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Abstract 

Biology has entered an era of biological mathematics, in which investigators solve 

mathematical problems using the self-assembling properties of DNA. My research utilizes 

bionanotechnology to structurally solve the complementary bounded tiling problem.  The 

complementary bounded tiling problem belongs to the complexity class of NP-complete 

problems, containing difficult problems that cannot be solved efficiently. A solution to the 

complementary bounded tiling problem would serve as a solution to all other NP-complete 

mathematical problems with important practical and commercial applications, such as packing 

optimization, airplane schedule optimization, and finding the shortest path in a network.   

In my approach to DNA computation, I engineered DNA nanostructures using a thermal cycler 

to optimize hybridization of single-stranded oligonucleotides into prescribed nanoscale 

cruciform shapes known as 4x4 DNA cross tiles.  These DNA nanostructures represent 

individual tiles within the complementary bounded tiling problem and are equipped with five-

nucleotide sticky-ends to facilitate the assembly of multi-tile lattices, thereby producing 

candidate solutions to the complementary bounded tiling problem. Verified through 

polyacrylamide gel electrophoresis, I have successfully assembled individual tiles.  I have 

modeled and simulated in MATLAB the self-assembly of multiple tiles, and have preliminary 

evidence to suggest a successfully assembled solution to a complementary bounded tiling 

problem.   
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Introduction 

The multi-disciplinary interface among mathematics, computer science, and biology 

entered a new era of biological mathematics in the early 1990s (Kari, 1997).  Researchers in the 

field of DNA computation have turned to DNA, not to unravel the mysteries of life, but to solve 

extremely difficult mathematical problems, especially NP-complete problems.  NP-complete 

mathematical problems belong to the NP-complete complexity class, for which no efficient 

algorithms exist.  Hence, humans and computers cannot solve large-scale NP-complete 

problems.  As another property of problems belonging to the NP-complete complexity class, 

once one is solved, all are solved (Dasgupta et al., 2006).  With an arsenal of over 3,000 NP-

complete problems, all possessing particular real-world applications, researchers are on the hunt 

to discover methods to find solutions (Garey and Johnson, 1979).  Difficulties in finding efficient 

solutions, as well as the potential for wide-ranging practical and commercial applications, 

motivate researchers in the field of DNA computation to solve NP-complete problems.   

The research I conducted for the past two years was motivated by the idea of DNA 

computation using a structural approach, interweaving the fundamentals of DNA origami and 

nanotechnology, to solve an NP-complete problem.  In particular, my research focused on 

solving the NP-complete complementary bounded tiling problem.  The complementary bounded 

tiling problem is defined as follows: given a set of k tiles, can the tiles assemble so that a given 

bounded region (n x m) is filled?  For further specification: all tiles need not be used, each tile 

may be used an unlimited number of times, complementary images on the tiles must match at all 

adjacent edges, and rotations and reflections are allowed.  Although the practical applications of 

such a tiling problem may not be apparent, the NP-complete problem of packing optimization 

can be directly tied to a tiling problem such as the complementary bounded tiling problem.  
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Hence the answers to the complementary bounded tiling problem can serve as answers to other, 

more practical NP-complete problems, providing real-world utility to my research.   

For my thesis I engineered DNA building blocks, known as 4x4 DNA cross tiles.  These 

DNA nanostructures assemble via Watson-Crick base pairing to solve encoded instances of the 

complementary bounded tiling problem.  I produced specific individual tiles that could solve an 

instance of the complementary bounded tiling problem and analyzed potential candidate 

solutions.   
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Chapter I 

Mathematical Concepts: NP-Completeness 

Mathematical problems can be classified by their degree of complexity. Problems of 

similar difficulty belong to the same complexity class.  NP-complete problems belong to the NP-

complete complexity class (Allender et al., 1999).  In order to understand complexity 

classification, one must first understand various basic mathematical concepts.   

 

Mathematical Problems 

A mathematical problem is a question possessing unspecified variables.  The problem 

gives a general description of all variables and specifies what properties the solution must 

satisfy.  An instance of a problem specifies particular values for each variable (Garey and 

Johnson, 1979).  For example, consider the traveling salesman problem (TSP), defined by the 

following: 

Given n vertices (1, 2, . . . , n) and all n(n-1)/2 distances between them, find a tour (a 

sequence of distinct connecting vertices beginning and ending at the same vertex which 

passes through each vertex exactly once) that minimizes the distance traveled (Dasgupta 

et al., 2006; Garey and Johnson, 1979; Haris et al., 2008).   

TSP is most often modeled using the concept of a traveling salesman, in which the n vertices 

represent n cities, and the salesman attempts to minimize the distance traveled to visit each city.  

The variables of TSP therefore consist of a finite set of “cities,” C={c1, c2, . . . , cn}, and the 

distance between each pair of cities, d(ci, cj).  The solution is an ordering of the cities in which 

the total distance is minimized from the start city to all other n cities and back (Garey and 

Johnson, 1979).   



 

 2 

One instance of TSP is given by C={c1, c2, c3, c4} where d(c1, c2)=17, d(c1, c3)=7, d(c1, c4)=18, 

d(c2, c3)=10, d(c2, c4)=9, d(c3, c4)=26 (Figure 1). 

 

 

 
 
 
 
 
 
 
 
 
Figure 1. The above TSP problem has the following solution as outlined in red: c1, c3, c2, c4, c1 , 

where c1 designates the start city in blue.  

 

Algorithms 

An algorithm is a series of procedural steps for solving mathematical problems. An 

algorithm, A, solves a problem if A can be applied to any instance, I, of the problem and always 

produce a solution for that instance (Garey and Johnson, 1979).  For example, an algorithm for 

the traveling salesman problem (TSP) is shown below. 

1) Calculate the total distance for every possible tour.  

2) Determine which tour minimizes the distance. 

In the above instance, the algorithm would perform the following calculations: 

Tour Total Distance 
c1,c2,c3,c4,c1 71 
c1,c2,c4,c3,c1 59 
c1,c3,c2,c4,c1 39 
c1,c3,c4,c2,c1 59 
c1,c4,c3,c2,c1 71 
c1,c4,c2,c3,c1 59 
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Analyzing the above calculations results in the realized solution of c1, c3, c2, c4, c1, where the 

distance traveled is 39 units, the least of all tours.  This solution is highlighted in red in the table 

and Figure 1.  The algorithm above is often referred to as a brute-force algorithm because it 

calculates the distance of every possible tour.  The number of different tours in the above 

example is six.  If an instance of TSP has six cities, then the number of possible tours becomes 

120.  Using a brute-force algorithm for TSP is considered inefficient, because as n increases by k 

the number of possible tours increases by (n+k-1)!/(n-1)!.   

Mathematicians are interested in finding the most efficient algorithms to solve 

mathematical problems.  Usually, the most efficient algorithm is the fastest algorithm, which 

mathematicians often implement with computer programs.  The run time of an algorithm is 

largely dependent upon the size of the problem, which is reflected by the size of the input, n 

(Garey and Johnson, 1979).  For example, as previously discussed, the traveling salesman 

problem would take longer to solve if there were six cities, instead of four, because the brute-

force algorithm would need to calculate 20 times more possible tours, (n+2-1)!/(n-1)!, where 

n=4.  

In order to make efficiency comparisons and quantify algorithmic efficiency, 

mathematics use big-O notation.  Big-O notation is a function of the input size of the problem 

and denotes the growth rate of an algorithm’s run time (Carrano and Prichard, 2006). Big-O 

notation is represented as O(g(n)), where g(n) is a function of n, the size of the problem.  

For example, in TSP the number of tours necessary to investigate is (n-1)!, because the starting 

and ending city is fixed, but the other n-1 cities can be visited in any order.  In the instance given 

above, the number of possible tours is six or (4-1)!. Hence the brute-force algorithm for TSP is 

O(n!).   Using dynamic programming algorithm for TSP, which breaks down large problems into 
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smaller sub-problems, is O(n22n) (Dasgupta et al., 2006).  In both algorithms, as n increases, TSP 

becomes extremely inefficient to solve.  To visualize the inefficiency of both TSP algorithms, we 

will compare the big-O notation for the two algorithms to an algorithm with a linear run time 

growth function, O(n).  Such a linear big-O notation represents algorithm efficiency to search for 

a number in an unsorted list (Carrano and Prichard, 2006).  Comparing these three big-O 

notations sheds light on the inefficiency of both algorithms for TSP (Figure 2). 

 

 
 
 
 
 
 
 
 
 
Figure 2. Growth functions for O(n!), O(n22n), and O(n).  The x-axis represents the input size, n, 

and the y-axis represents run time.  From slope analysis of the above figure, it is evident that 

both algorithms for TSP are extremely inefficient when compared to O(n).  

 

Turing Machines 

A Turing machine is a theoretical machine used in computer science to identify the 

abilities and restrictions of computerized algorithms, or computer programs. A Turing machine 

allows mathematicians to simulate computers.  In fact, Turing machines are imagined to be a 

simple computer, which reads and writes symbols, one at a time, on an infinite piece of tape 

divided into squares.  The symbols are represented as binary digits, 0 and 1, where only one 

symbol exists in a single square (Barker-Plummer, 2010; Figure 3). 
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Figure 3. The bolded square represents the tape head of the Turing machine, which is the only 

symbol that the machine can read until the tape moves.   

 

The Turing machine determines its next action based on rules, dictated by the current 

symbol and on the current state of the machine.  For instance, if the Turing machine reads a 0 

and is in state 3, a rule may dictate that the tape move left and change the 0 to a 1.  Through the 

actions of the Turing machine, a computerized algorithm can be traced for various mathematical 

problems (Barker-Plummer, 2010).  

There are three different types of Turing machines: 1) deterministic, 2) non-deterministic 

and 3) universal Turing machines (Barker-Plummer, 2010).  A deterministic Turing machine 

(DTM) only has one potential action dictated by the current situation (symbol and current state).  

In other words, each action is clearly defined (Friedman, 2005).  A non-deterministic Turing 

machine (NDTM) may have a set of rules that dictates more than one action for a given situation 

(Martin, 1997).  In other words, the next action of the machine is never known because there can 

exist more than one action for a given symbol and state.  A universal Turing machine (UTM) can 

simulate any Turing machine, deterministic or non-deterministic.  A UTM takes not only the tape 

as input but also a description of the type of Turing machine (Kamvysselis, 1999).  The different 

types of Turing machines are used to define complexity classes and are therefore important to 

understanding complexity classification.  

 

Four Main Complexity Classes 

. . . . . .  0       1       1          0                1       0        1       1       0 



 

 6 

Mathematicians recognize four main complexity classes of mathematical problems: P, 

NP, NP-hard and NP-complete, where certain complexity classes interrelate (Aaronson, 2006; 

Figure 4). 

 

 

Figure 4.  The Venn diagram indicates the  

relationships among these 4 complexity classes.  It is important to 

note that the relationships above assume that P≠ NP, an 

assumption that is widely accepted, but unproven (Aaronson, 

2006).  

 

 

 

 

P complexity 

Problems belonging to the complexity class P can be algorithmically modeled on a 

deterministic Turing machine (DTM) using a polynomial amount of computation time (Sipser, 

2006).  Polynomial time refers to an algorithmic run time of O(nk), where n is the size of the 

problem’s input and k is some constant (Terr, 2010).  In other words, the number of steps to find 

a solution to a problem in P is a polynomial function of the size of the problem, n.  

 

NP complexity 

Problems belonging to the complexity class NP are 1) Solvable in polynomial time on a 

NDTM, and 2) Verifiable in polynomial time on a DTM (Garey and Johnson, 1979).  NP stands 

for nondeterministic polynomial time, indicating that any algorithm solving the problem does not 

have a uniquely defined next step (because it can only be solved on a NDTM), but rather a 

NP-complete 

NP-hard 

NP 
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choice between several possible next steps, (i.e. a trial and error mechanism; “nondeterministic 

polynomial time,” Dictionary of Computing, 2010).  If there existed a NDTM that was able to 

guess correctly at each decision point where more than one action could be taken, it could solve 

the problem in polynomial time, since all it would have to do is verify the correctly guessed 

solution.  As a main characteristic of NP, this can be done in polynomial time if such an NDTM 

existed that could guess correctly. However, such a machine does not exist under the assumption 

that NP≠ P.  

All problems in P, which by definition can be solved in polynomial time using a DTM, 

can also be verified in polynomial time using a DTM.  Also, a NDTM has at least one action for 

a given situation, but may have more than one.  Hence, problems that can be solved on a DTM in 

polynomial time can also be solved on a NDTM that has only one action, in polynomial time 

(Garey and Johnson, 1979).  In other words, an algorithm modeled on a DTM can be considered 

a degenerative form of a NDTM algorithm (“nondeterministic polynomial time,” Dictionary of 

Computing, 2010).  For these two reasons all problems in P are also in NP (P ⊆ NP) as seen in 

Figure 4.  

The distinction between P and NP has caught the attention of mathematicians and 

computer scientists for years.  In fact, one of the Millennium Prize Problems is whether NP=P or 

NP≠P (Friedman, 2005).  In other words, do polynomial algorithms exist using a DTM to solve 

all problems within NP?  The current assumption and belief among the research community is 

that NP≠P, as depicted in Figure 4 (Friedman, 2005).  Currently, problems in NP have only been 

proven to have at best exponential run time (O(2n)) when solved on a DTM (Garey and Johnson, 

1979). 
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NP-hard complexity 

 A problem is NP-hard if a polynomial algorithm on a DTM for such a problem would 

imply a polynomial-time algorithm on a DTM for all other problems in NP (Garey and Johnson, 

1979).  The previous statement is true because problems belonging to the complexity class NP-

hard are “at least as hard as any problem in NP” (De Rezende, 2010).  In order to prove that 

problems are at least as difficult as the hardest problems in any complexity class, one must prove 

that the problem in question can be reduced from another NP-hard problem.   

 Mathematically, a reduction is the transformation of one problem into another one, 

indicating that solving a problem is at least as hard as solving another one (Dasgupta et al., 

2006).  For instance, if a problem Z can be solved using an algorithm for B, Z is no more 

difficult than B, and we say that Z reduces to B. The idea of reducing one problem to another 

motivates the idea of a problem being hard for a class of problems. Problem Z is hard for a class 

of problems if every problem in the class C can be reduced to Z. Hence Z is (one of) the hardest 

problems in C. An algorithm for Z together with a reduction solves any problem in C. In the case 

of NP-hard problems, all NP-hard problems can be reduced using a DTM in polynomial time 

from any problem in NP (Garey and Johnson, 1979).   

There are some problems in the complexity class of NP-hard that are undecidable, 

meaning that it is impossible to construct an algorithm to solve the problem. By definition, NP 

problems must have candidate solutions that can be checked in polynomial time, but no 

candidate solutions exist to undecidable problems.  Therefore, some problems in NP-hard are at 

least as hard as any problem in NP, but do not belong in the NP complexity class (Garey and 

Johnson, 1979). 
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NP-complete complexity 

NP-complete problems have candidate solutions that are verifiable in polynomial time on 

a DTM (therefore NP-complete ⊆ NP) and are at least as hard any problem in NP (NP-complete 

⊆ NP-hard; Dasgupta et al., 2006).  In other words, NP-complete problems are represented by 

NP ∩ NP-hard (Figure 4) and problem C is in the complexity class NP-complete if 

1) C is in NP (meaning verifiable in polynomial time on a DTM), and 

2) Every problem in NP is reducible in polynomial time to C, meaning that C is at least as 

     hard as the hardest problem in NP, since every problem in NP, even the hardest problems,  

     must be reducible to C.  Thus, C is in NP-hard (Garey and Johnson, 1979). 

In order to prove that a problem C is NP-complete, one must prove that these two conditions 

apply to C.  To prove condition one, it will suffice to write an algorithm that can be solved in 

polynomial time, and which verifies a candidate solution.  To prove conidtion two, it is sufficient 

to show a DTM reduction, in polynomial time, from an already existing NP-complete problem to 

C, the problem in question (Figure 5). 

 

 

 

Figure 5.  Any NP-complete problem, A, can be reduced to a problem in question, B, by a 

transformation of the inputs with the function f. If such a transformation function exists then B is 

NP-hard (Dasgupta et al., 2006). 

 

 Since part of the proof for an NP-complete problem relies on reduction from another NP-

complete problem, the question surrounding the proof of the first NP-complete problem often 
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arises.  In 1971, Cook and Levin identified that Boolean satisfiability problem (SAT) as the first 

problem belonging to the NP-complete complexity class.  The Cook-Levin theorem used the 

logic of NDTM to prove that the SAT problem was NP-complete (Fourman, 2002).  Since the 

theorem was proven, mathematicians have been relating NP-complete problems through 

reductions directly and indirectly related to the SAT problem (Figure 6A).  However, more 

recently, some mathematicians think that the bounded tiling problem may serve as an 

“alternative master problem for the theory of NP-completeness” (Van Emde Boas and 

Savelsbergh, 1984; Figure 6B).  The main advantage in using the bounded tiling problem over 

the SAT problem lies in the “conceptual simplicity of the problem” (Van Emde Boas and 

Savelsbergh, 1984).  The ease with which the bounded tiling problem can be reduced to other 

NP-complete problems as well as the ease with which a NDTM can be used to model the original 

proof of NP-completeness allows for a simplistic understanding of NP-complete theory and 

polynomial time reductions (Van Emde Boas and Savelsbergh, 1984).  

 

A.         B. 

 

 

 

 

 

Figure 6. (A) Represents a schematic flow chart of polynomial time reductions for NP-complete 

problems based on the Cook-Levin theorem (Dasgupta et al., 2006). (B). Illustrates another 

possible schematic of the relationships between NP-complete problems based on polynomial 

time reductions (Van Emde Boas and Savelsbergh, 1984). 
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Understanding polynomial time reductions to prove a problem NP-hard is pivotal to 

understanding proofs concerning NP-complete problems.  The following describes the 

polynomial time reduction of Rudrata cycle to the traveling salesman problem (TSP) as detailed 

in Algorithm Design by Kleinberg and Tardos in 2006 and two class lectures at Durham 

University and the University of Maryland (Johnson, 2009; Kingsford, 2009).  Rudrata cycle is 

often referred to as the Hamiltonian cycle problem and it is a known NP-complete problem as 

shown in the flow chart of polynomial time reductions from other NP-complete problems (Figure 

6A).  The Hamiltonian cycle problem asks: Given a graph, does there exist a cycle that passes 

through each vertex exactly once (Dasgupta et al., 2006). 

Logically it is apparent that TSP is at least as hard as the Hamiltonian cycle problem 

because it is harder to find the shortest cycle than to decide whether or not a cycle even exists.  

Hence, TSP must be NP-hard because it is at least as hard as another NP-hard problem.  In order 

to formally prove that TSP is NP-hard, one must show a polynomial-time reduction from the 

Hamiltonian cycle problem to TSP, as seen below. 

Theorem (Kingsford, 2009; Kleinberg and Tardos, 2006; Johnson, 2009): The traveling 

salesman problem (TSP) is in NP-hard because it can be reduced from the Hamiltonian cycle 

problem. 

Proof: 

Let G be an instance of the Hamiltonian cycle problem, where G is a set of vertices and 

edges, G=(V, E).   
 

 

Now, transform the given instance of the Hamiltonian cycle problem into TSP.  For each 

vertex in G, create a “city” cv .  If an edge, e=(u, v) exists between two vertices in G, then 

let the distance of e be 1, otherwise let the distance be 2. 



 

 12 

Claim: G has a Hamiltonian cycle if and only if the instance of the traveling salesman  

problem constructed above has a distance at most n. 
 

Proof:  

Forward Direction:  

If G contains a Hamiltonian cycle, then the cycle forms a tour through the cities  

of distance n, thereby serving as a solution to the TSP.   

 Reverse Direction: 

 If there is a tour of distance n through n cities, then the distance between each  

city along the route is 1.  Thus each pair of cities along the route is adjacent in G  

and the route is a Hamiltonian cycle.  

▯ 

One of the most distinctive characteristics of NP-complete problems is the fact that no 

efficient (polynomial time) algorithms currently exist to solve such problems (Garey and 

Johnson, 1979).  Although all problems in NP are verifiable in polynomial time, only those in P 

are solvable in polynomial time, at least under the current conviction that NP≠P (Friedman, 

2005).  Therefore under such an assumption, NP problems not in P, including NP-complete 

problems, cannot be solved in polynomial time, making them extremely inefficient to solve.  As 

we saw earlier in this chapter, the most efficient algorithm found to solve NP-complete 

problems, like TSP, is O(n22n) (Dasgupta et al., 2006).  Hence, as the size of the problem 

increases, the run time of the algorithm increases exponentially, and the problems become 

extremely time consuming to solve. 

NP-complete problems are among the most highly studied mathematical problems not 

only because of their difficulty, but because of their wide range of applications.  For instance, 
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TSP alone presents a wide variety of practical applications in the world of logistics and planning.  

TSP has been used to model trucking patterns in order to optimize transport of goods and other 

items from one city to another, taking into account limiting variables such as cost and time.  TSP 

has also been utilized in minimizing fuel usage for outer space imaging satellites and used by the 

Worldwide Airport Path Finder to minimize flight distances between airports (Cook, 2007).  

These applications are not bound to solutions applying only to TSP.  Instead, once any NP-

complete problem is solved, all NP-complete problems are solved.  Hence, answers to these 

practical applications for TSP can be solved by another NP-complete problem, through the use of 

a reduction in polynomial time as discussed above (Dasgupta et al., 2006).   

The relationships among NP-complete problems through polynomial time reductions, 

their multitude of applications, and their difficulty motivate researchers in various disciplines to 

search for solutions to NP-complete problems.  DNA computation has been a novel approach in 

such a search, combining the fields of mathematics and biology to find solutions to NP-complete 

problems.  Subsequent chapters illuminate the NP-complete problem studied in this thesis and 

the methodology used to assemble solutions using DNA computation.  
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Chapter II 

Problem Description: Complementary Bounded Tiling Problem 

The purpose of my research is to solve the complementary bounded tiling problem using 

DNA, more specifically the concepts of bionanotechnology and DNA origami.  This chapter is 

devoted to the description of two NP-complete mathematical problems, the Scramble Square 

problem and the complementary bounded tiling problem.  Linda Kleist and I began our research 

attempting to solve the Scramble Square problem and transitioned to solving the complementary 

bounded tiling problem due to biological assembly limitations that I will detail in Chapter V.   

Both problems are defined below, including proofs confirming that both problems are NP-

complete.  

The Scramble Square Problem 

 Scramble Squares® is popular childhood puzzle, consisting of 9 squares and 4 full 

images.  Each edge of a square consists of a half-image of one of the 4 full images.  The goal of 

the puzzle is to arrange all 9 tiles so that all touching edges complete a full image (Brandt et al., 

2002; Figure 1). 

 
 
 
 
 
 
 

Figure 1.  An unsolved 3x3 Scramble Square problem.  One must arrange all 9 tiles so that every 

pair of touching edges brings together complementary edges (e.g., a bird’s beak and tail).  The 

circled edges represent matches in the given arrangement. To form a solution, all twelve 

touching edges need to match. 
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Formally, the Scramble Square problem is defined as follows: 

Given n2 tiles and m half-images, where each tile has 4 (not necessarily unique) half-

images and m≥2, is it possible to rotate and arrange all tiles in an n x n grid such that the 

half-images align with their complements wherever two edges touch?  

The above definition dictates that every tile given must be used exactly once in any resulting 

solution (Brandt et al., 2002).  Also, the number of half-images, m, is independent of size of the 

problem, n. Therefore, for any given instance the only restrictions on m are given in the above 

definition.  In the Scramble Square problem, there are 48•9! = 23,781,703,680 possible 

arrangements of the 9 tiles and more generally, 4(n-1)⋅n! possible arrangements of n tiles (Brandt 

et al., 2002).  A brute-force algorithm to solve the Scramble Square problem, similar to the 

brute-force algorithm for solving TSP in Chapter I, would require testing all possible tile 

arrangements and determining which tile arrangements fulfilled the edge-matching criteria.  For 

a Scramble Square problem with n tiles, the big-O notation for a brute-force algorithm would be 

O(n!), which as demonstrated in Chapter I is inefficient.  Hence, as the number of tiles increases, 

the Scramble Square problem becomes extremely inefficient to solve, especially when utilizing a 

brute-force algorithmic approach.  

In addition to a brute-force algorithm to solve the Scramble Square problem, a 

backtracking algorithm also exists.  The backtracking algorithm places tiles, one at a time, into 

the 3x3 grid according to the schematic shown in Figure 2 (Brandt et al., 2002).  

 

 

Figure 2. Schematic representing tile placement using a backtracking 

algorithm to solve a 3x3 Scramble Square problem (Brandt et al., 

2002). 
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The backtracking algorithm restricts the first tile in position 1 to a specific rotational orientation.  

Given a partial solution of k tiles, the algorithm tests the remaining 9-k tiles to determine if any 

of the remaining tiles, taking into account rotations, fit in the (k+1)st position.  If a tile does 

match, then the process continues.  If no tiles match, then the kth tile is removed and the other 

remaining tiles are tested in that kth position.  The process of removing tiles is considered to be 

the backtracking step of the algorithm, where solutions are considered correct until no possible 

remaining tile can fit and then one tile at a time is removed (Brandt et al., 2002).  The 

backtracking algorithm indicates the non-deterministic nature of the Scramble Square problem 

because one "guesses" the tile placement and its orientation for position 1 as well as for any 

remaining positions in which more than one remaining tile fits.  Such “guessing” indicates that 

there is not a unique next action in the backtracking algorithm.  Recall from Chapter I that a 

characteristic of an NP-complete problem depends on a polynomial run time on a non-

deterministic Turing machine (NDTM).  If a NDTM could guess correctly for each tile 

placement, then the Scramble Square problem would be considered solvable in polynomial time 

on a NDTM and P=NP.  It is possible for the backtracking algorithm to guess correctly with 

certain tile placements, thereby providing opportunities for increased efficiency, but such 

increased efficiency is not guaranteed, and in the worst case, all possible tile arrangements may 

need to be tested, as in the brute-force algorithm.   

 

Scramble Square is in NP 

In order to mathematically prove that the Scramble Square problem is NP-complete, one 

must prove that the Scramble Square problem is: 

1) In NP, by proving that a candidate solution is verifiable in polynomial time, and  
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2) In NP-hard, by proving that a polynomial time reduction exists from an already 

existing NP-hard problem.  

In order to verify a solution, one would have to check whether or not touching edges in the given 

candidate solution matched.  If every touching edge matched, then the candidate solution would 

be a true solution to the Scramble Square problem.  If not, the candidate solution would not solve 

the Scramble Square problem.  Such a verification algorithm can be completed in polynomial 

time because for each candidate solution of n2 tiles there are 2n2-2n edges, which must be 

checked, making the algorithm run time dependent on a polynomial function of n (Figure 3).  

 

 

 

 

 

 

 

 

Figure 3. Representation of different number of tiles (n2) for the Scramble Square problem and 

the number of edges (e) that must be checked for matching when verifying solutions.  Given a 

tiling problem with n2 tiles, there are (n-1)n + n(n-1), where the first part of the formula 

represents the edges colored red and the second represents edges colored blue.  Hence, when 

verifying a candidate solution to the Scramble Square problem with n2 tiles, one need only check 

2n2-2n edges to determine if a proper matching exists. 

In order to mathematically prove that candidate solutions to the Scramble Square problem 

can be verified in polynomial time, we implemented and wrote a computer program in 

n2= 4 
red=(2-1)·2= 2 
blue=2·(2-1)= 2 
e= 4 
 

n2= 9 
red=(3-1)·3= 6 
blue=3·(3-1)= 6 
e= 12 
 

n2= 16 
red=(4-1)·4= 12 
blue=4·(4-1)= 12 
e= 24 
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MATLAB.  The program determines if given candidate solutions are true solutions or not by 

analyzing matched or unmatched touching edges within the candidate solution.  Analyzing the 

coding structure of this program revealed the run-time of the algorithm and whether or not 

candidate solutions to the Scramble Square problem can be verified in polynomial time.  

 For purposes of the program, tiles are identified using a specific numbering system.  Each 

half-image on an edge of a tile is represented by a variable (a, b, c, . . .) or complementary 

variable (-a,-b,-c, . . . ).  All tiles are referenced by a vector containing their four edge-associated 

variables, written starting at the top edge, noted as edge one (Figure 4).  

A.            B. 

 
 

 

 

 

 

Figure 4. (A). A tile and the schematic for edge numbering.  The top edge is referred to as edge 

1 and the edge number proceeds clockwise.  (B). A diagram depicting different tiles and their 

associated vectors.  Each half-image is associated with a variable, a, b, c, or d and its 

complement –a, -b, -c, or –d. Starting from left to right, the tiles would have the following 

associated vectors [a, c, b, b], [-a, b, -d, -c], [c, -a, a, -d], and [c, -b, d, b]. Notice how all vectors 

begin with the top edge variable, which is bolded above and referred to as edge 1. 

 

The MATLAB program needs 2 inputs based upon the number of tiles, n2, within the solution:  

1) The dimensions of the Scramble Square solution (n x n), and 

2) The tiling of the candidate solution in a vector, V, of length 4n2 (n2 tiles, each having 

four sides).  The tiles within V should be taken from the candidate solution read left to 

right and top to bottom (Figure 5).  

1 

2 

3 

4 
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     2 x 2 Scramble Square 

n2= 4 
 

Vector, V = [-a c b b   -a b -d -c   c -a a -d   c -b d b] 
 

 

 

Figure 5. Diagram illustrating inputs for MATLAB program, including dimensions of 2 x 2 as 

well as candidate solution vector, V.  

 In order to check a given solution, one must verify that the half-images match on the 

touching edges of the candidate solution (see Figure 3).  The algorithm computes a matrix A, 

which stores the pairs of edges that must be checked according to the given dimensions of the 

candidate solution.  Candidate solutions to the Scramble Square problem will always be square 

and matrix A will be the exact same for Scramble Square problems of the same size, because 

problems of the same dimensions must check for a match at the same touching edges.   

 Matrix A is initialized to be a matrix of zeros of size (2n2-2n) x (4n2).  The 4n2 represents 

each edge of every tile, starting at top edge, edge 1 for each tile, and rotating clockwise around 

the tile, ending at edge four (see Figure 4).  Each row represents one edge matching and within 

each row two spots are initialized to 1 based on which tile edges touch in the given matching 

(Figure 6).  

 

 

 

 

Figure 6. An example of matrix A generated for a general 2 x 2 Scramble Square with n2=4 tiles. 

Tile 1 Tile 2 Tile 3 Tile 4 
1 2 

3 4 
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 The algorithm begins by considering the touching edges between the top and bottom of 

each tile (edges one and three), highlighted in blue for each tile, beginning with edge three of tile 

1 and edge one of tile 3.  Within matrix A, both of these edges are changed to a 1 in the first row.  

This is the acknowledgment of the first place to test touching edges to determine if there is truly 

a match.  The algorithm continues to change the 0s to 1s within each of the rows, determining the 

touching edges within each tile.  So for instance, in row 2, the touching edges between edge three 

of tile 2 and edge one of tile 4 must be checked.  

 For a particular candidate solution, the touching edges indicated by 1s in matrix A must be 

checked to determine if the half-images are complementary.  Because matching half pictures add 

up to 0 (a + (-a) = 0), a candidate solution is a valid solution if and only if AV’ is the zero vector.  

The code for the program in MATLAB can be found in Appendix.   

 In running this program with proper input, one can determine whether or not a candidate 

solution is a true solution to the Scramble Square problem based on whether or not AV’=0.  Also, 

through algorithm analysis, a candidate solution can be checked in polynomial time, specifically 

with a big-O notation of O(n4), where n2 is the number of tiles in the candidate solution. 

 

Scramble Square is NP-hard 

In order to prove that the Scramble Square problem is NP-hard, we must prove that the 

Scramble Square problem can be reduced from a known NP-hard problem.  We will reduce from 

the Rectangle Packing problem (Demaine, 2007).   

 

Definition of the Rectangle Packing problem: 

Given n rectangular pieces of size 1 × x1 , 1 × x2 , . . . , 1 × xn , where the xi’s  are positive 

integers bounded above by a polynomial in n, can these pieces be packed into a specified 
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rectangle with area x1 + · · · + xn (Figure 7; Demaine, 2007)? 

 
 
 
 
 
 
 
Figure 7. Instance of the Rectangle Packing problem: given 4 rectangular pieces sizes 1 x 4, 1 x 

4, 1 x 3 and 1 x 1, can the 4 pieces be packed into a rectangle with an area of 12 unites?  The 

answer is yes, and an illustration of one possible solution is given.  

 
Theorem (Demaine, 2007): The Scramble Square problem is NP-hard because it can be reduced 

in polynomial time from the NP-complete and therefore NP-hard Rectangle Packing problem. 

Proof: 

If we are given an instance of the rectangular packing problem, then we must show 

that a transformation exists to change the inputs of the rectangular packing problem to an 

instance of the Scramble Square problem.  With such a transformation, the solution to the 

instance of the Scramble Square problem must also be a solution to the original Rectangule 

Packing problem.  This concept of reductions was described in Chapter I Figure 5, and this 

proof follows that of Demaine for the signed-edge matching problem (Demaine, 2007). 

 Given an instance of the Rectangle Packing problem, one can produce an equivalent 

instance of the Scramble Square problem in two steps.  First, create a square frame around 

a rectangle of area x1 + · · · + xn and dimensions l x w (Figure 8).  All exterior edges of this 

frame use the same half-image. This half-image does not exist elsewhere in the puzzle and 

its complement does not exist anywhere in the puzzle. These restrictions force these half-

images to be on the border of the square.  The shared edge between every two adjacent tiles 

4 

3 

1x4 
1x4 

1x3 

1x1 
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brings two complementary image halves together. Every image only appears once in the 

puzzle. The horizontal edges facing the interior of the rectangle are complementary 

images; the vertical edges facing the interior of the rectangle represent another 

complementary image pair. Now the frame is complete (Figure 8). 

 
 
 
 

Figure 8. An example of a frame around a 3x2 rectangle.   
 
 
 
 
 

 Secondly, create analogues to the rectangular packing pieces: Each packing piece 1 × 

xi is represented by xi tiles. The tiles are created such that they only align horizontally, 

because the adjacent edges share complementary images unique to the rectangular packing 

piece. The top edges are complementary to the bottom edges of the interior of the square 

frame. The bottom edges are complementary to the bottom edges of the interior of the 

square frame. The left and right outer edges are complementary to each other and to the 

vertical interior frame. All of the tiles are identical but the two ends (Figure 9). 

Figure 9. Example of a rectangular packing piece realized 

through the Scramble Square problem. 

 

Now, we have transformed an instance of the Rectangle Packing problem into an 

instance of the Scramble Square problem.  Using an algorithm to solve the Scramble 

Square problem will also result in a solution to the Rectangle Packing problem. Hence, 

we have proven that the Scramble Square problem is in NP-hard.    

▯ 
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We previously proved that the Scramble Square problem is in NP and hence now we have 

finished the proof that the Scramble Square problem is NP-complete. 

 

Complementary Bounded Tiling Problem 

The complementary bounded tiling problem is a modification to the Scramble Square 

problem and to my knowledge is not discussed in the literature.   Therefore, I define the 

complementary bounded tiling problem as follows:  

Given a set of k tiles, can the tiles assemble so that a given bounded region (n x m) is 

filled and complementary images match?  

All tiles need not be used, and each tile may be used an unlimited number of times.  These are 

both deviations from the Scramble Square problem, in which each tile must be used exactly 

once.  Also, individual tile rotations and reflections are allowed (Figure 10).  Figure 11 illustrates 

the complementary bounded tiling problem for a given tile set. 
 

A.       B.               C. 

 

 

 

Figure 10. (A) Represents the original tile in one rotational state. (B) The other 3 rotational 

states of the original tile.  Note that the original tile was simply turned. (C) Two examples of 

reflection for the original tile, where two sides were “swapped”.  To notice the difference, pick 

an image and look at the image to the right and left of it, and notice that this arrangement does 

not match the original tile. 
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Figure 11. An example of the complementary bounded tiling problem, where two tiles are given.  

Those two tiles can be used infinitely to fill the bounded region as seen on the right. 

 

In order to prove that the complementary bounded tiling problem is NP-complete we must prove 

that it is in NP and that it is NP-hard. 

 

Complementary Bounded Tiling Problem is in NP 

 The same program detailed above for the Scramble Square problem can be used to verify 

solutions to the complementary bounded tiling problem.  In the case of the complementary 

bounded tiling problem, the dimensions given for the suggested solution do not need to be equal.  

In other words, solutions to the complementary bounded tiling problem must fill a region, not 

necessarily a square, bounded by given dimensions.  The only change to the MATLAB program 

detailed above for the Scramble Square problem is in the size of matrix A.  Recall that matrix A 

represents all of the edges for every tile in the columns and all of the possible touching edges in 

the rows.  Since the dimensions for the complementary bounded tiling problem may be 

rectangular, the number of possible touching edges changes and hence the size of matrix A 

changes as well as the touching edges (Figure 12).  The code for verifying candidate solutions to 

the complementary bounded tiling problem can be found in the Appendix.  
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Figure 12. Possible configurations for the complementary bounded tiling problem for which 

different touching edges and testing algorithms must be implemented in the creation of matrix A 

- chains for which the x dimension or y dimension is longer, rectangles where the x dimension is 

larger than the y dimension, and rectangles where the y dimension is larger than the x dimension.  

Due to these new possibilities the number of touching edges must change.  

 

Despite the changes in matrix A configuration, the algorithm continues identically to the 

Scramble Square program, where a candidate solution is considered valid if AV’ is the zero 

vector.  Hence, with the proper input, candidate solutions to the complementary bounded tiling 

problem can be verified in polynomial time, specifically O(k2), where k is equal to the number of 

tiles in the suggested solution.  Therefore, the complementary bounded tiling problem is in NP. 

 
Complementary Bounded Tiling Problem is NP-hard 

In order to prove that the complementary bounded tiling problem is NP-hard, we will 

reduce it from the bounded tiling problem, which is already known to be NP-complete and thus 

NP-hard.  

 

Definition of Bounded Tiling Problem: 
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Given a set of k tiles, can the tiles assemble, without rotations or reflections, so that a 

given bounded region (n x m) is filled and edges with the same color match (Figure 13; 

Boas and Savelsbergh, 1984)? 

 

 

 

 
Figure 13. Bounded tiling problem, where instead of complementary images matching, edges 

with the same color must match.  The given tile set is seen to the left and the successful tiling of 

a 2x3 region is shown to the left. The tiles pictured to the left are often referred to as Wang tiles 

(Gopalkrishnan, 2008). 

 

Theorem: The complementary bounded tiling problem with rotations is NP-hard because it can 

be reduced from the NP-hard bounded tiling problem. 

Proof:   

If we are given an instance of the bounded tiling problem, known to be NP-

complete, we must show that a transformation exists to change the inputs of the bounded 

tiling problem to an instance of the complementary bounded tiling problem.  With such a 

transformation, the solution to the instance of the complementary bounded tiling problem 

must also be a solution to the original bounded tiling problem.   

Given an instance of the bounded tiling problem (Figure 14A), one can transform 

it into an equivalent instance of the complementary bounded tiling problem in two steps.  

First, rename the vertical edges such that horizontal and vertical edges have no common 

color (Figure 14B).  In other words, in a given tile set, no color should appear on both the 
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vertical and horizontal plane.  If a color does exist on both planes, change the vertical 

edges of that color to a color not currently in the puzzle. Second, replace each color that 

appears more than once by a pair of complementary colors (Figure 14C; Gopalkrishnan, 

2008). 

Figure 14. (A). Tile set for a particular instance of the 

bounded tiling problem.  Notice that the color blue is 

restricted to only horizontal edges, whereas both the color 

orange and white exists on the horizontal and vertical plane.  

(B). Step one for problem transformation is to rename the 

vertical edges such that the shared colors on both planes no 

longer exist.  Here, the vertical white was replaced by red 

and the vertical orange was replaced by green. 

(C) Step two is to replace each color with complementary 

colors. Since pink appears twice, pink is replaced with 

complementary colors denoted by the pink and the pink stripes. Similarly, blue is 

replaced by blue and blue stripes. 

 

The bounded tiling problem, which does not account for rotations, can therefore 

be transformed into an instance of the complementary bounded tiling problem, which 

allows for rotations.  Using an assembly algorithm for the complementary bounded tiling 

problem will now result in the same output as an algorithm for the bounded tiling 

problem and the output can be transformed back into the instance of the bounded tiling 

problem using the reverse of the steps above (Figure 15). 

A. 

B. 

C. 
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Figure 15. (A). The only tiling pattern that could result from the tile set given in Figure 

14A because rotations are not allowed.  (B). The only two tiling patterns that can occur 

after transforming the problem.  These patterns are identical to the original tiling pattern 

without rotations.  Therefore, an algorithm for the complementary bounded tiling 

problem with rotations produces a solution to the bounded tiling problem without 

rotations. 

 

Hence, the complementary bounded tiling problem with rotations can be reduced from 

the NP-hard bounded tiling problem without rotations using the above transformation.  

Thus, the complementary bounded tiling problem with rotations is NP-hard. 

▯ 

 

The complementary bounded tiling problem that I want to solve with DNA allows for 

rotations and reflections.  I already proved that the complementary bounded tiling problem with 

rotations is NP-hard, but I also must prove that the complementary bounded tiling problem with 

reflections is NP-hard.  

 

Theorem: The complementary bounded tiling problem with reflections is NP-hard because it 

can be reduced from the NP-hard complementary bounded tiling problem with rotations.   

 

 

A. B. 
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For this proof, it is important to realize that for complementary pictures there is a specific 

orientation needed for the edges to actually match.  For instance, in the tiling problems above it 

is important that the bird’s beck and tail match in the correct orientation (Figure 16). 

       A.                   B.   

 

 

 

 

Figure 16.  The bottom tile of A is a reflection of the bottom tile in B.  Circled in black is a 

mismatch, indicating that it is important that the complementary images meet in the correct 

orientation.   

 

Unlike the representation of complementary colors, the bird half-images allow more control over 

the orientation of matching, which we see as a necessity in Figure 11.   

Proof:  

Given an instance of the complementary bounded tiling problem with rotations 

(Figure 17A), one can transform it into an equivalent instance of the complementary 

bounded tiling problem with reflections in one step.  Introduce complementary non-

symmetric half-images for each set of colors (Gopalkrishnan, 2008; Figure 17B). 

 
  

      Figure 17. (A) Instance of the complementary bounded  

     tiling problem with rotations. 
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(B) In order to transform the instance in part A to an 

instance of the complementary bounded tiling problem with 

reflections, we introduce the notches to represent the  

complementarity. The colors that were shaded with lines are the receiving ends of the 

notches, whereas the solid colors are the protruding ends.  Introducing these notches does 

not allow for reflections to change the problem given in A and therefore a solution to B 

will be the same solution to A even though reflections are allowed.   

 

As you can see above, an instance of the complementary bounded tiling problem 

with rotations can be transformed into an instance of complementary bounded tiling 

problem with reflections as seen through a notched tiling problem.  Using an algorithm to 

solve the notched tiling problem with reflections will result in a solution to the 

complementary bounded tiling problem without reflections. Therefore, we have 

transformed an instance of the complementary bounded tiling problem with rotations but 

without reflections into an instance of the complementary bounded tiling problem with 

reflections (the notched tiling problem) (Gopalkrishnan, 2008; Figure 18). 

 

 

 

 

 

Figure 18. (A) Solution to an instance of the complementary bounded tiling problem 

with rotations shown in Figure 17A.  (B) Using an algorithm to solve the problem with 

A)
. 

B). C). 
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complementary images without reflections will not result in a solution to the 

complementary bounded tiling problem with rotations but without reflections.  (C). One 

needs to reflect one tile in order for an algorithm from the complementary bounded tiling 

problem with reflections to solve an instance of the complementary bounded tiling 

problem with rotations.  

 

Hence, we have reduced the complementary bounded tiling problem with reflections 

from the complementary bounded tiling problem with rotations, but without reflections. 

Therefore the complementary bounded tiling problem with reflections is NP-hard.  

▯ 

 We have proven that the complementary bounded tiling problem with rotations and the 

complementary bounded tiling problem with reflections is NP-hard.  To prove that the 

complementary bounded tiling problem with rotations and reflections is NP-hard we would need 

to apply the same transformation steps, for both rotations and reflections, to the bounded tiling 

problem.  Combining the above proofs into one proof shows that the complementary bounded 

tiling problem with rotations and reflections is NP-hard.  We have already shown that the 

complementary bounded tiling problem with rotations and reflections is in NP and now we have 

shown that it is NP-hard.  Thus, the complementary bounded tiling problem with rotations and 

reflections is NP-complete.  A solution to the complementary bounded tiling problem can be 

reduced to a solution to the bounded tiling problem, which can be reduced to any other NP-

complete problem, such as the traveling salesman problem, for which many applications exist, as 

detailed in Chapter I.  
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Chapter III 

Biological Mathematics  

Given the complexity of NP-complete problems as discussed in Chapter I, researchers 

have turned to the field of biological mathematics in order to find solutions.  My research 

harnesses the inherent properties of DNA to assemble and solve the NP-complete 

complementary bounded tiling problem, which I described in Chapter II.  The concept of using 

DNA, to solve mathematical problems relies on the field of biological mathematics.   

This chapter focuses on a particular topic in biological mathematics, known as DNA 

computation, and its applications in solving NP-complete mathematical problems.  To 

understand how DNA computation can be used to solve the complementary bounded tiling 

problem, one must first grasp the background of biological mathematics and DNA computation, 

as well as the advantages and disadvantages of using such biological models.  

Biological Mathematics 

The classical intersection between biology and mathematics applies mathematical 

concepts to decipher biological data and model biological systems.  Until recently, the 

interdisciplinarity of these two fields had been one directional, using math to understand biology.  

It was not until 1994 that researchers began to use biology to understand math, specifically 

harnessing biological molecules, such as DNA, to model and solve mathematical problems 

(Deaton, et al., 1997).  The intersection of math and biology has become bi-directional, using 

mathematics to understand biological systems and data and using biological systems and 

molecules to understand mathematical problems.  

Within the field of biological mathematics, various biological molecules can be used to 

study and model mathematical problems. Yet, since the field’s inception, DNA has been used 
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frequently as a stable, predictable biological model for mathematical problems (Kari , 1997).  

DNA computation specifically uses DNA to implement computational algorithms in order to 

solve mathematical problems (Amos, 2008).  The basis of DNA computation and the relationship 

between DNA and mathematics relies on the fact that the two processes below, one biological 

and one mathematical, are analogous (Kari , 1997): 

1) The complex structure of a living being is the direct “. . .result of applying simple 

operations (copying, spicing, etc.) to initial information encoded in a DNA sequence.” 

2). The result of a mathematical function f(x) “can be obtained by applying a combination 

of basic simple functions to x.”  

The acknowledgement that the above statements are parallel led to the idea that DNA sequences 

can be used to encode mathematical information, in the form of 4 bases (A, T, G and C), while 

biological operations, carried out by enzymes and other proteins, can be used to manipulate such 

information in accordance with a computational algorithm.  Examples of biological operations 

include cutting with restriction enzymes and lengthening with DNA ligase (Amos, 2008).   

 Encoding information within DNA strands and manipulating such strands with simple 

biological operations was first used in a 1994 publication (Adleman, 1994).  This paper was the 

first to show that computational algorithms could be implemented using DNA to solve a 

particular type of mathematical problem, an NP-complete problem.  Since 1994, the field of 

biological mathematics, particularly DNA computation, has been widely explored as a mode of 

solving mathematical problems, in particular NP-complete problems.  

Adleman’s 1994 Publication 

 As discussed in Chapter I, no efficient algorithm exists to solve NP-complete problems.  In 

the absence of efficient algorithms, the only way to decrease the run time for finding a solution is 
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to break down the problem and let more hardware conquer it simultaneously.  Unfortunately, 

hardware is expensive.  A fairly recent idea, introduced by Leonard Adleman in 1994, is to solve 

NP-complete problems using DNA computation, allowing DNA to solve the problem.  Adleman 

proposed a DNA sequence based approach to solve the NP-complete directed Hamiltonian Path 

problem (HPP).   

Directed Hamiltonian Path Problem: 

Given a directed graph, G, with designated in and out vertices (vin and vout), does there 

exist a path, beginning at vin and ending at vout, that touches every vertex in G exactly 

once (Dasgupta et al., 2006; Figure 1)? 

 

Figure 1. Given the directed 

graph, G, where vin=0 and vout=6, 

there does exist a Hamiltonian 

Path in red: 0 →3, 3 →5, 5 →1,  

1→2, 2 →4, 4 →6.  

 

A brute-force algorithm exists to solve the directed Hamiltonian Path problem.  The algorithm, 

as seen below, generates all possible random paths with exactly n-1 edges (n is the number of 

vertices) and determines whether one of these paths fulfills the qualifications of being a directed 

Hamiltonian Path. 

Step 1. Generate all random paths through the graph.  

Step 2. Keep only those paths that begin with vin and end with vout. 

Step 3. If the graph has n vertices, then keep only those paths that enter exactly n vertices.  

4 

1 

6 

3 

0 

5 2 
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Step 4. Keep only those paths that enter all of the vertices of the graph at least once.  

Step 5. If any paths remain, say “YES”, meaning that a Hamiltonian Path does exist;  

           otherwise say “NO” (Adleman, 1994). 

Even though an algorithm exists to solve the directed Hamiltonian Path problem, it is a brute-

force algorithm and therefore is inefficient.  

Adleman modeled the brute-force algorithm shown above using DNA.  He encoded a 

particular instance of the problem into DNA sequences.  Harnessing the inherent Watson-Crick 

base pairing properties of DNA and utilizing various biological techniques, he was able to 

determine a solution to the Hamiltonian Path problem (Adleman, 1994).  

 Step 1: To implement step 1 from the brute-force algorithm biologically, Adleman 

randomly associated each vertex, i, in the directed graph with a single stranded DNA sequence 

that was 20 nucleotides long, a 20-mer, labeled Oi.  In order to produce the random paths, 

Adleman first engineered a new 20-mer sequence composed of part of one vertex and part of 

another vertex (Oi→j), dependent upon which vertices had connecting edges.  In other words, for 

each pair of adjacent vertices a 20-mer nucleotide sequence was produced to represent the edge 

connecting those two vertices, where the 3’ 10-mer of Oi was annealed with the 5’ 10-mer of Oj 

(Figure 2).  If i=0 in Oi→j then the whole 20-mer was simply the O1 DNA sequence and if j=6 

then the whole 20-mer sequence was the O6 DNA sequence.  Next, Adleman mixed every Oi→j 

with the complement of each vertex strand, indicated by Ōi.  The complementary strand annealed 

via Watson-Crick base pairing, bringing together potential edges to produce a potential path in 

accordance with the directed edges (Figure 2). 
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Vertices: Engineered 20-mer Sequence: 
O1  5’ ATGCCTAGCCATGAGTACCT 3’ 
O2  5’ TATCGGATCGGTATATCCGA 3’ 
O3  5’ GCTATTCGAGCTTAAAGCTA 3’ 
O4  5’ GGCTAGGTACCAGCATGCTT 3’ 
 
Complement of Vertices:  
Ō1  5’ TACGGATCGGTACTCATGGA 3’ 
Ō2  5’ ATAGCCTAGCCATATAGGCT 3’ 
Ō3  5’ CGATAAGCTCGAATTTCGAT 3’ 
Ō4  5’ CCGATCCATGGTCGTACGAA 3’ 
 

Possible Edges within G: Engineered 20-mer Sequence: 
O1→2 
ATGAGTACCTTATCGGATCG 
O2→4 
GTATATCCGAGGCTAGGTAC 
O3→4 
CTTAAAGCTAGGCTAGGTAC 
 
Possible Partial Paths: 
                      O1→2                                                                       O2→4 
ATGAGTACCTTATCGGATCGGTATATCCGAGGCTAGGTAC 
                        ATAGCCTAGCCATATAGGCT 
                  Ō2 
 
Figure 2. An example of step 1 for Adleman’s DNA computation model to solve an instance of 

the directed Hamiltonian Path problem.  The above details a few possible 20-mer vertex 

sequences as well as a few possible edge 20-mer sequences and shows how assembly into 

possible paths may occur.  The colors help show how the vertex 20-mer sequences are used to 

produce possible edge sequences and eventually partial paths.  

 

Step 2: Once Adleman produced random potential paths, he utilized PCR with vin and vout 

specific primers to amplify only the random paths that started with the vin sequence and ended 

with the vout sequence.  

4 
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Step 3: To implement step 3 of the brute-force algorithm, Adleman used gel 

electrophoresis to separate the randomly generated paths beginning with vin and vout isolated in 

step 2.  The paths of appropriate length (indicating that the path touched n vertices) were 

isolated.  In this particular case, the DNA strands of length 140 base pairs indicates that exactly 7 

edges were included in the path (20-mers · 7 edges).   

Step 4: In order to ensure that the product from step 3’s gel purification included each 

vertex exactly once, Adleman used a process known as affinity purification.  He generated 

single-stranded DNA from the purified product in step 3 and mixed the strands with the 

complement to the 20-mer of vertex 1, Ō1 attached to a magnetic bead.  Therefore, if vertex 1 

was included in the random path of size n, then the complementary sequence to vertex 1 would 

bind, along with the magnetic bead, and the random path containing vertex 1 would be retained.  

Adleman repeated this process of affinity purification with the retained random paths from the 

past purification using the complementary sequences to the other 6 vertices.  In the end, only the 

paths containing all 7 vertices were left.   

Step 5: To ensure that a solution existed, the product from step 4 was amplified using 

PCR and run on a gel.  If a 140 base pair band appeared on the gel, then a path touching all 7 

vertices, beginning and ending at vin and vout existed, and the answer to a particular instance of 

the directed Hamiltonian Path problem is yes.  Otherwise, no Hamiltonian Path existed within 

the given directed graph, G. 

Adleman harnessed the properties of DNA and laboratory techniques often used in 

biology to solve particular instances of the directed Hamiltonian Path problem.  He encoded the 

instance of the problem in DNA and allowed Watson-Crick base pairing to find a solution. 

Adleman was the first to show that basic algorithms could be encoded within DNA sequences 
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and used to solve NP-complete mathematical problems.  Since Adleman’s successful 

demonstration of DNA computation to solve NP-complete problems, many other researchers 

have taken sequence based approached to solving other NP-complete problems, such as the 

3SAT problem (Amos, 2008).  

 

Advantages and Disadvantages: DNA Computation to Solve NP-complete Problems  

 While the field of DNA computation to solve NP-complete problems has grown, 

researchers have uncovered various advantages and disadvantages to using DNA computation in 

solving such difficult problems.  DNA computing is generally considered a clever alternative for 

solving NP-complete problems and exhibits several advantages over silicon-based computers.  

For instance, DNA computing is a form of parallel computing, because it takes advantage of the 

millions of different copies of DNA molecules. In doing so, DNA computers try many different 

possibilities at once, making the parallel power of DNA many times faster than that of traditional 

machines.  For example, a mix of 1,018 strands of DNA could operate at 10,000 times the speed 

of today’s advanced supercomputers (Parker, 2003). Another advantage is the high potential for 

information storage.   One gram of DNA can store as much information as approximately 1 

trillion CDs (Vigliaturo, 2010). Additionally, DNA computing is remarkably energy efficient.  

For instance, considering the ligation of two DNA molecules to be one operation, 1J is sufficient 

for approximately 2 · 10 19 operations.  In comparison, a 2006 super computer executed at most 2 

· 109 operations per Joule (Adleman, 1994; Reddy, 2010).  Finally, although initial programming 

of DNA computers software is expensive, hardware costs are negligible.  For the above four 

reasons, many researchers think that DNA computing can fill in the gap where the capacity of 

traditional technology ends; for instance, the gap in which NP-complete problems cannot be 
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solved efficiently using modern silicon-based computers. 

 The main challenge of using DNA to solve mathematical problems involves uncertainty.  

The chemistry of DNA hybridization according to Watson-Crick base pairing is not 100% 

precise.  As a consequence, algorithms encoded within DNA may not produce precise results 

when compared to a computer algorithm.  In order to try and avoid errors within DNA 

computers, researchers must ensure that the initial sequences are of good quality and are free of 

contaminations.  Contaminations often arise from incomplete oligonucleotides synthesis.  

Researchers are currently conducting tests to attempt to minimize error introduction during DNA 

computing by understanding and controlling DNA hybridization more closely and utilizing 

different synthesis methods (Deaton et al., 1997).  A second practical challenge involves scaling 

DNA computers to work on much larger problems.  The most challenging aspects of NP-

complete problems is the lack of efficient algorithms to achieve solutions for problems with large 

input.  Hence, the concern of scaling DNA computers can prove a hurdle to solving NP-complete 

problems on a large scale.  Specifically, Juris Hartmanis estimates that in order to solve such 

interesting and large mathematical problems using DNA computation it “. . .would require a 

volume of DNA that would fill the Pacific ocean or weigh as much as the earth” (Deaton et al., 

1997).  Although, these two obstacles present challenges for DNA computing, research to 

overcome these obstacles is currently being conducted.  My research utilizes the concepts of 

DNA computation, while attempting to minimize and understand these two obstacles.  
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Chapter VI 

Bionanotechnology 

In order to model the complementary bounded tiling problem biologically, we needed a 

structural building block, representing an individual tile, which could self-assemble to form 

larger structures, representing solutions to the complementary bounded tiling problem.  For such 

building blocks, we turned to the field of bionanotechnology, specifically the sub-disciplines of 

DNA origami and DNA nanotechnology.   

Nanotechnology 

 In the late 1950s, Richard Feynman founded the field of nanotechnology and introduced 

the idea of harnessing biological systems to act as nanoscale information processors (Amos, 

2008).  The roots of the word nanotechnology define its meaning.  The prefix, nano-, refers to a 

nanometer.  A nanometer is one billionth of meter (Figure 1).  Nanoscience is built around the 

study of objects on the nanoscale. The suffix of the 

word, -technology, suggests the application of 

nanoscientific knowledge for practical purposes 

(Brucale, 2006). 

 

Figure 1. An illustration depicting size relationships 

amongst various naturally occurring organisms and 

biological molecules.  The schematic shows a relative 

size comparison for objects on a nanoscale and 

microscale (Los Angles Harbour College, 2009).  
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 There are two fabrication techniques for developing nanoscale objects: top-down and 

bottom-up.  Top-down assembly “seeks to ‘engineer’ nanoscale structures or devices by using 

larger, externally-controlled tools to direct their assembly” (Brucale, 2006).  Examples of top-

down assembly include etching and lithography.  Bottom-up assembly methods start from a 

structural subunit and allow self-assembly to build a final desired structure (Brucale, 2006).  

Living organisms posses innate mechanisms for bottom-up assembly of nanoscale structures.  

For example, organisms repeatedly build complex nanoscale proteins through protein folding and 

modification.  G.M. Whitesides, a professor of chemistry at Harvard, recognizes the advantage of 

studying biological bottom-up assembly: 

. . . start with biology, which offers a cornucopia of designs and strategies that have been 

successful at the highest levels of sophistication. In tackling a difficult subject, it is 

sensible to start by studying at the feet of an accomplished master. Even if they are 

flagella, not feet. (Brucale, 2006) 

 The field of bionanotechnology harnesses biological processes of bottom-up fabrication for 

nanotechnology applications.  Compared to other biological bottom-up processes, DNA stands 

out as the most adaptable nanoscale building block (Brucale, 2006).  DNA nanotechnology 

capitalizes on the Watson-Crick base pairing of DNA, manipulating DNA strands to assemble 

into a variety of shapes.   There are four unique features that make DNA an ideal molecule for 

bottom-up assembly of nanoscale objects.   

1.  DNA has a nanoscale structural geometry with a 3.4 nm helical repeat and approximately a 2 

nm diameter (Figure 2). 
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Figure 2. Schematic of DNA structural geometry, showing that DNA 

fulfills the nanoscale requirements for bottom-up assembly (©1998 Addison 

Wesley Longman). 

 

2. DNA has predictable intramolecular interactions, specifically the conserved Watson-Crick 

base pairings (A-T and C-G; Figure 2).  Hence, DNA’s ability to store information within the 

nucleotide bases can be exploited in the predictable self-assembly process.  

3. In addition to the predictable base pairings, the hybridization energies between such base 

pairings are known.  For this reason, it is important to recall that a DNA molecule assumes 

the shape of its intrinsic lowest energy state.  In other words, based upon the nucleotide 

sequence of the given DNA strand(s), the DNA molecule will assemble to minimize the 

energy utilized.  Knowing the hybridization energies of each base pairing aids in 

understanding how DNA will assemble to form nanoscale structures.  More detail on 

Watson-Crick hybridization energies and thermodynamics within DNA nanostructures will 

be given in Chapter VI.   

4. DNA is relatively easy to synthesize and is physically and chemically stable.  Therefore, 

DNA nanostructures are easy to handle and store.  Methods for DNA purification and 

structural characterization are readily available (Brucale, 2006).  

For the above reasons, we turned to DNA for bottom-up assembly of individual tiles within the 

complementary bounded tiling problem.  Understanding the field of DNA nanotechnology is 

pivotal in selecting the DNA nanostructure to represent individual tiles within the 

complementary bounded tiling problem.   
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DNA Nanotechnology 

DNA nanotechnology exploits the self-assembling ability of DNA to study and control 

the bottom-up assembly of objects at the nanoscale.  There are three categories used to classify 

existing DNA nanostructure design approaches: 1) the scaffolded design, 2) the single-stranded 

design, and 3) the multi-stranded design.  These three design techniques divide the field of DNA 

nanotechnology into two subfields: DNA origami and structural DNA nanotechnology.  Paul 

Rothemund, the first to use DNA origami, classifies the first two approaches, scaffolded and 

single-stranded designs, as DNA origami because one long scaffold strand is folded.  The third 

approach, multi-stranded, is used in structural DNA nanotechnology to construct regular and 

repeating DNA building blocks with specific geometric properties (Kuzuya et al., 2009).  

DNA Origami 

 DNA origami is the nanoscale folding of DNA to produce arbitrary two-dimensional and 

three-dimensional shapes.  DNA origami utilizes a unique design approach, differentiating it 

from other forms of DNA nanotechnology.  All DNA origami design approaches utilize one long 

strand of DNA, called the scaffold strand (Kuzuya et al., 2009; Rothemund, 2006).    In fact, 

there are generally two design approaches in DNA origami, single-stranded and scaffolded 

(Figure 3):  

 A.         B. 

 

 

 

 

Figure 3. Two approaches to DNA origami design: (A) The single-stranded design uses one long 
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scaffold strand relying heavily on its ability to bind to itself (B) The scaffolded design is 

composed of one long scaffold single strand of DNA and multiple short staple strands of single-

stranded DNA, known as oligonucleotides. The staple strands bind to the scaffold strand to 

determine shape. (Kuzuya et al., 2009; Rothemund, 2006). 

 

 Currently, most DNA origami structures utilize the scaffolded design technique, which 

Paul Rothemund developed in 2006.  Before Rothemund’s innovation, shapes were assembled 

using the single-stranded design technique.  In the single-stranded design technique, one long 

single-stranded DNA scaffold binds to itself. The most successful example the single-stranded 

design technique is the DNA octahedron (Kuzuya et al., 2009; Figure 4). 

 
 A.     
             C. 
 
 
 
   B.                                                        D. 
 
 
 
 
 
Figure 4. Nanoscale DNA octahedron assembled using single-stranded design (A) Schematic 

three-dimensional structure of the DNA octahedron. (B) Two-dimensional image of how the 

single-strand scaffold folds on itself to form a branched structure. (C) Three-dimensional 

reconstruction of microscopy images representing the DNA octahedron. (D) Images from an 

AFM of the DNA octahedron and the corresponding reconstruction diagrams (Kuzuya et al., 

2009). 
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 The scaffolded design uses one long scaffold strand of a single-stranded DNA, usually 

from a viral genome.  The folding is controlled by the addition of engineered oligonucleotides 

(Rothemund, 2006; Figure 5).   

A.            B. 

 

 

C. 

 

 
 
 
Figure 5. DNA origami scaffolded design (A) Scaffolded design to construct a DNA origami 

smiley face. Single-stranded oligonucleotides (shown in red) were added to the viral genome 

scaffold strand to determine smiley face structure (Sanderson, 2010). (B) Scaffold single-

stranded piece of DNA, in black, runs through the entire structure.  Staple oligonucleotides, 

multicolor, bind to various regions of the scaffold via Watson-Crick base pairings to form the 

desired shape. (C) Atomic force microscope (AFM) pictures of DNA origami shapes produced 

using the scaffolded design. 

 

Structural DNA Nanotechnology 

 The concept of structural DNA nanotechnology is similar to DNA origami: harnessing the 

Watson-Crick base pairing of DNA to form shapes. The two fields differ in design approaches.  

DNA origami utilizes scaffolded and single-stranded design techniques, whereas structural DNA 

nanotechnology utilizes a multi-stranded design (Kuzuya et al., 2009).  The multi-stranded 

design approach uses only small single-stranded oligonucleotides that self-assemble into higher 

A. 

B. 
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order structures (Rothemund, 2006; Figure 6). 

 

Figure 6. Multi-stranded design technique for structural DNA 

nanotechnology.  Three oligonucleotides assembled into a 

triangular shape. There is no larger scaffold strand in this design 

approach, only smaller oligonucleotides (Rothemund, 2006).  

 

 The main goal of structural DNA nanotechnology is to “provide an operatively simple way 

to control the positioning of matter in the nanoscale through the bottom-up self-assembly of 

DNA strands” (Brucale, 2006).  More than twenty years ago, Ned Seeman used a multi-stranded 

design to engineer the first instance of structural DNA nanotechnology: the 4-way branched 

DNA junction (Seeman, 1983; Brucale, 2006).  The 4-way branched DNA junction was 

equipped with sticky-ends allowing assembly into larger DNA lattice structures (Seeman et al., 

1998; Figure 7B).  The idea capitalized on a naturally occurring state of DNA known as the 

Holliday Junction (Aldaye et al., 2008; Figure 7A).  A Holliday junction is a mobile junction 

between four DNA strands, which occurs as a form of genetic exchange between homologous 

sequences.  The shape of the Holliday junction is highly conserved between prokaryotes and 

eukaryotes, including mammals (Hays et al., 2003).  

 
A.     B. 
 
 
 
 
 
 
 



 

 47 

90° 

90° 

90° 

90° 

Figure 7. (A) Schematic of a DNA Holliday junction, where the four different colors (orange, 

purple, blue, and green) represent the different DNA strands (Hays et al., 2003). (B) Schematics 

of the first DNA structural building block modeled after the Holliday junction, where the four 

colors represent the four DNA strands (A, B, A’, B’).  The lattice to the right shows how four 

copies of one DNA subunit can self-assemble into a larger DNA lattice (Seeman et al., 1998). 

 

Scientists eventually discovered that the 4-way branched DNA junction (Figure 7B) was 

not as stable as originally presumed.  The Holiday junctions were mobile (Figure 8A) and 

flexible (Figure 8B), threatening the uniform nature of the structural 4-way branched DNA 

building block.  Mobility of the Holiday junction occurs because the intersection point between 

the four strands is flanked by homologous symmetric sequences.  Due to these similar sequences, 

the branching point between the four strands can migrate back and forth (Brucale, 2006; Seeman, 

2003; Figure 8A).  The inability of the DNA nanostructure to maintain its ideal shape makes it an 

unstable building block.  Flexibility of the Holiday junction refers to the inability of the structure 

to maintain the 90º angles between branching points (Figure 7A).  In other words, the 

intersection point can bend in a scissoring motion (Figure 7B).  The strands are flexible because 

DNA segments have a natural curvature and there is no force dictating that the branching points 

remain at a 90º angle (Liu et al., 2003; Figure 8B).  

A.       B. 

 

 

 

 

120° 

120° 60° 

60° 
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Figure 8. (A) Experimentation showed that the 4 arms on the DNA branched junction were 

mobile, meaning that they could slide. (B) Multiple schematics of the flexible DNA junction, 

where triangles (with 120° and 60° angles) can form due to the flexibility of the intersection 

point between all 4 arms (Liu et al., 2003). 

  

4x4 DNA Cross Tile 

The 4x4 DNA cross tile, a multi-stranded design, consists of nine single-stranded DNA 

strands: four shell strands, four arm strands and one core strand (Park et al., 2006; Figure 9A).  

The sequence design of all nine strands, as well as controlled assembly conditions, allows for 

uniform assembly of the given cross tile structure. To allow the 90º cross tile assembly, the core 

strand contains four T4 loops, four thymines in a row.  The thymine residue is known to 

preferably bend and the repeated thymines allow the junction to form with the desired 90º angles 

(Park et al., 2006). 

 A.      B. 

 

 

 

 

 

 Figure 9. 4x4 DNA cross tile  (A) Nine DNA strands assemble to make the 4x4 DNA cross tile: 

1 core, 4 shell and 4 arm single-strands of DNA (Park et al., 2006). (B). Visual schematic of the 

DNA helices of the 4x4 DNA cross tile. Note the core strand (dark grey) interacts with all 4 

shells and the red box highlighting the crossover event (Park et al., 2006).   
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 There are three main differences between the structure of the 4x4 DNA cross tile and the 

4-way DNA junction.  

1) Sequence similarity and complementarity in all nine strands is much lower in the 4x4 

DNA cross tile.  Within the DNA sequences of the 4x4 DNA cross tile, no 5 nucleotides 

appear twice in the same order (Lin et al., 2009).  Minimizing sequence homology 

ensures less branch mobility and therefore greater uniformity.   

2) The core strand connects all four arms, stabilizing the DNA nanostructure (Figure 9B).  

3) Interactions between helices are strengthened by the existence of a reciprocal exchange in 

each arm strand (Lin et al., 2009; Figure 9B).  The reciprocal exchange between each arm 

and shell strand is known as a crossover event (Brun et al., 2004; Figure 10).  Each 

crossover event adds stability to the arm strands and helps maintain the 90º angles in each 

shell strand.  

 
Figure 10. Diagram of a crossover event, which increases 

the rigidity, immobility, and stability of the 4x4 DNA cross 

tile (Brun et al., 2004). 

 

 

As in the 4-way branched DNA junction, there are overhanging sticky-ends on each arm 

strand.  These sticky-ends allow individual 4x4 DNA cross tiles to form DNA lattices (Figure 

11) through Watson-Crick base pair binding.  The 4x4 DNA cross tile offers more control 

between tile interactions when compared to the 4-way branched DNA junction because there are 

two sticky-ends per arm.  In the 4-way branched DNA junction only one 5-nucleotide DNA 

sequence must anneal to bring together two tiles.  In the 4x4 DNA cross tiles there are two 5-
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nucleotide sequences that must anneal.  The existence of 2 sets of 5-nuceltoides sticky-ends 

increases the number of different half-images that can be encoded within the complementary 

bounded tiling problem.   

 

 

 

 

 

Figure 11.  DNA tile lattice, in which multiple 4x4 DNA cross tiles anneal through Watson-

Crick base pairings of the sticky-ends.  (A) Schematic of a 3x3 lattice (B) AFM image of a 3x3 

DNA lattice made with cross tiles (Park et al., 2006). 

 

Because of its stability and rigidity, we chose to use the 4x4 DNA cross tile to represent a 

tile in the complementary bounded tiling problem. Bottom-up assembly, or self-assembly, of 

multiple tiles forms DNA lattices that may tile a given bounded region.  The following section 

provides more details for the implementation of the 4x4 DNA cross tile in the complementary 

bounded tiling problem.   

 

 

Implementation of 4x4 DNA Cross Tiles in the Complementary Bounded Tiling Problem 

The following illustrations serve as a model to introduce how a particular instance of the 

complementary bounded tiling problem can be modeled using 4x4 DNA cross tiles. 

In order to model a particular tile set for the complementary bounded tiling problem, we must 

first encode the equivalent individual 4x4 DNA cross tiles. 

A. B. 
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Figure 12.  The tile set given above can be modeled by two analogous 4x4 DNA cross tiles.  

Observe the sticky-end sequences highlighted in red in comparison to the half-images on the 

tiles. 

 
Sticky-end Corresponding Image 5’  3’ Sequence 

A Beak of Red Bird GTGCA … AATTC 
-a     Tail TGCAC … GAATT 
B Beak of Green Bird AAGCT … TAGCT  
-b     Tail AGCTT … AGCTA 
C Beak of Blue Bird AGTAC … TATTG 
-c     Tail GTACT … CAATA 
D Beak of Yellow Bird GCATT … TAATG 
-d     Tail AATGC … CATTA 

 
Figure 13. Table representing the corresponding sticky-ends for all of the images in the above 

tile set.  Cross-referencing the sticky-ends provided in this table with those seen in Figure 12 will 

correspond accordingly.   

 
A particular solution to the given complementary bounded tiling problem in Figure 12 is shown 

in Figure 14.  Notice the rotation of the text of the second tile.  Tile two was rotated 90 degrees 

counterclockwise in order to give the particular solution to the complementary bounded tiling 

problem shown below. 
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Figure 14. (A) A particular solution to the complementary bounded tiling problem presented in 

Figure 12.  (B) Tile two was rotated 90 degrees counterclockwise in order for the red bird’s beak 

to match with the red bird’s tail.   
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Zooming in to where the two 4 x4 DNA cross tiles meet (the red bird’s beak and tail) exposes 

some unique and challenging issues of larger lattice structures.  The section below represents the 

sticky-ends, which overhang from the circled section in Figure 14.  Recall that these two sets of 

sticky-ends should bind the two 4x4 DNA cross tiles together.   

 
 
 
 
 
 
Figure 15. Depicts the sticky-end relationship between the two 4x4 DNA cross tiles pictured in 

Figure 14. 

 

Studying the relationship between the sticky-ends above sheds light on how I designed the 4x4 

DNA cross tiles to interact and form larger DNA lattices.  Observe the two sequences 

highlighted with blue and the two sequences highlighted in yellow.  The two blue sequences and 

the two yellow sequences are complementary when aligned properly, indicating that the 4x4 

DNA cross tiles interact by crisscrossing DNA strands (Figure 16).   
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Figure 16. A step-wise schematic indicating how arm strands of two 4x4 DNA cross tiles 

interact.  The strands highlighted in blue and yellow correspond to 5-nucleotide sticky-ends 

shown in Figure 15.  The black strands represent the rest of the arm strands.  For example, in the 

solution given in Figure 14, the interacting arms are arm one from tile one and arm three from 

tile two.  In order to match the anti-parallel DNA strands, the DNA sequences from respective 

tiles must crisscross as shown in the third diagram. 

 

Realizing that the sticky-ends between two 4x4 DNA tiles crisscross leads to two hypotheses 

concerning intermolecular relationships between multiple 4x4 DNA tiles:  

1) The DNA strands may remain crossed as in Figure 16, OR 

2) One whole 4x4 DNA cross tile may twist, or flip (reflect), to unwind the DNA strands, 

producing a structure like the one shown in Figure 18.   

Researchers think that when two 4x4 DNA cross tiles interact and bind via the 5-nucleotide 

sticky-ends, one of the two tiles flips, or reflects, in order to untwist the DNA strands (Park, 

2005; Figure 18 and Figure 11).  Scientists think that the untwisting of the DNA strands is 

inherent in the structure due to the natural helical periodicity of DNA.  Double-stranded DNA 

naturally assumes a double helical shape and the helical periodicity is approximately 10.5 base 

pairs per turn in the DNA.  The binding between sticky-ends occurs in a region where the DNA 

naturally should turn, therefore providing chemical support for the untwisting of the DNA 

strands, and allowing the DNA to maintain its normal helical periodicity.  Researchers have also 

observed planarity when analyzing larger lattices of 4x4 DNA cross tiles under microscopes, 

indicating that one of the tiles involved in an intermolecular interaction flips.  Naturally, an 

individual 4x4 DNA cross tile is not planar; the tile has slight curvature due to the interacting 
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forces within the helical DNA molecules (Figure 17).   If multiple 4x4 DNA cross tiles bind, the 

resulting structure would not be planar, but instead curved.  Hower, under the assumption that at 

least one tile reflects to unwind the DNA strands, the resulting structure is closer to planar 

because the curvatures of the two interacting 4x4 DNA cross tiles cancel out.  

 

 

Figure 17.  Diagram showing a sketch of the 4x4 DNA cross tile and its naturally occurring non-

planar shape (Park, 2005).  

 

 

 

 

 
 
Figure 18. (A) The sticky-ends may remain crossed, or (B) one of the two tiles may flip or 

reflect, causing the strands to uncross.  The two uncrossed schematics in B represent the two 

possible outcomes dependent upon whether tile one or tile two flips.  The colors flanking the 

crisscross in A help decipher which tile flips in B.   

 

The concept that one of the interacting tiles flips or reflects to unwind the DNA strands, 

called corrugation, leads to a nearly planar DNA lattice (Park, 2005; Figure 19).  Figure 11 helps 

to visualize the reflection of individual 4x4 DNA cross tiles within a lattice, where only one tile 

was used and the two different colors indicate reflected versus un-reflected tiles.  Now we revisit 

our original instance of the complementary bounded tiling problem given in Figure 12 and 
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proposed solution given in Figure 13.  Before, when neither tile one nor tile two were reflected, 

the interacting sticky-ends needed to cross in order to bind correctly (Figure 14).  If tile two is 

reflected (Figure 20), then the DNA strands do not cross (Figure 21).   

 
Tile One            Tile Two 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.  Tile two is not only rotated, but also reflected.  The lettering labeling tile two is 

reflected as well.   

 
 
 
 
 
 
Figure 20.  Sticky-ends in the region highlighted in Figure 19.  Since tile two was reflected, the 

DNA strands no longer cross.   

C A C G T G T C G A 

G A A T T  C T T A A 
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 Understanding corrugation  is important to understanding the 4x4 DNA cross tile 

sequence design.  I designed tiles using the concept of corrugation, where at least one tile would 

presumably flip.  Before I could begin testing the use of 4x4 DNA cross tiles in the 

complementary bounded tiling problem, I needed to model and understand the possible 

biological outcomes of different instances of the complementary bounded tiling problem.  The 

following chapter explores a simulation of the complementary bounded tiling problem and the 

possible outcomes. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 59 

Chapter VI 

Modeling The Complementary Bounded Tiling Problem 

Before solving the complementary bounded tiling problem using 4x4 DNA cross tiles, it 

is important to understand the problem and how specific instances of the problem may assemble 

using DNA.  When individual tiles are engineered to encode a specific instance of the 

complementary bounded tiling problem and mixed together in a test tube, random Brownian 

motion facilitates tile interactions and assembly into larger DNA lattices.  The randomness of tile 

movement leads to partial and variable lattice formation.  In other words, for a given instance of 

the problem, resulting lattices may consist of any number of tiles.  Tiles are mixed in equal 

stoichiometric ratios, but tile concentrations affect the probability of tile incorporation.  For 

instance, at high tile concentrations the probability that only two tiles will bind is low (if the 

given instance can assemble beyond two tiles).  There is also no biological constraint ensuring 

that the tiles assemble in a prescribed structure such as a rectangle or square.  Therefore 

modeling the complementary bounded tiling problem with DNA leads to variable DNA lattice 

structures not only in tile number, but also in structure and pattern.  In order to answer the yes-

or-no question posed by the complementary bounded tiling problem, I needed to understand and 

predict the possible outcomes of intermediate and variable DNA lattices associated with 

particular instances.  To more accurately understand lattice formation within the test tube, Linda 

and I simulated specific instances of the complementary bounded tiling problem.  Using 

MATLAB, we wrote two computer programs that simulate tile assembly using two different 

algorithms.  I also constructed a Graphical User Interface (GUI) to make running the programs 

user-friendly.  

The GUI (Figure 1) allows the user to specify: 
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1. The x-dimension and y-dimension of the bounded region.   

2. The given tile set, specifying the number of tiles as well as the half-images on the edges 

of each tile.  Each half-image is represented by a positive or negative integer.  For 

example, 1 and -1 represent complementary half-images, and 2 and -2 represent another 

set of complementary half-images. 

3. Whether or not reflections are permitted.   

4. The intervals at which the step-by-step assembly of the tiling problem is displayed.  For 

example, the user may choose to see the progression of a given instance one tile at a time 

or three tiles at a time.  

5. Which algorithm to run, individually or a comparison of the two. Both algorithms 

(described in detail below) attempt to fill the specified  x x y bounded region with the 

given tile set. If the user compares the two algorithms, the choice of run number for the 

comparison is necessary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The GUI for the MATLAB simulation. 
 

 

 

2. 

3. 
4. 

5. 

5. 
1. 
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Algorithm One: circular_growth 

Circular_growth randomly checks every edge of one tile for complementary matches 

before checking any other tile’s edges for potential matches.  Therefore, if every edge on one tile 

can be matched to four other tiles, then the growth of the lattice is circular, hence the name 

circular_growth. A random tile, x, is chosen from the given set of tiles and placed with a random 

rotation in the middle of the given bounded region.  A random edge of tile x is chosen and a 

second random tile that fulfills the complementary edge matching requirements is chosen and 

placed next to this edge of tile x.  Circular_growth continues until all four edges of tile x have 

been checked.  This may mean that all four edges have matches or that none of the edges have 

matches within the given tile set.  Once all four edges of tile x have been checked, a random tile, 

y, is chosen from among those matched with x, and the above steps are repeated. Therefore, the 

algorithm works on one tile at a time, attempting to match all edges of that tile with other given 

tiles.  The algorithm terminates for two possible reasons:  

1.  If every unmatched edge does not have a cognate matching tile within the given tile set, 

then the lattice assembly cannot grow any further and the program terminates. 

2. If the specified bounded region is filled with tiles that match at all touching edges.  If a 

tile flanks an edge of the bounded region only the potential touching edges of that tile 

will be checked.  In other words, if a tile exists within the corner of the bounded region, 

only two of its edges will be checked for matches. 

Assembly patterns using circular_growth depend on given instances of the complementary 

bounded tiling problem.  Different assembly patterns can be seen in Figures 3, 6B, and 7B. 

Algorithm Two: sporadic_growth 
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In the sporadic_growth algorithm, the edge checked at each step is random.  In other 

words, the program does not check each edge around one tile first and then move on to another 

tile.  Instead, any open edge can be checked at any time in the progression of the program.  

Hence, there is a greater potential for sporadic growth, not circular growth, around one tile.  

Sporadic_growth represents a more realistic growth progression for a tiling problem within a test 

tube, because Brownian motion of 4x4 DNA cross tiles would not require all four edges of one 

tile be bound before other tile edges could be bound.  Instead, the random movement of 4x4 

DNA cross tiles would more likely lead to sporadic growth patterns.  For sporadic_growth a 

random tile, x, in a random rotation is chosen from the given set of tiles and placed in the middle 

of the bounded region.  Once placed, a random edge of tile x is chosen and a tile match is sought 

within the tile set given.  If a matching tile is found, the algorithm continues but the algorithm 

does not need to check each edge of tile x.  Instead, the sporadic_growth algorithm will 

randomly choose any open edge and look for a matching tile.  Termination conditions are the 

same as for the circular_growth algorithm.  Assembly patterns for sporadic_growth depend upon 

particular instances of the complementary bounded tiling problem and examples can be seen in 

Figures 4, 6C, and 7C.  

Example One: Understanding Output and Comparing Algorithms  

To illustrate the output of the simulation, I will walk through an example using a 

particular instance of the complementary bounded tiling problem.  Given three tiles (Figure 2A) 

and their reflected versions (Figure 2B), can such tiles assemble to fill a 5x5 bounded region 

such that complementary images (or, in this case as represented in the MATLAB program, 

closely related shades of colors) match at all touching edges? 
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Figure 2.  A six tile instance of the complementary 

bounded tiling problem, including three tiles (A) and 

their reflections (B).  

 

 Running circular_growth once will give one possible assembly of the above tiles.  Figure 

3 depicts three different assembly progressions (A-C) from running circular_growth three 

separate times.  I ran each assembly progression with an interval of five, so each successive 

vertical image has five newly placed tiles. The vertical lane on the left-hand side of each panel 

represents the general tile placed in a given position.  The different shades of blue are used in 

accordance with the blue shades outlining the given tiles in Figure 2.  The right-hand side of the 

panel reveals information about each tile’s particular rotation and shows how the close shades (or 

complementary shades) of colors match.  The existence of two panels allows users to easily 

determine where specific tiles are placed and in what rotation.   
 

A.              B.          C. 

 

 

 

 

 

 

 

 

 

A. 

B. 
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Figure 3. Different assembly progressions (A-C) of the given instance of the complementary 

bounded tiling problem given in Figure 2 using the circular_growth algorithm.  

 

Using the sporadic_growth algorithm to evaluate tiling patterns of the instance given in Figure 2 

shows different tiling progressions (Figure 4).  The only variation from Figure 3 to Figure 4 is 

the algorithm used.   
 

A.          B.     C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Different assembly progressions (A-C) of the given instance of the complementary 

bounded tiling problem in Figure 2 using the sporadic_growth algorithm.  

 

The algorithm differences are clearly illustrated by the tile assembly progressions in 

Figure 3 (circular_growth) and Figure 4 (sporadic_growth).  For example, two of the three tile 

assembly patterns (Figure 3A and 3C) for circular_growth completely fill in every edge 

surrounding the initial tile, the center tile.  This progression is characteristic of the algorithm 

itself, but it also dependent on the instance of the problem given in Figure 2.  Juxtapose these 

two initial tiling patterns with the initial tiling patterns in Figure 4.  In Figure 4A-C the initial 
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tiling patterns are more sporadic, randomly choosing edges to check out of all of the placed tiles 

and not concentrating on the first tile.  For example, in Figure 3C and 4B the initial center tile is 

the same.  Hence we know that all four edges of this tile can be matched to other given tiles as 

seen in Figure 3C.  Yet, the sporadic_growth algorithm does not initially fill all four edges of this 

tile (Figure 4B).  Although, in later progressions all four edges of this initial tile are filled, they 

are not filled immediately, indicating the growth progression of the algorithm. 

The three different assembly progressions in Figure 3 and 4 show possible lattice 

structure intermediates.  The last vertical frame in each panel represents a final structure.  The 

5x5 region is not full in any of these tiling progressions because the program terminated.  The 

program terminated because there were no tiles within the given tile set that would fit, such that 

all touching edges match, in the open spaces remaining.  It is important to note a limitation of 

both algorithms: these six tiling progressions do not give a definitive answer to the given 

instance of the complementary bounded tiling problem in Figure 2.  The complementary 

bounded tiling problem asks a “yes”-or-“no” question.  Although the answer appears to be “no” 

given the final assembly patterns in Figure 3 and 4, it is impossible to know unless all possible 

tiling options were investigated.  The two programs do not attempt to generate every possible 

tiling, because as noted in Chapter II, an algorithm to generate all tiling patterns runs in 

exponential time and is therefore inefficient to implement.   

One way to provide stronger evidence that a complete tiling which fills the bounded 

region may not exist is to run the simulation thousands of times and study the number of tiles in 

the final tiling pattern.  If the bounded region is full, then the final number of assembled tiles will 

be x·y, or 25 in the instance shown in Figure 2.  The “Compare” option generates a histogram 

indicating the number of final tiles for each run.  For the tiling instance given in Figure 2, the 
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two algorithms were run 1,000 times and the results were compared (Figure 5).  In the 1,000 

tiling progressions, none of the final patterns completely filled the bounded region because there 

were no tiling progressions with 25 tiles (Figure 5), suggesting that the given tile set could not 

tile the bounded region. 

 

 

 

 

 

 

 

 

Figure 5. Histogram comparing algorithms indicating the distribution after 1,000 runs of the 

number of tiles within the final tiling pattern.  Recall that for this instance, 25 tiles were needed 

to fill the region.  

 

Example Two: Exploring Interesting Problems and Understanding Corrugation Likelihood 

Understanding the algorithms and their output allows the exploration of more interesting 

instances of the complementary bounded tiling.  For example, are there certain instances that will 

always tile the region?  Will some only grow vertically or horizontally?  Do some instances 

always produce the same tiling pattern? Will the addition of reflections drastically change tiling 

patterns? These algorithms are predicators of tiling behavior and have the potential to shed light 

circular_growth 

sporadic_growth 
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on many interesting tiling problems.  The following figures explore different instances of the 

complementary bounded tiling problem, which answer some of the questions above.  

Given two given tiles and no reflections (Figure 6A), can these tiles assemble to fill a 4x4 

bounded region?  In this instance, the tiles appear to only assemble into a square, filling a 2x2 

bounded region.  Assembly using circular_growth (Figure 6B) and sporadic_growth (Figure 6C) 

along with histograms using 1,000 runs (Figure 6D) show that a square 2x2 structure frequently 

forms and four tiles are in the final tiling pattern.  

A.                           B. 
 
 
 
 
 
 
 
 
 
 
 
C.             D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. (A) Two tiles without reflections, using (B) circular_growth and (C) sporadic_growth 

form 2x2 squares.  (D) Histograms for both algorithms indicate that every final tiling pattern out 

of 1,000 has exactly four tiles in it.  Although the histograms do not suggest that these four tile 

circular_growth 

sporadic_growth 
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circular_growth 

sporadic_growth 

structures are squares, by cross-referencing the data with many tiling behaviors in B and C, it 

appears that these two tiles only form 2x2 squares.  

 

Allowing reflections (Figure 7A) drastically alters the tiling behavior (Figure 7B-D).  

Although 2x2 squares still form (Figure 7B), a highly likely ladder structure can form (Figure 

7C).  The histograms (Figure 7D) illustrate that such 2x2 squares are not the only tiling pattern.  

Within the histograms, the tiling patterns consisting of four tiles could be four tiles in a 2x2 

square or four tiles in a ladder.  Regardless, the values within the histograms indicate that other 

structures form (i.e. larger ladders; Figure 7C).  With the addition of two reflected tiles, the tiling 

behavior of the given complementary bounded tiling problem changes and the diversity of 

different structures increases. 

A.             B. 
 
 
 
 
 
 
 
 
 
 
 
 
C.             D. 
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Figure 7.  (A) Reflected versions of the tiles in Figure 6A, defining a tile set of four tiles.  

Illustration of two different tiling patterns for circular_growth (B) and sporadic_growth (C) with 

the given tile set.  Note the occurrence of a ladder-like structure in C.  The 1,000 run histograms 

in D reveal that not all final tiling patterns have four tiles.  Hence, allowing reflections increases 

the final tiling pattern or structure diversity. 

 

Understanding potential tiling behaviors can shed light on interesting tiling problems as 

shown above in Figures 6 and 7.  By adding reflections, the tiling pattern changes, and 

evaluating such changes is a powerful tool when modeling the complementary bounded tiling 

problem.  For example, part of my experimental design was to study the prevalence of 

corrugation within larger DNA lattices (recall corrugation from Chapter IV).  If corrugation of 

connected tiles occurs, then DNA strands uncross, reflecting one of the tiles.  If corrugation does 

not occur, then the DNA strands remain crossed and none of the tiles are reflected.  By 

controlling the use of reflected tiles within both algorithms, I generated possible tiling structures 

for specific instances of the complementary bounded tiling problem assuming that corrugation 

did or did not occur.  By simulating the above instance of the complementary bounded tiling 

problem (Figure 6 and 7), I was able to predict that the existence of corrugation (reflected tiles) 

will produce a ladder formation.  Implementing the above instance of the complementary 

bounded tiling problem (Figure 6 and 7) using 4x4 DNA cross tiles allows me to test likelihood 

of corrugation by observing prevalence of ladder and 2x2 square structures.  The study of 

corrugation probability is just one example of the evaluative power of both algorithms that would 

assist me in understanding biological implementations of 4x4 DNA cross tiles.  
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Using 4x4 DNA cross tiles I would need to use an atomic force microscope (AFM) to 

image different tile assemblies for a given instance of the complementary bounded tiling 

problem.  I would need to scan the image for possible structures that fill the bounded region 

specified in the problem.  Therefore, understanding the distribution of possible tiling outcomes 

and intermediates would help me evaluate an AFM image for potential biological solutions to the 

problem.  Using the two algorithms above, I engineered a biological instance of the 

complementary bounded tiling problem in which the addition of different tiles drastically 

changes tiling patterns, and built and tested this instances with 4x4 DNA cross tiles.  

 

Scramble Square Versus Complementary Bounded Tiling Problem 

 As mentioned in Chapter II, our original goal was to solve the Scramble Square problem 

using 4x4 DNA cross tiles, but various biological restrictions led Linda and I to define and solve 

our own NP-complete problem, the complementary bounded tiling problem.  Recall in the 

Scramble Square problem that every given tile must be used exactly once.  As seen above in both 

algorithms and in biological assembly, there is no control over tile incorporation in lattice 

structures.  Tiles bind randomly based on concentration and Brownian movements.  Scanning 

AFM images of lattices to ensure that every tile existed exactly once within a given solution adds 

another variable and increases the complexity of biological implementation.  Instead, in the 

complementary bounded tiling problem, every tile can be used an unlimited number of tiles and 

not all tiles need to be used.  The complementary bounded tiling problem resembles more closely 

the biological assembly of 4x4 DNA cross tiles and therefore we redefined our problem based 

upon biological implementation. 
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Chapter VI 

Encoding and Assembly of 4x4 DNA Cross Tiles 

The goal of my thesis research was to use DNA computation to solve the NP-complete 

complementary bounded tiling problem.  My approach utilized structural DNA nanotechnology 

(4x4 DNA cross tiles) to encode instances of the complementary bounded tiling problem.  The 

engineered DNA tiles could assemble to form solutions to such instances via Watson-Crick base 

pairing of overhanging sticky-ends.  For this chapter, Linda and I designed the tile sequences and 

tested individual tile assembly.  I tested multi-tile assembly, visited Duke University and 

ultimately designed a new instance to encode and solve.  Initially, we choose a particular 

instance of the complementary bounded tiling problem to encode within the structural 4x4 DNA 

cross tiles.  Two factors motivated the problem choice: 1) simplicity and 2) corrugation 

likelihood.  In order to demonstrate that the methods worked, we began with a simple instance of 

the complementary bounded tiling problem.  Within this same instance, we also decided to test 

the occurrence of corrugation to understand larger lattice formation.  The tile set we engineered 

with 4x4 DNA cross tiles is shown in Figure 1.   

 

A.                   B. 

 

 

 

Figure 1. The tile set for the particular instance of the complementary bounded tiling problem 

we encoded into 4x4 DNA cross tiles.  The two tiles (A) and their reflections (B) we chose. 

 

Tile One Tile Two 
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Recall from Figures 6 and 7 in Chapter V that the instance given without reflections (without 

corrugation) formed a 2x2 square tiling and with reflections (with corrugation) formed a ladder 

or a 2x2 square.  We engineered a slightly different instance shown in Figure 1.  In this instance, 

a ladder forms (Figure 2) without reflections (no corrugation), whereas if every other tile is 

flipped as expected with corrugation, only a 2x2 square forms (Figure 3).  

 
 
 

Figure 2. Expected structure when 

corrugation does not occur using the tiling 

set given in Figure 1.  The ladder in A can 

grow infinitely in both directions.   

 

 

 

 

Figure 3. Expected structure, using the 

tiling set in Figure 1 when corrugation does 

occur and every other tile flips.   

 

 

 

 

We hypothesized that corrugation occurred relatively frequently compared to tile 

interactions without corrugation (see Chapter IV).  We designed the tiles in Figure 1 so a 2x2 
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2 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Arm 2 

Arm 4 

Core  
    

Arm 3 

square tiling structure would only be possible if corrugation occurred.  Recall that in the example 

from Chapter V, a ladder formed with corrugation.  Within a ladder structure, some tiles may be 

connected with corrugation and some may be connected without corrugation. Therefore, the new 

tile design in Figure 1 of this chapter ensures that we could accurately observe the frequency of 

corrugation.  

 

Step One: DNA Sequence Design 

Once we selected a certain tile set for experimentation, we began to construct the 4x4 

DNA tiles.  In order to construct each 4x4 tile, we needed a set of 9 DNA strands with 

complementary sequences at all of the necessary points (i.e. part of the sequence for shell 1 must 

be complementary to part of the sequence on arm 1; Figure 4).   

 

Figure 4. Diagram of DNA cross 

tile where thin grey lines indicate 

where DNA sequences are 

complementary. For example, the 

core strand must be 

complementary to the inner 

sections of each shell strand. 

 

In addition to controlling structure assembly through sequence design, we controlled 

step-wise assembly by studying melting temperatures of the 9 different DNA strands.  The 

melting temperature (Tm) of a double-stranded DNA molecule is the temperature at which half of 

the DNA strands are double-stranded and half are single-stranded (“Melting Temperature of 
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DNA,” Biology Online Dictionary, 2005).  The melting temperature for a DNA molecule is 

dependent on the sequence of nucleotides and its length.  The melting temperature can also be 

defined as the temperature at which half of the single-stranded, complementary pieces of DNA 

anneal to form double-stranded DNA.  Studying melting temperature is the same as studying 

annealing temperature.  We were able to control step-wise assembly of the physical DNA by 

changing the temperature of the DNA mixture.  Designing distinct melting temperatures for each 

strand interaction was important, because unique melting temperatures allowed us to assemble 

one strand at a time. 

In addition to studying melting temperatures, we also studied the Gibbs free energy (ΔG).  

Gibbs free energy is used to quantify the spontaneity of a reaction.  If a reaction is spontaneous, 

it will proceed without an outside energy source.  In the study of DNA annealing, Gibbs free 

energy quantifies the spontaneous reaction of two DNA strands annealing via Watson-Crick base 

pairing.  A negative Gibbs free energy value suggests that a DNA strand and its complement will 

anneal spontaneously.  Larger negative Gibbs free energy values indicate a higher likelihood of 

annealing.  Therefore, minimizing the Gibbs free energy of all 9 DNA strands increases the 

likelihood that the 4x4 DNA cross tile will assemble.   

Before we could begin to analyze different DNA sequences and their thermodynamic 

properties, we needed to design the interchangeable sticky-ends, the nucleotide overhangs that 

function as the complementary images in the complementary bounded tiling problem.  

Thermodynamic properties of DNA sequences (Tm and ΔG) depend on DNA sequence.  The 

DNA sequence of the four arm strands will vary based on sticky-end sequence. We had to 

choose sticky-end sequences before designing and analyzing all 9 DNA sequences.   
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 For the problem instance we chose (Figure 1), we needed sticky-ends to represent six 

different half-images.  Since each half-image is analogous to two non-compatible sticky-ends, 

we needed twelve, 5-nucleotide sticky-end sequences.  In choosing the sequences for the 5-

nucleotide sticky-ends, we utilized results from research that analyzed effectiveness and stability 

of certain sticky-ends in the 4x4 DNA cross tile (Dwyer et al., 2006; Figure 5).   

 

 

Figure 5. The best 5-nucleotide sticky-ends 

for 4x4 DNA cross tile assembly (Dwyer et 

al., 2006).  

 

 

From the list of thermodynamically stable 5-nucleotide sticky-ends shown in Figure 5, we chose 

sticky-ends that could be cut with restriction enzymes.  If we were able to selectively disconnect 

(cut) 4x4 DNA cross tiles within a lattice, then we could test and study lattice formation. For 

example, in the above instance with corrugation (Figure 2B), if a restriction enzyme 

disconnected the red bird’s beak and tail, the 2x2 structure would remain.  Observing that the 

2x2 structure existed after adding a restriction enzyme to cut the red bird in half would indicate 

that at least one tile was connected to two other tiles. I also chose sticky-ends with restriction 

enzymes sites to determine if annealed tiles could be separated by restriction enzymes.  To my 

knowledge there is no report on the use of restriction enzymes in 4x4 DNA cross tiles.  Using 

sticky-end sequences with restriction enzymes sites led to one necessary change in the DNA 

sequences of all four shell and arm strands.  Most restriction enzymes cut sites are 6-nucleotides 

in length, but the sticky-ends within the 4x4 DNA cross tile are only 5-nucleotides long.  
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Therefore, the last nucleotide in the arm strand was altered to accommodate the extra nucleotide 

needed for restriction enzyme site recognition. Most restriction enzyme sites begin with a G and 

therefore we had to ensure that the last nucleotide on every arm strand (before the 5-nucletotide 

sticky-end that was a 6-nucleotide long restriction enzyme site) was a G.  Due to this change, we 

also had to ensure that the complementary base on the shell strand was a C.  Hence, I designed 

all necessary shell strands to begin with a C and all arm strands to ends with a G before each set 

of 6-nucleotide long restriction enzyme sites.  

 After choosing the sticky-ends, we began DNA sequence design and analysis by studying 

sequences that other researchers implemented to produce 4x4 DNA cross tiles (Li, 2008; Yan et 

al., 2003).  These DNA sequences were generated using a thermodynamic modeling program 

known as SEQUIN.  SEQUIN was written by Ned Seeman, the inventor of structural DNA 

nanotechnology, as a sequence design program specifically for 4x4 DNA cross tile assembly 

(Seeman, 1990).  We used a similar program called TileDesigner to design and analyze DNA 

sequences.  TileDesigner is a more recent program for the study of 4x4 cross tile DNA sequences 

(Limura et al.  2007).  We used TileDesigner to generate DNA sequences and study previously 

used DNA sequences for the formation of 4x4 DNA cross tiles.  TileDesigner computes melting 

temperature (Tm) and Gibbs free energy (ΔG) of each DNA strand in the context of the 4x4 DNA 

cross tile structure.  We compared data for two different sets of DNA sequences: a set of 9 DNA 

sequences generated by TileDesigner and DNA sequences previously utilized in other 4x4 DNA 

cross tiles (Table 2).  Both sets of arm strands utilize our sticky-end sequences for the two tile 

types in Figure 1A. 
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Strand  Length  5’3’  TM (°C)  ∆G 

Core  96  CAATTCTGTAGAGACTTTTTGCCATTGTG
GCCCTATGTCTTTTGGCTGGGGCGCAGCA
CGTTCTTTTGCCAACTGATCCCATCCGTG
TTTTAGATG 

46  -7.7 

Shell 1  40  CGACACTCTGCATACGGTCCAATTGCATG
TGACGGATGGG  42  -4.6 

Shell 2  40  CACCTTAGTAATCAGTTGGCGAACGTGCT
GCGTGTAGTCG  40  -2.2 

Shell 3  40  CATCTGATAGCGCCCCAGCCGACATAGGG
CCCGTAGGGGG  46  -2.9 

Shell 4  40  CAATAGGGCGCACAATGGCAGTCTCTACA
GCAAATTTTGG  38  -1.2 

Tile 1, Arm 1 30 GTGCACCCATCCGTCTACTAAGGTGAATTC  36  -2.5 
Tile 1, Arm 2 30 AAGCTCGACTACACGCTATCAGATGTAGCT  42  -2.3 
Tile 1, Arm 3 30 AATGCCCCCCTACGGCGCCCTATTGCATTA  34  -1.6 
Tile 1, Arm 4 30 GTACTCCAAAATTTGCAGAGTGTCGCAATA  37  -1.6 
Tile 2, Arm 1 30 TGCACCCCATCCGTCTACTAAGGTGGAATT 36  -1.9 
Tile 2, Arm 2 30 AGCTTCGACTACACGCTATCAGATGAGCTA 42  -0.7 
Tile 2, Arm 3 30 AATGCCCCCCTACGGCGCCCTATTGCATTA  34  -1.6 
Tile 2, Arm 4 30 GTACTCCAAAATTTGCAGAGTGTCGCAATA  37  -1.6 

 

Strand  Length  5’3’  TM 
(°C)  ∆G 

Core  100  AGGCACCATCGTAGGTTTTCGTTCCGATCACC
AACGGAGTTTTTTCTGCCGTACACCAGTGAAG
TTTTTCGATCCTAGCACCTCTGGAGTTTTTCT
TGCC 

45  -5.5 

Shell 1  42  CAGCGCAACCTGCCTGGCAAGACTCCAGAGGA
CTACTCATGG  44  -3.1 

Shell 2  42  CACTGAGCCCTGCTAGGATCGACTTCACTGGA
CCGTTCTAGG  43  -1.8 

Shell 3  42  CTTGGCTTCCTGTACGGCAGAGCTCCGTTGGA
CGAACACTGG  44  -3.6 

Shell 4  42  CCATAGCGCCTGATCGGAACGCCTACGATGGA
CACGCCGAGG  46  -3.2 

Tile 1, Arm 1 31 GTGCACCATGAGTAGTGGGCTCAGTGAATTC  39  -3.5 
Tile 1, Arm 2 31 AAGCTCCTAGAACGGTGGAAGCCAAGTAGCT  40  -1.8 
Tile 1, Arm 3 31 AATGCCCAGTGTTCGTGGCGCTATGGCATTA  41  -3.3 
Tile 1, Arm 4 31 GTACTCCTCGGCGTGTGGTTGCGCTGCAATA  40  -3.1 
Tile 2, Arm 1 31 TGCACCCATGAGTAGTGGGCTCAGTGGAATT 39  -3.8 
Tile 2, Arm 2 31 AGCTTCCTAGAACGGTGGAAGCCAAGAGCTA 40  -5.1 
Tile 2, Arm 3 31 AATGCCCAGTGTTCGTGGCGCTATGGCATTA  41  -3.3 
Tile 2, Arm 4 31 GTACTCCTCGGCGTGTGGTTGCGCTGCAATA  40  -3.1 

B. 

A. 
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Table 2. Tables representing thermodynamic sequence information calculated by TileDesigner. 

(A) DNA sequences generated by TileDesigner and (B) DNA sequences previously used in the 

construction of 4x4 DNA cross tiles.  Our sticky-ends sequences are highlighted in red.   

 

 Based on data generated from TileDesigner, we chose to use the DNA sequences in Table 

2B from previously studied 4x4 DNA cross tiles.  We chose this set of DNA sequences for three 

main reasons: 

1) The melting temperatures for the DNA sequences in Table 2B present a better step-wise 

assembly progression.  All four shell strands and core strands would assemble first 

between 46°C and 43°C before the addition of arm strands (41-39°C) for the DNA 

sequences in Table 2B.  The DNA sequences in Table 2A would assemble in a much 

more random manner.  For instance, some arm strands would bind to the shell strands 

before the shell strand would bind to the core strand.  The DNA sequences in Table 2B 

are more likely to produce a 4x4 DNA cross tile shape because of the step-wise addition 

of smaller strands. 

2)  The average ∆G for all DNA strands in Table 2B is more negative, which means 

annealing is more favorable.  Although the ∆G of the core strand in Figure 6A is highly 

negative (-7.7), the ∆G of other DNA strands is barely negative (i.e. -0.7).  

3) The twelve sticky-end sequences that we chose had limited sequence similarity and 

limited sequence complementarity within the other DNA sequences in Table 2B.  We 

checked for 5-nucleotide, 4-nucelotide and 3-nucleotide recurrence of the sticky-end 

sequences and their complements within all other DNA sequences and found that the 

sequences in Table 2B had less sequence similarity when compared to sequences in Table 
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2A.  Minimizing sequence similarity and complementarity decreases the opportunity for 

unintended structures to form and therefore increases the specificity of DNA sequences to 

assemble into a prescribed shape.   

 

A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
T
T
A
C
G
T
C
G
C
G
T
T
G
G 

G
T
A
C
T
C
C
T
C
G
G
C
G
T
G
T 

A A T G C C C A G T G T T C G T 

A T A A C G G T A T C G C G G 

G G T C A C A A G C A 

C C A T A G  C G C C      

T G A T G A G T A C C A C G T G 

G G G C T C A G T G A A T T C 

G
G
T
A
G
C
A
T
C
C 

A
C
C
G
T
T
C
T
A
G
G 

A
C
T
T
C
A
C
T
G
G 

C C C G A G T C A C 

T
G
C
C
T
G
G
C
A
A
G 

A C T A C T C A T G G 

G C T A G G A T C G T 

G
G
A
G
C
C
G
C
A
C
A 
 

C
A
G
C
G
C
A
A
C
C 

A
C
G
G
A 
C
C
G
T
T
C 

C
C
A
T
C
G
T
A
G
G 

T
C
T
G
C
C
G
T
A
C
A 

A
G
A
C
G
G
C
A
T
G
T 

C
C
T
T
C
G
G
T
T
C 

G
G
A
A
G
C
C
A
A
G
T
A
G
C
T 

T
G
G
C
A
A
G
A
T
C
C
T
C
G
A
A 

T
G
A
A
G
T
G
A
C
C 

A C T A G C C T T G C 

C C A A C G G A G T 

G G T T G C C T C A 

T G A T C G G A A C G A C T C C A G A G G 

T G A G G T C T C C 

C G A T C C T A G C A 

T 
T 

T 

T 
T 

T 

T 

T 

T 

T 

T 

T 
T 

T 

T 
T 



 

 80 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
T
T
A
C
G
T
C
G
C
G
T
T
G
G 

G
T
A
C
T
C
C
T
C
G
G
C
G
T
G
T 

A A T G C C C A G T G T T C G T 

A T A A C G G T A T C G C G G 

G G T C A C A A G C A 

C C A T A G  C G C C      

T G A T G A G T A C C C A C G T 

G G G C T C A G T G G A A T T 

G
G
T
A
G
C
A
T
C
C 

A
C
C
G
T
T
C
T
A
G
G 

A
C
T
T
C
A
C
T
G
G 

C C C G A G T C A C 

T
G
C
C
T
G
G
C
A
A
G 

A C T A C T C A T G G 

G C T A G G A T C G T 

G
G
A
G
C
C
G
C
A
C
A 
 

C
A
G
C
G
C
A
A
C
C 

A
C
G
G
A 
C
C
G
T
T
C 

C
C
A
T
C
G
T
A
G
G 

T
C
T
G
C
C
G
T
A
C
A 

A
G
A
C
G
G
C
A
T
G
T 

C
C
T
T
C
G
G
T
T
C 

G
G
A
A
G
C
C
A
A
G
A
G
C
T
A 

T
G
G
C
A
A
G
A
T
C
C
T
T
C
G
A 

T
G
A
A
G
T
G
A
C
C 

A C T A G C C T T G C 

C C A A C G G A G T 

G G T T G C C T C A 

T G A T C G G A A C G A C T C C A G A G G 

T G A G G T C T C C 

C G A T C C T A G C A 

T 
T 

T 

T 
T 

T 

T 

T 

T 

T 

T 

T 
T 

T 

T 
T 



 

 81 

Figure 6. Schematic of 4x4 DNA cross tile with DNA sequences for both tile one (A) and tile 

two (B) as given in Figure 1. 

 
We ordered the DNA sequences (Table 2B) from Eurofins MWG Operon.  All DNA 

sequences were ordered wet at 75 µM, meaning that upon delivery the DNA sequences had 

already been suspended in liquid at an equal concentration of 75 µM.  The core and four shell 

strands were ordered with an additional purification method, known as HPSF (High Purity Salt 

Free), to favor sequences of full length.  The arm strands were not ordered with additional 

purification steps, because shorter DNA sequences are less likely to be synthesized incorrectly.  

As mentioned in Chapter III, error rate and uncertainty are limitations when computing with 

DNA.  I diluted the DNA sequences to 7.5 µM and stored at -20°C.  

 

Step Two: Assembly of Individual 4x4 DNA Cross Tiles 

To assemble one 4x4 DNA cross tile, we mixed all 9 strands (1 core, 4 shell and 4 arm) 

together in equal stoichiometric ratios into a final concentration of 1 µM in a 30 µL solution (Li, 

2008).  The 30 µL solution also contained 20 mM Tris pH 7.6, 2 mM EDTA and 12.5 mM 

MgCl2  (Li, 2008).  Tris buffers pH of the solution and EDTA buffers Mg2+ ions.  The Mg2+ ions 

neutralize the negatively charged phosphates in DNA, facilitating annealing to form the 4x4 

DNA cross tile shape (Kuzuya et al., 2010).   

 We used a thermal cycler to control the temperature of the 30 µL solution containing all 9 

DNA strands.  The temperature gradient, programmed into the thermal cycler, controlled the 

step-wise assembly of the 4x4 DNA cross tile by exposing all 9 strands to their respective 

melting temperatures at different time points.  Initially we programmed the thermal cycler, in a 

program called temperature cycle 0 (TC0), to linearly decrease from 90-20°C with a step-down 



 

 82 

of 0.1 degrees every 67 seconds between 90-47°C and between 38-20°C.  The time spent 

between 47-38°C was lengthened to be 3 minutes and 25 seconds.  The run time of the TC0 was 

approximately 16 hours.  Temperature cycle 0 stayed at 90°C for 10 minutes and then began the 

step down (Figure 7).  The initial 90°C exposure denatured any pre-existing secondary structure 

within the DNA strands.  

 

 

Figure 7. Graph depicting the general 

trend of temperature zones for the step-

down in temperature cycle 0 (TC0).  

 

 

As shown in Table 2B all of the annealing temperatures (46-39°C) fall within the 

temperature step-down of the temperature cycle 0 (TC0) step-down.  As the thermal cycler 

reaches the melting temperature of a particular DNA strand, that strand should anneal its 

complementary strand.  Annealing of specific DNA strands will continue in a step-wise fashion 

until annealing temperatures have been reached for each of the 9 strands.  The cooling time 

between 46 and 39°C is slowed, meaning that the amount of time spent at each step-down is 

longer when compared to the amount of time spent at each step-down between 90 and 47°C and 

38 and 20°C.  Lengthening time spent at each temperature step-down within this temperature 

zone (46 to 39°C) facilitates more DNA strands annealing and forming structures.  In order to 

ensure that the tiles did not degrade, we stored tiles after assembly in a 4°C refrigerator for no 

more than 7 days.   

Thermal Cycler Step Down: Temperature Cycle 0 (TC0) 
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To determine if 4x4 DNA cross tiles properly formed during TC0, we ran the products on 

a 10% non-denaturing TBE polyacrylamide gel (Figure 8).  The pores in polyacrylamide gels are 

smaller compared to agarose gels. A piece of DNA migrates on a gel based on its mass and 

shape.  When pore sizes are smaller, shape has a greater affect on migration because larger 

shapes cannot move through the small pores (Stellwagen, 2009).  Therefore polyacrylamide gels 

are best for separating DNA based on shape and size.  Lane 1 in Figure 8 represents a 50 bp 

molecular weight marker (Zymo Research ready-to-load 50 µg /600 µL DNA marker).  I added 4 

µL loading dye (1X TBE, 50% glycerol, 0.2% bromophenol blue and 0.2% xylene cyanol) to the 

10 µL of the original 30 µL DNA mixture before loading the DNA.  I ran the gel at 100V/13mA 

for 1 hour and post-stained (81.5µL solution of 1X TBE and 0.184 µg/ µL ethidium bromide 

concentration) for 17 minutes.   

 

 

 

 

 

 

 

 

 

 

 

 

500bp 

 

7/14/2010 
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Figure 8. A 10% non-denaturing polyacrylamide gel run to analyze successful step-wise 

assembly of individual 4x4 DNA cross tiles.  The step-wise assembly contents in each well is 

indicated by alternating schematics above or below a given well. Highlighted in yellow are 

unincorporated DNA strands, whereas complete 4x4 DNA structures are highlighted in red. The 

blue band in the MW marker highlights expected migration based solely on base pairings within 

the structure (~230bp).  Lane 14 (second to last) includes all 9 DNA strands but was not exposed 

to TC0.   

 

All products run on the gel were run through the TC0 thermal profile before loading, 

except for lane 14.  The successive addition of different strands shows a successful step-wise 

assembly of the 4x4 DNA cross tile because the bands shift upwards (increase in size) with the 

addition of new strands.  The bands in lanes 11-13 and 15 appear at the 500 bp mark.  The actual 

base-pair size of the 4x4 DNA cross tile is 230 bp (boxed in blue on the MW marked in Figure 

8), but because the structure is non-linear, it does not migrate as far on the gel.  Figure 8 

indicates that the 9 DNA strands form a complicated shape, providing evidence of successful 4x4 

DNA cross tile assembly.  Because smaller bands are also visible (outlined in yellow), not all of 

the DNA strands are annealing to form a 4x4 DNA cross tile; some strands remain 

unincorporated.  The yield of complete 4x4 DNA cross tile structures is not 100%.  In order to 

increase the likelihood of structure formation, we experimented with different temperature 

profiles for individual tile assembly (Figure 9).  We lengthened certain temperature zones to 

increase annealing time of certain DNA strands in order to favor strand incorporation.  
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Thermal Cycler Step Down: Temperature Cycle 2 (TC2) Thermal Cycler Step Down: Temperature Cycle 1 (TC1) 

A.          B. 

 

 

 

 

 

 

Figure 9.  Graphs depicting the general trend of temperature zones for the step-down in (A) 

temperature cycle 1 (TC1) and (B) temperature cycle 2 (TC2).  

 

The changes made to the thermal cycler temperature profiles shown in Figure 9 for both TC1 and 

TC2 were based on additional melting temperature analysis using a program called two-state 

melting hybridization.  In two-state melting hybridization, the two DNA strands are not required 

to be complementary (Markham and Zuker, 2005). In other melting temperature algorithms the 

melting temperature is computed for a given DNA strand and its exact complement.  Within the 

structure of the 4x4 DNA cross tile a strand is complementary to many different strands.  For 

example, instead of analyzing the melting temperature of a shell strand with its exact 

complement, two-state melting hybridization can calculate the melting temperature of a shell 

strand with two arm strands.  Melting temperature analysis of the chosen DNA sequences (Table 

2B) using two-state melting hybridization givens melting temperatures as shown in Table 3. 

 

Strand  TileDesigner TM (°C)  Two-state TM (°C) 
Core  45  43.3 

Shell 1  44  47.6 
Shell 2  43  55.3 
Shell 3  44  58.3 
Shell 4  46  56.5 
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1   2   3  4   5   6   7  8   9 10 11 12 

Table 3. Comparison of melting temperatures generated by TileDesigner and Two-state Melting 

Hybridization for the 5 main strands (core and 4 shell strands).   

 

Table 3 indicates (as highlighted in red) that some shell strands may be annealing at higher 

temperatures than predicted with TileDesigner.  With these data we re-designed the thermal 

cycler programs (Figure 9A and 9B), attempting to increase strand incorporation efficiency.  

In order to further separate complete 4x4 DNA cross tile structures from unincorporated 

strands, we used a PCR column clean-up kit.  PCR column clean-up is a technique used to 

separate small pieces of DNA using various buffers and a spin-column.  Using PCR column 

clean-up would collect larger pieces of DNA, individual tiles, within the spin column and discard 

the unincorporated smaller strands. We tested the effects of using TC1 and TC2 when compared 

to TC0 and the effects of PCR column clean-up on samples in another 10% TBE non-denaturing 

polyacrylamide gel  (Figure 10). 

  

 

 

 

 

 

 

Figure 10. A 10% TBE non-denaturing polyacrylamide gel analyzing effects of different step-

wise temperature programs (TC1 and TC2) as well as a procedural PCR column clean-up method 

on unincorporated strand concentration. Yellow lane numbers denote samples that were cleaned 

up prior to loading the gel. Red and green lane numbers were exposed to TC1 and TC2 

7/21/2010 
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respectively before loading. Lanes 4 and 5 represent a mixture of all 9 strands of tile one, 

whereas lanes 10 and 11 are all 9 strands for tile two.  Lanes 7 and 8 represent a mixture of the 

core and four shell strands.   

 

The cleaned-up MW marker (lane 2) served as a control verifying that the clean-up procedure 

was successful at eliminating smaller DNA pieces.  In lanes 3, 6, 9 and 12 no DNA was left, 

indicating that the clean-up procedure filtered the entire DNA sample and therefore was not 

useful.  TC1 and TC2 appear to produce similar amounts of tiles and unincorporated strands.  

Although a sample from TC0 was not loaded on this gel, comparison of relative band intensity 

between unincorporated strands (boxed in yellow) and complete 4x4 DNA cross tiles (boxed in 

red) indicates a decrease in unincorporated strands. TC1 and TC2 successfully increased strand 

incorporation as is evident by the decrease in unincorporated DNA strands.  I decided to proceed 

using the temperature cycle 1 (TC1) program for individual tile assembly, acknowledging that 

some unincorporated strands still existed, but recognizing that PCR purification was not helpful.   

 

Step Three: Multi-Tile Assembly 

Once we had evidence suggesting that individual 4x4 DNA cross tiles assembled properly 

(Figures 8 and 10), we began to mix together the two tiles (see Figure 1A) to solve one instance 

of complementary bounded tiling problem.  In a microfuge tube, we mixed equal amounts of tile 

one and tile two, keeping all solutions on ice to maintain 0°C and prevent tile degradation.  We 

conducted four experiments testing different environments for multi-tile assembly:  

1) Thermal cycler consistently at 25°C for 5 hours. 

2) Thermal cycler on a linear decrease from 25 to 4°C for 5 hours.   
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07/27/10 

1  2   3  4  5  6   7  8  9 

 

3) Water bath at 42°C over 7 hours to room temperature.  

4) Water bath experiment increasing MgCl2 to 13.75 mM from 12.5 mM.  Increasing the 

Mg2+ ion levels enhances the ability of the negatively charged DNA tiles to interact.   

After these procedures, we maintained all mixtures at 0-4°C until we added loading dye and ran 

them on a 4-20% TBE non-denaturing polyacrylamide gel for 1 hour and 40 minutes at 4°C.  We 

ran the gel in a 4°C refrigerator because the melting temperatures of the sticky-end tile 

interactions are below room temperature as indicated by two-state melting hybridization.  We ran 

at 100V/10mA and post-stained for 15 minutes.  Figure 12 indicates structures too large to enter 

the gel (highlighted in yellow), such as multi-tile lattice structures.   

 

Figure 12. A 4-20% non-denaturing TBE polyacrylamide 

gel indicating possible multi-tile assemblies (lanes 5-9) that 

are too large to enter the gel (highlighted in yellow). Lane 1 

and 2 are MW markers, 50bp and 1kb respectively. Lanes 3 

and 4 are tile one and tile two respectively, both assembled 

using TC1. Lanes 5-8 represent the different methods, in 

the same order as above, for mixing tile one and tile two 

together. Lane 9 is a mixture of tile one with only the arms 

of tile two.  

 

In Figure 12 all tile one and tile two mixtures (lanes 5-8) appear to indicate a tiling structure that 

is too large to enter the gel regardless of the mixing method used.  The different methods for 

multi-tile assembly as described above (lane 5: method 1, lane 6: method 2, lane 7: method 3, 
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lane 8: method 4) do not appear to effect multi-tile formation as the same amount of DNA did 

not enter the gel. 

 With the evidence above, Dr. Chris Dwyer, associate professor in the Department of 

Electrical & Computer Engineering and the Department of Computer Science at Duke University 

allowed me to come and work with his PhD. student, Viresh Thusu, to image possible multi-tile 

DNA lattice formations using their AFM (atomic force microscope).  Before I traveled to Duke 

University, on September 30, 2010, I re-ran the multi-tile lattice formations evidenced in Figure 

12.  Unfortunately, I did not see the same results (Figure 13).  

 

 

 

 

 

 

 

 

Figure 13. A 5% non-denaturing polyacrylamide gel. Lane 1 is the 50 bp MW marker.  Lanes 2-

6 are individual 4x4 DNA cross tiles and lanes 7 and 8 are mixtures of tile one and tile two, 

annealing at 25°C consistently for 5 hours and then 4°C overnight.  No evidence of structures too 

large to entire the gel exists. 

 

 Further testing of the above samples indicated DNA degradation.  Between the time the 

original gel (Figure 12) was run on 7/27/2010 and the new verification gels were run (Figure 13) 

on 9/19/2010, the stock DNA samples had significantly degraded (Figure 14).  DNA, especially 

Individual Tiles Mixture 

9/19/2010 
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short single-stranded molecules of DNA, can degrade over time a short amount of time if stored 

improperly or at a low concentration (as later noted by Duke graduate student Viresh Thusu).  

The DNA sequences used to assemble the 4x4 DNA cross tile are single-stranded, many of them 

are short, and most are stored at low concentrations.  Degraded DNA decreases the probability of 

accurate 4x4 DNA cross tile formation due to the lack of complete and accurate DNA sequences.   

 

 

Figure 14.  Double-decker 2.5% agarose gel run to 

determine degradation of stock DNA sequences.  

Equal amounts of each strand (core in red, shells in 

blue and arms for both tiles in yellow) were run.  

 

 

 

In Figure 14 every band should be the same intensity because stock DNA samples were 

originally the same concentration and equal amounts were loaded.  Also, band migration should 

be the same for the shells strands (highlighted in yellow) and the same for the arm strands 

(highlighted in blue).  Not only does intensity drastically differ, but band migration also slightly 

differs, indicating degraded DNA.  Due to the degradation of DNA, I traveled to Duke 

University with samples for which I did have gel evidence of multi-tile lattice formation.  The 

images did not reveal any multi-tile lattice structures, possibly due to strand degradation.  

However, I did receive four tips from researchers at Duke, which I have begun to integrate.  
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1) Model an instance of the complementary bounded tiling problem that can form large 

sheets of 4x4 DNA cross tiles.  The researchers at Duke indicated that smaller multi-tile 

lattice structures are harder to see with atomic force microscopy.  

2) Store DNA aliquots at -80°C to decrease chances of degradation. 

3) To facilitate multi-tile lattice formation, expose a sample of mixed tiles to room 

temperature for 5 hours and subsequently store at 4°C overnight.  

4) Use the Nanodrop to detect changes between solutions with individual 4x4 DNA cross 

tiles and presumed multi-tile lattices.  Increased absorption readings between the two 

indicates that larger multi-tile lattices formed because more double-stranded DNA exists 

in multi-tile lattices.  

 

To implement suggestion #1, I designed a new tile set for a new instance of the complementary 

bounded tiling problem (Figure 15).   The instance below does not test corrugation likelihood, 

but different tile combinations would lead to drastically different tiling patterns.  For instance, if 

tile three (Figure 15) were the only tile used, a vertical/horizontal line tiling pattern would be 

predominant (Figure 16).  Tile three mixed with tile four would form a large partially complete 

tiling pattern (Figure 17).   

A.         B. 

 

 

 

Figure 15. The tile set for the new instance of the complementary bounded tiling problem.  The 

two tiles (A) and their reflections (B). 

Tile Three Tile Four 
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A.      B. 

 

 

 

 

 

 

Figure 16. (A) Tile three as represented in the MATLAB simulation referenced in Chapter V. 

(B) Three different tiling patterns for tile three including reflections run using sporadic_growth.  

All three show horizontal or vertical tiling patterns.   

A.         B. 

 

 

 

 

 

 

Figure 17. (A) Tile four (B) Three tiling patterns for tile three and tile four run using 

sporadic_growth.   All three show large lattice formations compared to tile three in Figure 16. 

 

Equipped with a new instance of the complementary bounded tiling problem, I ordered new 

DNA strands from Eurofins MWG Operons.  I utilized the same sequences, interchanging only 

the sticky-end components to align with the new instance (Figure 18) 
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Figure 18. Schematic of 4x4 DNA cross tile with DNA sequences for both tile three (A) and tile 

four (B) as given in Figure 15. 

 

I ordered DNA samples dry, so that I could control dilutions.  Once I received the DNA 

sequences, I diluted twenty-five aliquots of each strand to 1.67 µM and stored in the -80°C 

freezer to slow degradation.  I began experimentation to assemble the new 4x4 DNA cross tiles 

and mix such tiles together.  I had similar success in individual tile assemble, which can be seen 

in the lanes containing only individual tiles in Figure 19.  With similar evidence suggesting 

successful individual tile assembly, I began multi-tile assembly.  In addition to running mixtures 

of tile three and tile four using PAGE (polyacrylamide gel electrophoresis; Figure 19), I also 

gathered data on absorbance readings for samples before and after multi-tile assembly (Table 4).  

Both methods to determine multi-tile assembly indicated that I was unsuccessful in forming 

multi-tile lattices.   

 

 

 

 

 

 

 

Figure 19. A 5% non-denaturing polyacrylamide gel. Lane 1 is the same 50 bp MW marker 

(note that this gel was run longer than the others and the 50bp marker is off of the gel so the 

  1     2     3    4     5     6    7     8    9    10 
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marker begins at 100bp).  The lanes highlighted in yellow are individual tiles, whereas the lanes 

highlighted in red are mixtures between tile three and four.  I loaded no DNA into lane 7.   

 

The 5% non-denaturing TBE gel pictured in Figure 19 tests two identical mixture 

samples of tile three and tile four after annealing procedures (exposure to room temperature for 5 

hours and 4°C overnight; lanes 6 and 10 in red).  In lane 10 there appears to be a structured that 

will not enter the gel, but I should have seen the same in lane 6, which does not appear.  Also, 

analysis of absorbance readings indicates no statistical difference (Table 4).  For the same 

samples run on the gel in Figure 20, I recorded the respective absorbance readings using 

Nanodrop.   

 Average Nanodrop 
Reading Before 

Multi-tile 
Assembly 

Average Nanodrop 
Reading After 

Multi-tile 
Assembly 

Difference p-value 

Mixture in Lane 6 
(Tile 3 and Tile 4) 

0.235 0.326 0.091 0.1336 

Mixture in Lane 10 
(Tile 3 and Tile 4) 

0.346 0.359 0.013 0.355 

 

Table 4. Table indicating for both mixtures (lanes 6 and 10) the average absorbance reading both 

before and after multi-tile assembly.  The respective p-values indicate a lack of statistical 

difference between both the before and after readings for each mixture.  

 

Out of three sample points for the mixture between tile three and tile four run in lanes 6 and 10 in 

Figure 19 respectively, the average absorbance before multi-tile lattice formation was 0.235 and 

0.346.  Average absorbance readings after overnight storage in 4°C refrigerator for lanes 6 and 

10 respectively were 0.359 and 0.326 (Table 4).  This difference is not statistically significant as 

observed by the p-values, although this is probably due to the few number of replicates.  During 
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my visit at Duke, Viresh indicated that the increase we should observe from Nanodrop readings 

between individual tiles and tile lattices is drastic, whereas the above p-values indicate that there 

is no statistical difference between the two readings. The lack of increase in absorbance readings 

suggested that larger multi-tile lattices were not forming.  These two sources of data indicated 

that I had not assembled multi-tile DNA lattices and therefore had not assembled potential 

solutions to the complementary bounded tiling problem.  

 Analysis of my results indicated two main reasons why I was unable to form multi-tile 

lattice formation. 1) Individual tile structures may not be forming as expected, preventing larger 

structures from forming.  2) The sticky-ends may not produce a stable thermodynamic 

interaction to maintain multi-tile lattice formation.  Most research conducted with 4x4 DNA 

cross tiles uses only two tile types with the knowledge that both tile types are identical and will 

occur in a regular repeating pattern.  The increased randomness encoded within instances of the 

complementary bounded tiling problem might prevent stable and large structure formation.  

Although I have yet to show that multi-tiles can assemble to solve the complementary bounded 

tiling problem, the methodology still appears to be viable for DNA computation.  I have various 

suggestions for further research numbered below. 

1) Conduct melting curve analysis of individual tiles by measuring absorbance change upon 

thermal denaturation.  Previous research indicates a unique melting curve of the 4x4 

DNA cross tiles (Li, 2008).  Cross-referencing my analysis with previous research would 

help verify individual tile assembly.  

2) Use temperature-dependent FRET (fluorescence resonance energy transfer) spectroscopy 

to analyze multi-tile lattice formation.  Recently, researchers successfully demonstrated 

unique curves using temperature-dependent FRET for multi-tile 4x4 DNA cross tile 
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lattices.  Researchers indicated that studying absorbance changes for multi-tile assemblies 

presents unique challenges because “the amplitude of the absorbance change for the 

dissociation of sticky ends (usually only 5–10 nucleotides long) is overshadowed by the 

much larger absorbance change resulting from the dissociation of the core of the DNA 

tile” (Nangreave et al., 2009).  FRET analysis measures the proximity of fluorescence 

probes attached to the sticky-ends of various tiles allowing Nangreave et al. to more 

accurately quantify absorbance changes between individual tiles and multi-tile lattices.  

The research findings of Nangreave et al. indicate that the lack of statistical difference 

between absorbance readings seen in Table 4 may not accurately suggest failed multi-tile 

assembly.  Therefore, conducting temperature-dependent FRET analysis would more 

concretely verify potential multi-tile assembly.  

3) Re-analyze melting temperature studies across a wider range of predictive programs to 

ensure thermal profiles maximize the specific annealing patterns of the 4x4 DNA cross 

tile.  Include the original SEQUIN program for strand analysis. 

4) Reassess problems of DNA degradation, buffer and Mg2+ concentrations, including 

experimentation with TBE versus TAE.   

5) Select sticky-ends that previous researchers have determined to be the most 

thermodynamically stable, disregarding the initial selection for sticky-ends with 

restriction enzyme sites.  If tile formation does not occur using new sticky-ends, design 

two 4x4 DNA cross tiles that other researchers have shown can successfully assemble.  

Use these replicas of previously tested 4x4 DNA cross tiles to test my protocols and 

methodology.   



 

 99 

6) With successful lattice formation, expose potential lattices to combinations of restriction 

enzymes. Recall that I engineered the sticky-ends to form restriction enzyme sites if 

multi-tile lattices formed.  Exposing multi-tile lattices to restriction enzymes could 

produce lattices of different sizes.  I would like to observe via PAGE potential changes in 

individual tile band intensities between mixtures that have and have not been exposed to 

restriction enzymes.  Restriction enzymes should cut apart the sticky-ends holding the 

individual tiles together. Therefore, mixtures exposed to restriction enzymes should show 

increased individual tile band intensities when compared to mixtures not exposed to 

restriction enzymes. 

7) Engineer annealed sticky-ends to form a binding site for a protein or probe.  If two 

annealed tiles could bind a protein, a Western Blot analysis of DNA mixtures would 

indicate the presence of the protein only if the DNA tiles successfully annealed, forming 

the binding site.  A fluorescently labeled DNA probe with greater specificity to the 10-

nucloetide sequence would decrease the potential for protein partial recognition and 

binding.   

8) Expose multi-tile mixtures to pulse-chase gel electrophoresis.  Pulse-chase gel 

electrophoresis uses multiple currents to attract negatively charged DNA in different 

directions, producing lateral and vertical movement of DNA molecules through a gel.  

The combination of different currents pulls large pieces of DNA into the gel. This 

technique may be used to pull the large DNA lattices into the gel, allowing potential 

multi-tile visualization without using an AFM. 

The eight suggestions above are listed by priority and are not exhaustive.  Previous success of 

controlled 4x4 DNA cross tile lattice formation indicates potential for my computational design 



 

 100 

to assemble correctly. These suggestions will help shape my next steps in solving the 

complementary bounded tiling problem using 4x4 DNA cross tiles. 
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Conclusions 

My research took a novel structural approach using bionanotechnology concepts to solve 

the NP-complete complementary bounded tiling problem.  I made contributions in the field of 

mathematics by contributing a succinct definition of the complementary bounded tiling problem.  

The proof that the complementary bounded tiling problem is NP-complete was never formally 

written before my thesis.  I was the first to write and analyze an algorithm to prove that the 

complementary bounded tiling problem is in NP. The MATLAB simulation has powerful 

predictive possibilities when studying tiling patterns forming from different instances of the 

complementary bounded tiling problem.  To my knowledge, no one has simulated tiling 

problems in such a manner.  Therefore, the MATLAB program is a first-of-its-kind predictor for 

tiling problems such as the complementary bounded tiling problem.  I would like to submit it for 

publication in collaboration with Dr. Heyer.  

Although I faced obstacles in the biological assembly of the 4x4 DNA cross tiles, using 

such a structural approach still has promise.  There are more obstacles and considerations to 

overcome, including the limitations on defining tile locations within the solution, defining a 

bounded region biologically, and difficulties ensuring assembly of multi-tile lattices in the first 

place.  Although 4x4 DNA cross tiles have been previously studied, my research is the first of 

my knowledge to use such tiles to solve computational problems.  In addition, my investigations 

into corrugation frequency are necessary for the field of bionanotechnology to proceed with 

assumptions about the interactions of DNA cross tiles.  I have made various suggestions for 

future experimental directions in Chapter VI.  Overall, the basics of my research continues to 

show promise as a structural approach to DNA computation but require more time to ensure 

accuracy and stability.   
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Appendix 

Basic MATLAB code for checking candidate solutions to the Scramble Square problem in P: 

%if the solution is a square, then it is the Scramble Square problem 

if (xDim==yDim) 

 %calculate the total number of touching edges that must be checked 

 totalSides=xDim*(xDim-1)+xDim*(xDim-1) 
         

 %create matrix A 

 A=zeros (xDim*(xDim-1)+xDim*(xDim-1), nInSolution*4)  

 

 %test top and bottom edges of the square 

a=3;  

b=1+4*xDim; 
 

for i=1:xDim*(xDim-1)  

A(i,a)=1;  

A(i,b)=1; 
 

  %redefine the edges that need to be checked  

a=a+4;  

b=b+4;  

        end 
 

%test left and right edges of the square  

%when you reach the end of a row in the tiling solution, you must jump 

a=2;  
 

for j=(xDim*(xDim-1))+1:2*xDim*(xDim-1)  

jump=0;  

if rem (j,sqrt(nInSolution)-1)==0;  

jump=4;  

end 
 

A(j,a)=1; 

A(j,a+6)=1; 
 

a=a+4+jump;  

end 
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%multiply the matrix A by the inverse of the given vector, V 

if (A*V'== zeros(xDim*(xDim-1)+xDim*(xDim-1),1))  

             'Congratulations, you found a solution!!:-)' 

         else  

             'Sorry, try again!' 

         end  

end 
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Basic MATLAB code for checking candidate solutions to the complementary bounded tiling 

problem in P: 

%Recall that the bounded region can be different shapes for the complementary bounded tiling problem 

 

%the bounded region is a horizontal chain 

if(yDim==1) 

A=zeros (nInSolution-1,nInSolution*4); 

%only need to check left and right 

a=2; 

b=8; 

for i=1:(nInSolution-1)  

A(i,a)=1;  

A(i,b)=1;  

a=a+4;  

b=b+4;  

end 
 

if (A*V'== zeros(nInSolution-1,1))  

'Congratulations, you found a solution!!:-)' 

else  

'Sorry, try again!' 

end 

end 

 

%the bounded region is a vertical chain     

if(xDim==1) 

A=zeros (nInSolution-1,nInSolution*4); 

%only need to check top and bottom of the squares  

a=3; 

b=5; 

for i=1:(nInSolution-1)  

A(i,a)=1;  

A(i,b)=1;  

a=a+4;  

b=b+4;  

end 
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if (A*V'== zeros(nInSolution-1,1))  

'Congratulations, you found a solution!!:-)' 

else  

'Sorry, try again!' 

end  

end 

 

%the bounded region is a rectangle, where the horizontal is longer  

if (xDim>yDim) 

A=zeros (nInSolution+1,nInSolution*4);  

%check edges on top and bottom of the squares 

a=3; 

b=1+4*xDim; 

for i=1:(xDim*(yDim-1)) 

A(i,a)=1;  

A(i,b)=1;  

a=a+4;  

b=b+4;  

end 
 

%right and left of the squares 

a=2; 

indicatorTwo=1;  %tells you when you need to jump 

for j=(xDim*(yDim-1))+1:nInSolution+1 

jump=0;  

if indicatorTwo==xDim-1;  

jump=4;  

end 
 

A(j,a)=1; 

A(j,a+6)=1;  

a=a+4+jump;  

indicatorTwo=indicatorTwo+1; 

end 
 

if (A*V'== zeros(nInSolution+1,1))  

'Congratulations, you found a solution!!:-)' 

else  

‘Sorry, try again!' 
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end  

end 

%rectangle in the other, verticle, direction 

if (yDim>xDim) 

A=zeros (nInSolution+1,nInSolution*4);  

a=3; 

b=1+4*xDim; 

%top and bottom squares   

for i=1:(yDim-1)*xDim 

A(i,a)=1;  

A(i,b)=1;  

a=a+4;  

b=b+4;  

end 
         

%right and left edges 

a=2; 

for j=((yDim-1)*xDim)+1: nInSolution+1 

jump=0;  

if rem (j,xDim-1)==0;  

jump=4;  

end 

A(j,a)=1; 

A(j,a+6)=1;  

a=a+4+jump;  

end 
          

if (A*V'== zeros(nInSolution+1,1))  

'Congratulations, you found a solution!!:-)' 

else  

'Sorry, try again!' 

end  

end 

 

%if the solution is a square, then do the same as the Scramble Square code above 

 


