (e.g., seed color and seed
form, seed color and stem height, seed form and stem height). Three of them are
dominant for one of the three traits (e.g., seed color only, seed form only, and stem
height only).

BME 3.4g: The probability that a pea is dominant for all three traits is 34 x 34 x 34 =
27/64. There is only one such phenotype. The probability that a pea is dominant for
exactly two of the three traits is % x % x % = 9/64. There are three phenotypes like
this (see BME 3.4f). The probability that a pea is dominant for exactly one of the
three traits is 3% x % x % = 3/64. There are three phenotypes like this (see BME 3.4f).
Finally, the probability that a pea is recessive for all three traits is % x %4 x %4 = 1/64.
Therefore, the set of ratios for the 8 different phenotypes is: 27:9:9:9:3:3:3:1.

BME 3.4h: When the parents are heterozygous for 7 traits, the multiplication
principle says there are 27 = 128 possible progeny phenotypes. In general, when the
parents are heterozygous for n traits, there are 2" possible progeny phenotypes.



