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What 1s Synthetic Biology?

Implementation of engineering principles
and mathematical modeling to the design
and construction of biological parts,
devices, and systems with applications 1n
energy, medicine, and technology.

www.bio.davidson.edu/projects/gcat/Synthetic/What Is SynBio.html



http://www.bio.davidson.edu/projects/gcat/Synthetic/What_Is_SynBio.html
http://www.bio.davidson.edu/projects/gcat/Synthetic/What_Is_SynBio.html
http://livepage.apple.com/
http://livepage.apple.com/

Synthetic Biology: Win-Win

Win #1: your design functions as expected. N




Win-Win Research

Biology:

Synthetic

Win #2: your design fails but you uncover basic biology




How 1s Synthetic Biology Ditferent?
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How 1s Synthetic Biology Ditterent?
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How 1s Synthetic Biology Ditferent?
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How 1s Synthetic Biology Ditferent?
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What 1s 1IGEM?

at a glance:

1925 minutes of talks 77 presentations

1200 participants 24 awards

825 jamboree attendees 22 weeks of work

84 teams 21 countries

http://2009.igem.org/Main_Page
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Standardized and Modular DNA

Registry of Standard
e | Biological Parts

discussion view source history Log in / create account

Go Search

Welcome to the Registry of Standard Biological Parts.

The Registry is a collection of ~3200 genetic parts that can be mixed and matched to build synthetic biology devices and systems. Founded in 2003 at

MIT, the Registry is part of the Synthetic Biology community's efforts to make biology easier to engineer. It provides a resource of available genetic
parts to iGEM teams and academic labs.

The Registry is based on the principle of "get some, give some". Registry users benefit from using the parts and information available from the Registry in

designing their engineered biological systems. In exchange, the expectation is that Registry users will, in turn, contribute back information and data on existing
parts and new parts that they make to grow and improve this community resource.

avy (i N Registry tools
li?— L‘:( = = Search parts (?)
Lol “-}' = Add a part
@ L " P,
Catalog of parts & Users & . D T
S ke Help e b DNA repositories = Send parts to the Registry
devices (Apply for an account)

= Sequence analysis

You'll notice some significant changes to the Registry recently. In particular, the Registry catalog of parts has been entirely redesigned to allow
for easier browsing of the available parts and devices. You can now browse parts and devices by type, by function, by chassis and by standard.
You'll also notice that the documentation and help pages for each class of parts have been greatly enhanced.

The Registry of Standard Biological Parts is *always* a work in progress. Please browse the new catalog and let us know what you think, or feel
free to edit and improve the pages further.



Real World Applications
of
Synthetic Biology
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[.and Mine Detection
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Synthetic Biology
[.and Mine Detection
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Synthetic Biology
[.and Mine Detection

WARNING SIGN: The

bioengineered Thales cress turns
red when exposed to a mine
byproduct.

New weed may flag land mines

| Contributor to The Christian Science Monitor
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Production of Medicines
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Synthetic Biology
at
Davidson College

DAVIDSON

Laurie Heyer, Todd Eckdahl & Jett Poet

Building Bacterial Computers



Advantages of Bacterial Computation

Software —— Hardware Computation
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Advantages of Bacterial Computation
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Advantages of Biological Computers
g0 anywhere - arctic, thermal vents, inside organisms

no electricity

self-replicating

P
no iImmune rejection ’
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Two Undergraduate

Research Projects



Define the SATisfiability Problem




Define the SATisfiability Problem




Define the SATisfiability Problem




Converting Math to Biology




Central Dogma

DNA
atgccctactcactacctatagcgcat
i transcription
MRNA

dUg CCC UacC UcCa Ccua CCU aua CCg Cau

l translation

Protein

MPY S HPI P H



Frameshift Mutation

DNA DNA
atgccctactcactacctatagcgcat atgcccTCtactcactacctatagecgcat
¢ transcription ‘l’
MRNA MRNA
aug cCC uac uca cua ccu aua ccg cau aug ccc UCu acu cac uac cua uac cgc au
l translation l
Protein Protein

MPY S HPI P H MPS T HYH YR



Frameshift Suppression

DNA DNA
atgccctactcactacctatagcgcat atgcccTCtactcactacctatagecgcat
¢ 5 base ¢
MRNA suppressor tRNA
aug cCcc uac uca cua ccu aua ccg cau aug cccUC uac uca cua ccu aua ccg cau
Protein Protein

MPY S HP I P H M S| Y S HP I PH



Suppressor tRNA

core tRNA
nucleotides

Serine

5 base anticodon



Coding 2-SAT Clause

- ,

ATG NNNNN gNN NNN === satisfied



Coding 2-SAT Clause

r— « o
(G ATGNNNNNGNNNNN =3  satisfied

OR

B  Ate NNNNNg'NNNNNT =D satisfied




Coding 2-SAT Clause

r— « o
(G ATGNNNNNGNNNNN =3  satisfied

OR

B  Ate NNNNNg'NNNNNT =D satisfied

ATG NNN NNg NNN @ —  no satisfaction



Redesign System v2.0
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Outcomes of v 2.0
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Can we build a bacternal
cryptographic hash function?



What 1s a hash function?




Can Bacteria Perform a Hash Function?

—




Use XOR Logic Gate for Hash Function

Input 1 Input 2 Output




Design Linear Bacterial Hash Function

hash
value
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Time-Delayed Bacterial Growth
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30C6
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High Osmolarity | 30C6 Fluorescence
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Testing Bacterial XOR Logic Gate

Relative Fluorescence
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Relative Fluorescence

Why did XOR Gate Fail?
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pLux + LuxR Promotes Backwards
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Why build bacterial computers?
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Evolution of Computers




Evolution of Computers
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Evolution of Bacterial Computers
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Increased Student Diversity

56 undergraduates in 7 years

African Hispanic First Asian Asian
American P Generation | Minority | Majority
14 2 9 2 7
phD | Y8 | MD | MPH | Jobs @ at DC

degree
13 2 2 3 5 7 27

campus: 74% Caucasian biology majors: 87 % Caucasian



GCAT Faculty Workshop
Synthetic Biology

20 pairs of faculty

1 Bio + 1 Other
pending at NSF

Thr Glu Ala Cys His Ile Asn Gly Ile Ser Ile Asn Met Tyr Gly Glu Asn Glu Ser




Our Current Challenge:
Introductory Biology

Integrating Concepts in Biology

by
A. Malcolm Campbell, Laurie J. Heyer
and Christopher J. Paradise



What’s Wrong with Biology Education Now?

* Yocabulary is emphasized

* Experimental approaches are minimized
 Math is absent

 Memorization is rewarded

 Critical thinking is discouraged

e Information is irrelevant to students



If we currently cover all the important stuff....

...how can we add more content?



%S, .w,

-l ! \ _
. . .. f"c rr..l

Too much content for the containers




onte

Too much ¢

nt for the containers
SR ?’




Start with the literature... |
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Present information and data...




... 1n the context of the big picture.
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Artificial Divide within Biology

Small Biology

Big Biology



Five Levels of Organization
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Five Big Ideas of Biology

Information

Homeostasis Evolution

Biology

Emergent

Properties Cells




Five by Five Matrix of Biology
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Five by Five Matrix of Biology
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Five by Five Matrix of Biology
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Five by Five Matrix of Biology

O'U
Information v

'3
Q
%y
o
S




Five by Five Matrix of Biology
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Five by Five Matrix of Biology
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Legal and Social Implications

Are religion and evolution compatible?
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Is science possible if you are
uncertain about what is true?
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Does basic biology have any
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Who owns your DNA?
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Did my students learn less content?
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Can my students analyze data better?
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What did my students think about
this approach to intro bio?



“The method of learning, placing
emphasis on the interpretation of
data, has helped me not only 1n
this class, but also 1n others.”

anonymous student course evaluation, Dec. 2010



“I found 1t much more beneficial using
this approach compared to straight
memorization. It allowed me to gain
interpretation skills I was lacking before.”

anonymous student course evaluation, Dec. 2010



“The data-driven approach 1s brilliant.
It alleviates the 1ssues that I've always
had of asking, “"How do we know that?
What’s the supporting data?’ ™

anonymous student course evaluation, Dec. 2010



“Emphasis on big picture and
understanding how to pull information
from real data was an easier and more
beneficial format than memorization of
facts (which used to be a struggle for me).”

anonymous student course evaluation, Dec. 2010



Why bother changing?
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AP Biology is Changing to Match Our Design

‘AP BIOLOGY

Curriculum Framework
2012-2013
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How did I test student learning?



Four Exams Per Semester

9) Limit your answers to a maximum of 2 sentences for each part.
a) Explain why it is adaptive for each eukaryotic organelle to be composegl of a different lipid

50+ ‘nad”
composition. Use data to support your answer. | vesicl

40+
Each one has a particular surface area to volume

ratio and different lipids have different bending 30-
capacity. Rigid lipids produce larger volumes
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while relaxed lipids produce bends and small -. - ! vesicle
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Data Gallery for Answers

I BT WYY e l

* indicates p < 0.01: experiment replicated 5 times

500

(&)
mainland .. first vear
= 400 T second year
- O
f'.
= 300 +
-
2
= 200 +
=100 T+
0
S 15 25 35 45 55 65
Age of litter (days)
65
= B |
£ 601
-
;’-:'g 554 @ Burd
D‘ <
3 07
== ® Gre)
m_, ., 451 ® Lipd
e 4 S0 Cviol
S W
- Collrg
3§ T ——

IS 20 25 M 35 40 45 50 55

Extent of plant senescence
(at 57 days post sowing)

020
0.18 p~
018
UREN o
012
010
o o8
008
004
oa2

%%

L

Oxygen (mo¥m’)

L L

20 40 60 B0 100 120 140 160 MO 200

Distance from Bottom (pm)

Relative number of cells

Ixygen Saturation

number of subcultures

0 10 20 30 40 «50
| I | | | I
neer ¢ ells
chron |
original
cells

bright field

1 1 1 1 1 ] 1 1 1 1 1

1

JFMAMIJ JASONDIJF

Months

brwwer s
yean
S5 of dovsoe o

basa s b bl yuas

DD

fluorescence

&
-~
= NS
-:‘ p—
: %
; 10 E
= 20
‘ e
; . e ixland -
: o mainland =
% 2D C
» p <0005 =
] i
& — < 3. 3 3 3 3 2 —
L] L) A A} A | :
12 16 20 24 28 32 36 &0 W i~ ,'."')
¢
o
Age (months) =
~
-
9
—_—
S
1
 }
-
QD ~~
=9
-
—
= £
-
=
o
s
o =0
—
o ™
— —
25
o
e L e L -~ E 5—
oL
C &
’ - " _’J oo :
/,./.'.V’ NJ\—’”" A'/Jv'//d"- —_—
-
CAMP velocity =
300 gem min =
=
-
2. mm > 1107 =
& 10 min =
/CyclchMP =
wave 7
Ll
a ~_-
>
g «<
capacity g 4
- ’ %)
10 MOve S, =
y v
l“ »
Vg e
P '/
," 1 mm g
- s - -
- J107%m

C@\C?C’O@@ o0

groups cell velocity

2500 .
L ]
L ]
2000 = ° Ld
L]
L ]
1500) = ® .
L]
100 =
S(X) -
L]
‘ L]
.
0 1 L
Ist T™M 2nd T™ term
(n=16) (n=14) (n=8)
40 - m Mice
LA 3 [: NMRS ok
30
20 p <0001 p <0001
10 -
0L .  — -
Young Equal age
(0.3yvs. ~2Y) (~2yvs. ~2Y)
um 0.1 % glucose 0.5 % glucose

25

4 . 3 12 0

Time (hours)

os

o

10

0s

(cells ml.)

v

cell number x 10



When did the students feel they
were learning something
different than in high school?
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