Breast cancer predisposing mutations: protein structural implications
The molecular structures may only be viewed when Chime is installed as a plug-in. To highlight described properties click the boxes . You may move and explore through the molecules anytime with the mouse.
Color code:
BRCA1 · BARD1 · site I · site II · Zn · helices · sheet
The breast cancer susceptibility gene BRCA1 codes for a 1863 amino acid protein involved in gene regulation processes following DNA damage. A variety of mutations in BRCA1 predispose for breast and/or ovarian cancer or prostate cancer (Tavtigan et al., 1998). The structural implications of some of these mutations became evident once the structure of an essential part of the protein was elucidated.
Proteins in biochemical conditions which not favour disulfide bonds have to rely in other means to stabilize their structure. The BRCA-protein contains a RING domain which creates a loop structure by binding two zinc atoms by eight amino acids, where the binding sites are interwoven (Venikataram, 2002).
In site I four cysteines are bound to
the zinc atom via their sulfur atoms,
in site II one cysteine is replaced by histidine
binding via a nitrogen atom. Site
II has a somewhat lower affinity for zinc
than site I . In most patients, it was discovered
that cancer-predisposing mutations in this domain of BRCA1
maped to cysteines 61 or 64 at site II, the cysteines
are then replaced by glycine which cannot contribute to zinc
binding
(Brzovic et al., 2001).
In mutant proteins there is an enhanced proteolytic sensitivity, which reflects
the resulting local destabilization previously mentioned. The wild type form
of BRCA1 is either a homodimer
or forms a heterodimer with a structurally similar protein,
BARD1. Dimerization of the domains occurs by the interaction
of helices adjoining to the RING
motifs to form a four-helix bundle
(Venkitaraman, 2001). This dimerization however is not disturbed by
either a C61G or a C64G mutation. The surface at the bottom of the heterodimer
complex (including site II
) however is implicated in protein interaction needed for the
ubiquitination pathway following DNA damage: The RING domain of BRCA1
exhibits an ubiquitin ligase activity (which is enhanced by complexing with
BARD1). Mutations exchanging either
of the zinc complexing
cysteines in site II abolish this activity. The
RING domain of BRCA1 also interacts
with a de-ubiquitinating enzyme the mechanism of which is not yet clear. The
ubiquitine-dependent protein turnover of a cell with mutated BRCA1
seems to be heavily disturbed in several ways (Brzovic et al.,
2001).
Some single occurences of amino acid substitutions in cancer patients were found in the helices forming the dimerization interface (the original amino acids are shown here together). Until today, no cancer related amino acid substitutions were found in BARD1. It is to note that BARD1also has a RING domain flanked by the helices used for dimerization with BRCA1. The structure of the RING motif resembles exactly that of the counterpart in BRCA1 (Brzovic et al., 2001).
RESTART
References:
Visit Davidson College Biology Department Home Page
Visit Molecular Biology Home Page
© Copyright 2005, Department of Biology, Davidson College, Davidson,
NC 28036
Send comments, questions, and suggestions to: Daniela
V. Alvarez