
SI Appendix 

 

1. PCR primers used in promoter construction 

 

The newly designed promoters used in this study are listed in Table S1 (see also Fig. 1). 

Promoter D12 was constructed previously (1). 

 

 

 

Table S1. PCR primers used in promoter construction. Each promoter is listed in the far 

left column (see Fig. 1). This is followed by the template used in each indicated PCR 

reaction in the next two columns. Plasmid pESC-LEU (Stratagene) contained the wild-

type GAL1 promoter sequence. Primers used to insert tetO2 operator sites in different 

locations in the GAL1 promoter are listed for both the upstream and downstream 

fragments, which were ligated together following PCR reaction 2 into plasmid pRS4D1 

backbone. All primer sequences are in 5' to 3' orientation. Forward primers are listed 



above reverse primers for each reaction pair. Primers with 5' phosphate groups used in 

subsequent blunt-end ligations are indicated. Restriction sites within primers are 

indicated by bold lettering, and bases of tetO2 sequence are in red. The upstream 

fragment forward primer differed for construction of several promoters. A forward primer 

with an AgeI site was used in S1, S2, S3, and D23 promoter construction, while this 

primer was replaced with one containing an EcoRI site for D13 and T123 promoter 

construction. The downstream fragment reverse primer differed for S2palindrome and 

S2random, and contained a BamHI site. The altered sequence in each promoter is 

indicated in green. Promoter D12 was constructed previously (1). 

 

2. Generic model for the single and multiple operator-containing promoters 

 

We used the generic scheme shown in Fig. S1 to model the induction of the single and 

multiple operator-containing promoters. We considered three promoter states in our 

model: repressed (R, TetR bound), neutral (N, neither TetR nor TBP bound), and active 

(A, TBP and some general transcription factors bound), as well as the production and 

degradation of mRNA (M) and protein (P). 
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Figure S1. General scheme for modeling the single and multiple operator-containing 

promoters. 

 

In the steady-state approximation, based on mass-action kinetics and detailed balance, the 

following set of equations describes the system shown in Fig. S1 (i = 1, 2 or 3 

corresponds to promoter Si): 
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0=−= iiiii RNrR ρ&  (S2) 

 

0=−= iiiii ANaA α&  (S3) 

 

0=−+= iiiii MmARM µλ&  (S4) 

 

0=−= iii PpMP π&  (S5) 

 

Most rates in the model were assumed to be independent of the inducer concentration I, 

except the rates of transition between states Ni and Ri and the basal expression rate λi. 

Specifically, we assumed that the de-repression rate ρi (from state Ri to state Ni) depends 

on the concentration of inducer I as 
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because inducer molecules relieve repression by associating with DNA-bound TetR (2). 

The inducer molecules can also bind to free repressors, reducing their number according 

to the equation 

 

)(
)(

If

T
IF = , (S7) 



 

where T is the total repressor concentration, while 21)( IIIf ++= . Therefore, the 

repression rate ri (from state Ni to state Ri) depends on the concentration of free repressor 

F as 
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Using Eqs. S1-S5, we calculated the equilibrium protein concentration, which depends on 

the concentration of the promoter states Ai and Ri from which mRNA is created: 
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In Equation (S9), )1( ILiii +Λ=λ describes the basal expression from the repressed state 

R. After using the constraint DANR iii =++  (i.e., the total DNA concentration is 

constant), the concentration of promoter states can be calculated as 
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For simplicity, we assume D = 1. From here, the protein concentration is: 
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At full induction, none of the repressor molecules are free, and therefore the repression 

rate 0≈ir . This implies that the protein concentration at full induction is 
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The rates of transition between states Ni and Ai, ai and αi, varied from promoter to 

promoter, to reflect the differences in protein expression at maximum induction ( max

iP ). 

Our experiments indicate that repressor binding does not contribute to protein expression 

at maximum induction (see the main text). Therefore, we attributed these differences to 

the sequence-dependent binding efficiency of general transcription factors and 

preinitiation complex (PIC) assembly. 

 

At full repression (I = 0), we have 0=iρ . Therefore, the equilibrium protein 

concentration at full repression is 
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Finally, after introducing the notation in
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concentration Pi: 
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According to these calculations, the the fitting parameters vi, Li and ni relate to the 

inducer concentration I, the total repressor concentration T and the kinetic parameters 

shown in Fig. S1 (and in Fig. 3 in the main text) as: 
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The parameters vi and ni together determine the inducibility of the promoter (the response 

of the promoter to intermediate inducer concentrations). Theoretically, ni represents the 

number of inducer molecules necessary to relieve repression. The parameter Li 

determines the slope of the dose-response curve at low levels of induction. 

 

Admittedly, we were unable to assign a mechanistic, molecular-level interpretation to our 

fitting parameters. Because the TetR repressor can accommodate the binding of a 

maximum of two inducer molecules, the high slope of the dose-response curve (Hill 

coefficient h = 6.67, see Table S2) that decreases as a single repressor site is moved away 

from the TATA box is inconsistent with two or one inducer molecules relieving 

repression. Similarly, the Hill coefficient of the promoter D12 was too high (h = 11.13, 

see Table S2) to allow for a molecular-level interpretation. The maximum Hill coefficient 

consistent with a single repressor binding site is h = 4, while the maximum Hill 

coefficient consistent with two repressor sites is h = 8. 

 

3. Parameters used in the generic model 

 

We assigned generic values available from the literature to a subset of our parameters, as 

follows: 

 

m = 10.0, rate of transcription initiation in galactose-grown yeast (3); 



 

µ = ln(2)/1, rate of mRNA degradation (3); 

 

P = 1, translation rate; 

 

π = ln(2)/180, protein degradation rate; 
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In our simulations, we considered the average yeast cell volume, 50 µm
3
 (6), as a unit. 

Therefore, with appropriate choice of units, concentrations become equivalent to copy 

numbers per cell, and reaction rates become numerically equal to reaction probabilities 

per unit time (7). Although time is measured in “arbitrary units”, the known reaction rates 

are approximately set to their values in minutes, so the time scale for all of the resulting 

dynamics might be interpreted approximately in minutes. 

 

The expression (S14) contains three unknown parameters — vi, Li and ni— that were 

estimated by nonlinear minimization using the Nelder-Mead algorithm (fminsearch, 

Matlab) and the maximum and minimum expression levels (P
max

 and P
min

) for each of 

our eight promoters (Table S2). 

 

 WT S1 S2 S3 D12 D13 D23 T123 

P
max 

1458±25 1461±22 855±10 1694±33 1039±64 1565±124 1235±68 1357±29 

P
min 

1458±25 21.2±0.5 50±2 637±22 6.29± 0.01 18±1.2 76±2.4 3.58±0.09 

v N/A 0.0091 0.0042 0.0043 0.0111 0.0118 0.0073 0.0073 

L N/A 0.0556 0.0310 0.0312 0.0077 0.0579 0.0328 0.0211 

n N/A 6.4451 4.1577 3.1855 9.7572 7.8272 5.6028 5.5897 

 

Table S2. Parameters used in modeling the promoters WT, S1, S2, S3, D12, D13, D23 

and T123. 

 



Using a terminology adapted from Hill functions, the parameters vi and ni together 

determine the induction threshold and slope of the dose-response function at high levels 

of induction, while Li determines the slope of the dose-response function at low 

induction, due to basal expression from the repressed promoter state (Fig. S2). 

 

 

 

 

 

 

 

 

Figure S2. The effect of the parameters vi, Li and ni on the dose-response function. The 

magenta line corresponds to the parameters used to fit the experimental data from 

promoter S1. 

 

4. Stochastic simulation of promoter dynamics 

 

We applied stochastic simulations to model the dynamics of the PGAL1* promoter, using a 

Perl wrapper written around the software Dizzy (8), setting the extracellular 

anhydrotetracycline (ATc) concentration to the desired value. We allowed the system to 

reach steady state and estimated the mean, standard deviation and noise over a long time-

course (50000 time units). We then calculated the error in the mean, standard deviation 

and noise by repeating the simulation ten times. We chose to estimate the mean, standard 

deviation and noise over a long time-course (instead of over a population), assuming that 

the modeled processes are ergodic. To verify the ergodicity of the process, we also 

calculated the mean, standard deviation and noise over a population of 100 cells in steady 

state. The values we estimated over a single time-course did not differ from the values 

obtained over a population, validating our approach. 

 

Modeling gene expression noise by stochastic simulations requires additional parameters 

(actual reaction rates) compared to modeling the dose-response curve (which can be 
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analytically calculated from equilibrium constants). Below we show the actual transition 

rates between promoter states N ↔ A and N ↔ R that we used in all of our stochastic 

simulations, after estimating the scaling factors (sA = 0.25 and sR = 50) from the 

experimentally measured noise of the promoters WT and S1, respectively: 

 

α = 0.25, rate of promoter activation (4); 
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5. Predictability of dose-response and noise of the multiple operator-containing 

promoters 

 

To address the question whether multiple multiple operator-containing promoters are 

predictable based on single operator-containing promoters, we replaced the state R (see 

Fig. S1) with multiple repressed states, according to the number of repressors bound to 

the promoter in various positions. We quantified predictability by calculating the 

Euclidian distance between the experimental data and the theoretical fit. Using the 

generic model (Fig. S1), the distances between the experimental data and the theoretical 

fit were 0.5315, 0.2875, 0.1268, and 0.2014 for promoters D12, D13, D23 and T123, 

respectively. 

 

 

 

 

 

Aij Mij Pij 
mij p 

Nij 
aij 

αij 

µ 
Ri 

ρi 

rj Rj 

Rij 

ri 

ρj ρi 

ωijri 

ωijrj 

ρj 
π 

λi 

λij 

λj 



 

Figure S3: Chemical reaction scheme for modeling the double operator-containing 

promoter Dij. 

 

For a double operator-containing promoter Dij, three repressed states are possible (Fig. 

S3): two with each of the repressor bound individually (Ri and Rj), and one with both 

repressors bound (Rij). Based on chemical mass action and detailed balance, protein 

expression from the promoter Dij can be calculated as follows. 
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The interaction parameter ωij accounts for a possible stabilization (ωij>1) or 

destabilization (ωij<1) of repressors bound to the promoter Dij. If the repressors bind to 

the promoter independently, ωij = 1; while if they prevent each other from binding to the 

promoter, ωij = 0. Values ωij<0 might indicate the existence of additional transitions 

between promoter states, or the failure of the detailed balance assumption. 

 

Similar to the double operator-containing promoters, we developed a more detailed 

model for the triple operator-containing promoter, replacing the repressed state R by 

seven different states (Fig. S4). 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure S4: Repressed states for modeling the triple operator-containing promoter T123. 

 

Following a similar line of calculations as for the double operator-containing promoters, 

we obtain for promoter T123: 
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Assuming independent binding of repressors to their sites (ω12 = ω13 = ω23 = ω123 = 1), 

we estimated the parameters L12 ( = -0.0023), L13 ( = 0.079), L23 ( = 0.042), and L123 ( = 

0.498), and used the resulting chemical reaction scheme to calculate the noise as in the 

generic model (Fig. S1). The unrealistic, negative value of the parameter L12 suggests a 

decrease in basal expression as the inducer concentration increases, and causes the 

unusual shape of the theoretical induction curve for the triple operator-containing 

promoter (Fig. S5). Forcing the parameter L12 to take only non-negative values yields L12 

= 0, and improves the shape of the theoretical dose-response curve of the T123 promoter 

(results not shown). The distances between the experimental data and the theoretical fit 

increased compared to the generic model; they increased to 0.6220, 0.6912, 0.3923, and 

2.3398 for promoters D12, D13, D23 and T123, respectively. Taken together, the 

resulting dose-response curves and noise (Fig. S5) indicate that the behavior of multiple 

operator-containing promoters cannot be explained by a trivial superposition of 

independent repressor binding events. This is especially true for the triple-operator 

containing promoter (Fig. S5), suggesting that promoters with increased number of 

operator sites are less predictable. 

 

 

 

 



 

Figure S5: Dose-response curves (top row) and noise (bottom row) for the multiple 

operator-containing promoters, assuming independent binding of repressors to their 

operator sites. 

 

Next, to investigate the possibility that repressors might interact on multiple operator-

containing promoters, we used nonlinear optimization to estimate the inducer-

independent interaction constants ω12, ω13, ω23, and ω123, along with the parameters L12, 

L13, L23, and L123. All constants except L123 were estimated to be positive (L12 = 0.01, ω12 

= 2.68, L13 = 0.047, ω13 = 0.36, L23 = 0.033, ω23 = 0.53, L123 = -0.065, and ω123 = 0.004), 

indicating that repressors de-stabilize each other on promoters D13 and D23, while they 

stabilize each other on promoter D12. We forced L123 to take non-negative values only, 

and obtained L123 = 0 and ω123 = 0.004. As the plots in Fig. S6 indicate, the assumption of 

inducer-independent interactions between repressors improves the agreement between the 

experiment and the simulation, but it is still insufficient to capture the full behavior of 

multiple operator-containing promoters. 

 

 

 

 



 

Figure S6: Dose-response curves (top row) and noise (bottom row) for the multiple 

operator-containing promoters, assuming inducer-independent interactions between 

repressors. 

 

Finally, we studied if the repressor-dependent interaction functions ω12(I), ω13(I), ω23(I), 

and ω123(I) can be calculated analytically, given the parameters of the generic model that 

assumes a single repressed state for all promoters (Fig. S1). The dose-response function 

of the promoter Dij can be expressed either based on the detailed (Fig. S3) or the generic 

(Fig. S1) model, respectively, implying the equality 
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After some calculations, we obtain for the interaction function ωij(I): 
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As this formula indicates, the interaction functions depend on the basal promoter 

expression ( ijλ
~

) from the double-repressed state Rij. So far, we considered that the basal 

promoter expression increases linearly with the inducer concentration. However, this 



might be a simplifying assumption, and in reality both ijλ
~

 and ωij can depend on the 

inducer concentration in a non-trivial way. The current experimental technology is not 

capable of measuring these parameters independently. Therefore, in the most general 

sense, the predictability of multiple operator-containing promoters remains challenging to 

answer completely. 

 

6. The effect of promoter sequence changes on pretranscriptional events 

 

All eight promoters (WT, S1, S2, S3, D12, D13, D23, and T123) have different 

expression levels at full induction (see Table S2). To determine if these differences were 

due to the replacement of native GAL1 promoter sequences with the tetO2 operators, we 

replaced the operator site in the S2 promoter with two random sequences. One of these 

sequences (S2-P) was palindromic (similar to the tetO2 operator site), while the other (S2-

R) was random (Fig. S7 Upper). Both of these sequences caused large decreases in gene 

expression (see Fig.S7 Lower), indicating that the GAL1 promoter sequence in this region 

plays a role in promoter activity, and alterations can lead to lower maximal expression. 

Additional controls involving a premature stop codon in the tetR coding sequence further 

indicated that residual repressor binding could not account for these differences. Thus, we 

hypothesized that the insertion of operator sites alters the efficiency of various events that 

precede transcription initiation, such as general transcription factor binding and PIC 

assembly, RNA polymerase II binding, or DNA melting. 

 



 

 

Figure S7: Promoter constructs to test the effect of sequence changes on transcription 

initiation (Upper) and the observed changes in gene expression (Lower). The average 

gene expression from promoter S2 (not shown here) is 855 ± 10. 

 

To model the effect of promoter sequence changes, we assumed the events that precede 

transcription initiation occur sequentially along the promoter, starting from the TATA 

box and propagating toward the transcription START site. Therefore, we replaced the 

transitions between promoter states N and A in Fig. S1 with a more detailed reaction 

scheme comprising three different stages of promoter activation: A, B, and C (Fig. S8). 

We also assumed that the insertion of repressor sites into promoters S1, S2 and S3 

independently affect the transition rates N ↔ A, A ↔ B, and B ↔ C, respectively. 
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Figure S8: Detailed reaction scheme for modeling the effect of repressor sites on the 

maximum expression levels from all eight promoters. 

 

Using chemical mass action kinetics and assuming detailed balance, we estimated the 

maximum expression levels from various promoters as follows: 
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Introducing the notation 
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we obtain the system of algebraic equations 
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This appears to be an over-detemined system of eight equations and seven unknowns. 

However, when we select subsets of seven equations, the resulting systems contain 

variables that depend on each other, and therefore explicit solutions cannot be found. 

Thus, we used the Symbolic Math Toolbox (Matlab by the Mathworks, Inc.) to determine 

an implicit solution (all unknowns as functions of x1) from six equations. 

 



Next, we calculated the explicit solutions (consisting of all seven unknowns) by scanning 

the values of x1 over 20 orders of magnitude (from 10
-10

 to 10
10

). Surprisingly, the value 

of at least one unknown was always negative, which is unrealistic, because all unknowns 

correspond to chemical equilibrium constants. Therefore we reasoned that the mean 

maximum expression values on the right-hand side must be affected by experimental 

error. 

 

We took into account the variation of maximum expression levels between different 

experiments, and solved the system of equations repeatedly after altering the maximum 

expression values by a Monte-Carlo technique. In this search for positive solutions, we 

selected the maximum expression values from a Gaussian distribution with the 

experimental mean and standard deviation. We accepted only positive solutions while 

minimizing the Euclidian distance between the altered and mean maximum expression 

values. The results of 50 successful trials can be seen in Figs. S9-S11. 

 

Several conclusions can be drawn from Figs. S9-S11. First, Fig. S9 allows the theoretical 

estimation of experimental errors. For example, for promoter D13, the successful trials 

result in consistently higher values of estimated maximum expression (circles) than the 

experimental mean (dashed line). The opposite is true for gene expression from the wild-

type (WT) promoter, for which the theoretically estimated maximum expression values 

tend to be consistently lower than the experimental mean. 

 

Fig. S10 indicates that the solutions can vary over many orders of magnitude. Strong 

correlations and anti-correlations exist between some pairs of unknowns (for example, x1 

and y1 are strongly correlated, while x1 and x2 are strongly anti-correlated). Also, x1 and y1 

are consistently lower, while x2 and y2 are consistently higher than all other solutions. 

Taken together with the definition of these variables, this suggests that the rate-limiting 

step during preinitiation is some reaction affected by the insertion of the operator site in 

promoter S2, while the insertion of operator sites into S1 and S3 had a much lower 

overall effect. 

 



 

 

Figure S9: Maximum expression values from 50 successful trials. Dashed lines represent 

the experimental means. 

 

 

 

Figure S10: Solutions of the system of equations from 50 successful trials. 

 



 

 

Figure S11: Equilibrium constants for N ↔ A in the generic model for 50 successful 

trials. 

 

Finally, Fig. S11 allows us to estimate the promoter activity for all eight promoters, 

characterized by the equilibrium constant for transitions between the states N and A in 

our generic model, equal to a/α in Fig. S1. Despite the large variations in the graph, Fig 

S10 indicates that promoters S1, S3 and D13 clearly have the highest promoter activity, 

as reflected by their expression levels at full induction (Fig. S9 and Table S2). 

 

7. Independent control of the mean and noise in gene expression 

 

Several current studies indicate the phenotypic importance of gene expression noise (9, 

10). To verify the phenotypic consequences of promoter-mediated transcriptional noise 

(10), it is important to establish conditions where two cell populations possess the same 

average gene expression, but different degrees of cell-cell variability. Typically, altering 

cellular components to change the noise also causes a change in the mean. Therefore, it 

becomes important to modify the noise and the mean of gene expression independently of 

each other, thereby separating their effects on the population’s phenotype. As indicated 

by Fig. S12, our seven promoters permit the establishment of conditions where two cell 

populations have the same mean, but different noise. 

 



 

 

Figure S12: Coefficient of variation (CV) as a function of mean for all seven engineered 

promoters. 

 

8. The effect of autofluorescence on noise 

 

We measured the autofluorescence experimentally in the untransformed parent strain 

YPH500, which lacks yEGFP. YPH500 cultures were grown and assayed as described in 

the main text, and included 0-250 ng/ml ATc. Taking into account the existence of 

autofluorescence (P = 2.7 ± 0.3), we re-estimated our parameters and re-ran our 

stochastic simulations to quantify the effect of this experimental factor on our modeling 

results. As Fig. S13 indicates, taking autofluorescence into account improves the 

agreement between model and experiment at low induction levels (near [ATc] = 0), 

especially for the promoters with high repression efficiency (promoters S1, D12, and 

T123). On the other hand, for promoters with high basal expression (S2, S3, S23), 

promoter leakage overshadows the contribution of background autofluorescence. The 

combined effect of promoter leakage and autofluorescence background causes the 

existence of a noise peak at intermediate levels of induction. As shown previously, if both 



promoter leakage and autofluorescence were absent, the noise would continue to increase 

as we approach [ATc] = 0, and the noise peak would be absent. 

 

 

 

Figure S13: Coefficient of variation (CV) for all seven engineered promoters, after taking 

into account the autofluorescence. Compare with Fig. 4 in the main text. 

 

9. The effect of parameters on noise 

 

We varied several parameters (p, π, m, µ, sA, sR) in our generic model to determine their 

effect on the noise as a function of inducer concentration. As shown in Fig. S14, all of 

these parameters affect noise intensity. Increasing the protein or mRNA synthesis rates (p 

or m) results in increased noise intensity at all induction levels. Increasing the mRNA 

half-life (tM) has a similar effect. Interestingly, while increasing the protein half-life (tP) 

causes an increase in noise only at high levels of induction, it causes a decrease in noise 

intensity at intermediate levels of induction, probably indicating that slow protein 

degradation acts as a filter that diminishes the high end of the noise spectrum. Finally, 



increasing either of the scaling factors, sA or sR, causes a decrease in noise intensity. High 

values for these scaling factors correspond to fast transitions between promoter states, 

which shift gene expression noise toward the high-frequency regime of the spectrum. 

This regime is filtered out by slow protein decay, leading to lower total noise intensity. 

 

 

 

 

 

 

 

Figure S14: The effect of various parameters (p, π, m, µ, sA, sR) on noise intensity. 

 



10. Fitting the the experimental data by the Hill function 

 

As described in the main text, we initially fit our data by the Hill function: 

 

hh

h

IH

I
PPPIP

+
−+= )()( minmax

min . 

 

The parameters H (induction threshold) and h (steepness of response or Hill coefficient) 

that we obtained from this fit are listed in Table S2. 

 

 WT S1 S2 S3 D12 D13 D23 T123 

P
max 

1458±25 1461±22 855±10 1694±33 1039±64 1565±124 1235±68 1357±29 

P
min 

1458±25 21.2±0.5 50±2 637±22 6.29± 0.01 18±1.2 76±2.4 3.58±0.09 

H N/A 36.42 39.17 18.33 42.22 34.63 36.79 37.31 

h N/A 6.67 4.82 2.74 11.13 7.71 5.49 7.38 

 

Table S2: Parameters estimated by fitting the Hill function to our experimental data. 

 

As shown in Fig. S15, the empirical Hill function did not fit our data well, especially at 

low levels of induction. Therefore, we moved on to the chemical reaction scheme, as 

described in the main text. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S15: Hill functions (dashed black lines) fitted to our experimental data (red 

crosses). 
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