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It has been over 40 years since Monod and Jacob
boldly predicted that such fundamental cellular
processes as differentiation and protein regulation
are accomplished through signalling pathways
resident at the level of the gene1. This prediction laid

the foundation for the ensuing progress in describing the
essential regulatory mechanisms in many specific genetic
systems. With the development of the field of nonlinear
dynamics and the concurrent advent of significant
computing power, mathematical models describing gene
regulation began to appear regularly in the 1970s2–9.
Implicit in these studies was the realization that the
‘wiring’ of naturally occurring gene regulatory networks
would be too complex for qualitative descriptions devoid
of mathematics. Although this realization proved to be
ahead of its time, owing mainly to the lack of
experimentally deduced regulatory pathways in the ‘pre-
genomic’ era, recent experimental advances have re-
ignited interest in the development of circuit analysis
techniques for describing complex gene networks.

The concept of designed gene circuits has motivated
researchers to draw direct analogies with established 
techniques in electrical engineering10,11. As with the 
construction of electrical circuits, the gene circuit
approach12–24 uses mathematical and computational tools in
the analysis of a proposed circuit diagram, while novel
experimental techniques are used to construct the networks
according to the model blueprint. So far, the qualitative
agreement between model and experiment in a series of
studies13–15,22,23 has supported the notion of such an 
engineering-based methodology (for a detailed discussion
of the various mathematical modelling techniques and their
particular applications, see refs 17 and 19). The power of this
approach is that it can be used to study simplified systems to
gain insight into the general ‘modules’ of gene regula-
tion25–27. These modules include subnetworks that act as
switches or oscillators, as well as networks that act to 
communicate across a population of cells. This ability to
engineer gene networks offers the prospect of extracting
carefully chosen subsystems from natural organisms, and
focusing both modelling and experimental effort on deter-
mination of the behaviour of the subsystems in isolation.
Furthermore, there is the possibility of using the insights
thus obtained to create genetic ‘control systems’, designed to

correct faulty cellular mechanisms, or to generate entirely
new modes of behaviour.

Autoregulatory systems
Feedback loops are an important concept in engineering
control systems. In the context of gene regulation, feedback
occurs through autoregulation, wherein a protein modifies,
directly or indirectly, its own rate of production. Whether
such interactions embody positive or negative feedback
depends on the details of the network dynamics. Under-
standing the nature of such feedback loops in biological 
networks is a key step in the attempt to formulate a gene 
circuit discipline5–9,28–30.

Seminal work in the modelling of gene networks3

focused on the stability properties of networks dominated
by positive versus negative feedback. Stability refers to the
tendency of a system to remain close to a steady state (a state
in which production and decay rates are balanced) despite
the influence of perturbations. A central result of this work
was that genes regulated by negative feedback should be
more stable than either unregulated genes or those regulated
by positive feedback (an example of a naturally occurring
negative feedback system is given in Fig. 1a). In the past few
years, synthetic gene networks have been engineered to test
the first portion of this prediction, comparing the behaviour
of a simplified gene regulatory network based on negative
feedback to the behaviour of the equivalent unregulated
network15.

The experiments used a promoter that is shut off by the
tetracycline repressor protein (TetR) to control the produc-
tion of TetR, and compared this network to an unregulated
system (Fig. 1b). Using a fusion of green fluorescent protein
(GFP) to the TetR protein allowed observation of the state of
the network (that is, the number of TetR molecules present
in the cell) through fluorescence microscopy. Sampling
multiple cells yielded a distribution of fluorescence 
intensities, and the stability of the steady state was evaluated
by the width of these distributions. Because the degree of
stability is inversely proportional to the width of the 
distribution, narrower distributions imply greater stability.
Mathematical modelling indicated, as had the earlier 
analysis, that the negative feedback network should be more
stable than the unregulated network, and the experimental
results confirmed this prediction.
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quantitative analysis. These developments have signalled the emergence of a gene circuit discipline, which
provides a framework for predicting and evaluating the dynamics of cellular processes. Synthetic gene
networks will also lead to new logical forms of cellular control, which could have important applications in
functional genomics, nanotechnology, and gene and cell therapy.
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A significant feature of positive feedback is its role in the genera-
tion of bistability, where two steady states of the system are stable (see
ref. 31 for a recent review of the role of positive feedback in bistability
of gene regulatory networks). The importance of positive feedback in
generating multiple stable states has been analysed mathematically30,32

and has been implicated in the stability of the differentiated and 
undifferentiated states in Xenopus oocytes33,34 (Fig. 1c). Experiments
with an engineered positive feedback network22 have demonstrated
the existence of bistability in the system (Fig. 1d). The synthetic net-
work was implemented in the budding yeast Saccharomyces cerevisiae,
and consisted of a tetracycline-responsive transactivator (rtTA) that
activated its own promoter. As in the negative feedback experiments,

the reporter protein GFP was fused to the transactivator to allow
observation of expression levels through fluorescence microscopy. As
predicted by the accompanying mathematical model22, the resulting
distributions were bimodal: there were two distinct subpopulations of
cells, with one group expressing small amounts of the protein, where-
as the other expressed large amounts.

In the synthetic positive feedback network22, the partitioning of
the cells into two subpopulations was not permanent; this was 
attributed to fluctuations in the network that were large enough to
cause spontaneous transitions from one state to the other. Only 
transitions from the low-expression state to the high-expression state
were observed experimentally, but there is no theoretical reason 
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Figure 1 Autoregulatory systems. a, In this natural
negative feedback system from the bacteriophage l, the
promoter PR controls the expression of the Cro protein,
which represses PR. b, The synthetic negative feedback
system15 uses the promoter PLtetO1 to control the
expression of TetR-EGFP, a fusion of the tetracycline
repressor (TetR) and the enhanced green fluorescent
protein (EGFP). Negative feedback arises because TetR
represses transcription from PLtetO1. Replacing TetR with
TetRY42A eliminates the feedback, producing an
unregulated system. The distribution of observed
expression states for the unregulated system (upper, right)
is about three times wider than the distribution for the
negative feedback system (lower, right), demonstrating
improved stability with negative feedback. (Distributions
redrawn from ref. 15.) c The left panel shows a natural
positive feedback system, the Mos-MEK-p42 MAPK
cascade, which controls part of the maturation process in
Xenopus oocytes. Progesterone stimulates the production
of the Mos protein, which indirectly activates p42 MAPK
(mitogen-activated protein kinase). p42 MAPK activation,
in turn, stimulates production of Mos through a series of
steps, not fully known (dashed line indicates unknown
intermediates). (Redrawn from ref. 31.) The right panel
shows a synthetic positive feedback system22 in which the
promoter region tetreg controls expression of the
tetracycline-responsive transactivator (rtTA); rtTA activates
tetreg, completing the positive feedback loop. d, Observed
bistability in the synthetic positive feedback system22.
Fluorescence intensities are shown for the positive
feedback (autocat., autocatalytic) and unregulated
(constit., constitutive) systems. The concentration of the
inducer doxycycline controls the degree of positive
feedback, as regulatory binding of rtTA relies on activation
by the inducer. For low inducer concentrations (yellow),
both the constitutive and positive feedback systems have
distributions with a single peak. At higher concentrations of
inducer (orange), the constitutive system remains
unimodal, while the strong positive feedback causes the
autocatalytic system to split into two distinct populations of
cells. (Redrawn from ref. 22.)
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precluding transitions in the opposite direction, and it may be chance
that no such transitions occurred during the period of observation. It
is well known that noise can drive a system back and forth between
two stable states, and the average time it takes for such a transition to
occur is called the ‘escape time’. The escape time is a function of both
the stability of the states and the size of the fluctuations.

In the case of Xenopus oocytes, differentiation is an irreversible
process: once the egg cells mature, they are never observed to change
back to the immature state. This indicates that the escape time of the
maturation system is either infinite, or so long that it is effectively
infinite; that is, over the lifetime of the organism, there is a negligible
chance of making a spontaneous transition back to the immature
state. (An alternative possibility in a complex network of this sort is
that once maturation is achieved, the system parameters change in
such a way that the bistability is irreversibly eliminated.) The fact that
the synthetic positive feedback network22 made transitions on a 
significantly shorter timescale suggests that it was either subject to
greater noise, or that its expression states were less stable. Controlled
experiments on synthetic autoregulatory networks, combined 
with theoretical treatments16,18,35,36, may serve to identify the precise
differences between switching systems.

Toggle switch
Bistability is a minimal requirement for a network to possess 
memory, where the state of the network stores information about its
past. When forced by a transient stimulus into one state or the other,
such a system remains in that state after the transient has been
removed, thus ‘remembering’ the stimulus event. For generating
bistability, an alternative to the positive feedback network is mutual
inhibition. This method of achieving bistability arises in a number of
contexts: in engineering, there is the Reset–Set latch (widely known
as the ‘RS latch’) circuit design, and switches based on mutual 
repression have long been suggested as a common element in gene
regulatory networks1. One such genetic switch is found in the PR/PRM

region in l phage, which acts co-repressively to control the
lysis/lysogeny decision: Cro, controlled by PR, represses PRM, whereas
CI, controlled by PRM, represses PR (Fig. 2a).

The principle of mutual repression was used to achieve bistability
in a synthetic genetic toggle switch13. Its design made use of a 
mathematical model to deduce the parameter regimes required for
bistability and robust switching. These criteria included the use of
strong and balanced constitutive promoters, effective transcriptional
repression, the formation of protein multimers, and similar protein
degradation rates for the two main components.

An example of one of the toggle switch designs is shown in Fig. 2b.
In this version of the toggle, the lac gene is under the control of the
PLs1con promoter, whereas the cI gene is controlled by the Ptrc-2 
promoter; the lactose repressor (LacI) protein represses Ptrc-2, and
the CI protein represses PLs1con. Experimentally, switching between
the two states was induced by the transient application of either a
chemical or thermal stimulus (Fig. 2c). The chemical inducer was
isopropyl-b-D-thiogalactopyranoside (IPTG), which binds to LacI
tetramers and renders them effectively unable to repress Ptrc-2. A
temperature-sensitive version of the CI protein was used, so that pro-
tein denaturation increased with temperature, allowing a thermal
stimulus to eliminate the active CI in the system.

Logic gates
The concept of engineered gene circuits has led to a formulation based
on logic gates and their associated truth tables, with resulting
schematics that are the direct analogue of electronic circuit 
diagrams37,38. One such description defines the inputs to a regulated
promoter as the protein/inducer pair, and the output as ‘on’ if the gene
downstream of the promoter is being transcribed and ‘off ’ otherwise
(Fig. 3a). For example, consider the arabinose operon, which is
induced by a complex consisting of AraC dimers and the chemical ara-
binose. The inputs are AraC proteins and aribinose, and the arabinose

promoter is on only if AraC and arabinose are present, and is off other-
wise. In the parlance of electrical engineering, the truth table for such a
system of inputs and outputs leads to a logical AND gate. Simple logic
gates, such as AND gates and OR gates (see Fig. 3b), can be combined
to yield circuits of any given complexity, and indeed a central focus of
ref. 38 was the formulation of an engineering circuit discipline with a
simulation package for analysing the resulting gene circuits38.

Although the description of logic gates in terms of protein-chem-
ical inputs is one possible approach, a complementary formulation
involves defining two external chemicals as the input signals. For
example, consider the schematic for an alternative AND gate 
depicted in Fig. 3b (F. J. Isaacs, C. R. Cantor and J.J.C., manuscript in
preparation). The circuitry is such that the first promoter directs the
polycistronic transcription of the lac and tet genes, and the second
promoter is engineered to be repressed by either LacI or TetR. When
the two chemicals IPTG and anhydrotetracycline (aTc) are present,
the LacI and TetR repressors, respectively, are inactivated and the gfp
gene downstream of promoter 2 is transcribed. Thus, the circuit
forms an AND gate as both chemical inputs (IPTG and aTc) must be
present for promoter 2 to be on (GFP expressed).

A central theme in gene circuit design is that the simpler 
‘fundamental’ circuits form the basis for more complex designs. For
example, memory can be added to the AND network by letting the
second promoter direct the production of a third protein capable of
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Figure 2 Natural and synthetic co-repressive switches. a, In this natural switch from
the bacteriophage l, the promoters PRM and PR are each repressed by the product of
the other: PRM controls expression of the gene cI, and the protein CI represses PR,
whereas PR controls expression of the gene cro, and the protein Cro represses PRM. 
b, The synthetic genetic toggle switch13 uses the promoter Ptrc-2 to control the
production of a temperature-sensitive version of the CI protein (expressed by cIts ); 
CI acts to repress the promoter PLs1con. Conversely, PLs1con controls transcription 
of the gene lacI, whose product LacI (lactose repressor) represses Ptrc-2. 
c, Experimental results showing bistability of a genetic toggle switch in Escherichia
coli 13. The response of green fluorescent protein (GFP) is shown, which corresponds 
to expression of the cI gene. Shaded regions indicate periods of induced switching.
The cells were forced to the high-GFP state by exposure to isopropyl-b-D-
thiogalactopyranoside (IPTG), which eliminates the repressive effect of LacI; note that
the cells remain in the high state after the inducer is removed. The population was
then forced into the low-GFP state by induction with a thermal pulse, which eliminated
the active CI in the system by increasing the denaturation rate of the temperature-
sensitive CI protein. Upon returning to the base temperature, the cells one again
remain in the switched state after the induction is removed. The different coloured
lines represent different plasmid strains implementing slight variations of the toggle.
(Redrawn from ref. 13.)
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repressing the first promoter (Fig. 3c). This could be realized by
inserting the cI gene (as in the toggle switch) alongside gfp as a 
polycistron, and having the first promoter be repressed by CI (for
example, the PL promoter used in the toggle switch). In this case, once
the system is switched to the on state by the simultaneous presence of
IPTG and aTc, it will maintain this state regardless of the subsequent
concentrations of inducers applied, because the expressed CI will
repress the production of LacI and TetR. In this way, the system has
memory such that the presence of the on state indicates that, at some
point in the past, both IPTG and aTc were present simultaneously.

Recently, a new approach involving ‘combinatorial synthesis’ was
used to generate a myriad of logical gene circuits39. This approach
involved the clever use of subcloning and ligation, whereby 15 
distinct promoter-gene units were constructed such that subsequent
ligation of a mixture of the units yielded a library of three-gene 
networks. Specifically, the initial promoter-gene constructs incorpo-
rated uniquely designed BglI restriction sites in the polymerase chain
reaction primers. This constrained the networks to the structure 
Pi-lacI-Pj-lcI-Pk-tetR, where Pi, Pj and Pk were each one of the five
promoters PL

1 (repressed by LacI), PL
2 (repressed by LacI), PT

(repressed by TetR), Pl (repressed by CI) or Pl
2 (activated by CI). For

measurement, a fourth transcriptional unit consisting of Pl-gfp was
incorporated in each plasmid, so that the input–output characteris-
tics consisted of IPTG and aTc as inputs, and GFP fluorescence as
output. The plasmid library was then transformed into Escherichia

coli and grown under the four input conditions, with or without
IPTG and with or without aTc. Analysis entailed the search for specif-
ic gene circuits in which the output fluorescence was a function of
both inducers, and the result was a collection of logical circuits that
included NAND, NOR and NOT IF gates.

Repressilator
Oscillations are used in engineering control systems as central
‘clocks’ to synchronize behaviour, and many multicellular organisms
use a form of cellular ‘clock’ to coordinate their behaviour over the
course of the day–night cycle40,41. These circadian rhythms manifest
themselves in the periodic variation of concentrations of particular
proteins in the cell. Although the precise molecular mechanism
underlying even the most basic circadian rhythm is not fully under-
stood, a number of general models describing these important
rhythms have been proposed (refs 42–47, and see review in this issue
by Goldbeter, pages 238–245).

When designing synthetic networks, an alternative to building a
system that reproduces exact natural mechanisms is to generate 
systems that exhibit similar behaviour. This approach was used14 to
address the question of cellular oscillations, whereby a synthetic 
network (the ‘repressilator’) was produced that generated self-sus-
taining periodic oscillations in the concentrations of three proteins
in a bacterial cell. The design operates on the same general principle
as a ring oscillator in microelectronics. Accordingly, the repressilator
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Figure 3 Logic gates. a, Genetic and electronic circuit
diagrams for an AND gate using proteins and inducers for
the inputs, and the state of the gene (on or off) as the
output. The corresponding truth table elucidates the logic
of the AND gate. b, An alternative AND gate uses two
inducers as inputs and expression of the green
fluorescent protein (gfp) gene as the output. The lacI and
tetR genes (encoding tetracycline and lactose repressor,
respectively) are expressed polycistronically by a
constitutive promoter. If either LacI or TetR bind to the
second promoter, the expression of the gfp gene is turned
off. Because both of the inducers isopropyl-b-D-
thiogalactopyranoside (IPTG) and anhydrotetracycline
(aTc) are needed to prohibit the repression of the second
promoter by LacI and TetR, the circuit forms an AND gate.
The OR gate similarly uses the polycistronic expression of
lacI and tetR from the first promoter, but differs in that
only LacI represses the second promoter, while TetR
represses a third promoter. Because the presence of
either inducer (or both) leads to the expression of the gfp
gene, the circuit forms an OR gate. c, Memory in the AND
gate is achieved by inserting an additional cI gene under
the control of the second promoter, and using a 
CI-repressible first promoter. Once the system is switched
into the on state, CI represses the production of LacI and
TetR, keeping the system in that state, regardless of the
subsequent levels of inducers.
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network architecture is cyclic (Fig. 4a), in which the LacI protein
represses the promoter for the tet gene, the TetR protein represses the
promoter for the cI gene, and the CI protein represses the promoter
for the lac gene. As depicted in Fig. 4b, the network produced roughly
sinusoidal oscillations in protein concentrations, observed by 
parallel expression of the reporter protein GFP.

As in the case of the toggle switch, a mathematical model was
instrumental in the process of designing the repressilator. Although
the ring network architecture is theoretically capable of sustaining
oscillations14,48, not all parameter choices give rise to oscillatory 
solutions. The modelling work indicated that oscillations were
favoured by high protein synthesis and degradation rates, large 
cooperative binding effects, and efficient repression. These theoreti-
cal conclusions led to specific design choices: strong and tightly
repressible hybrid promoters were selected, and the effective protein
degradation rates were increased by ssrA tagging, whereby proteins
are modified by the addition of an amino acid sequence which makes
them targets for proteases in the cell.

An engineered circuit approach to sources of noise
Because the biochemical rates of transcription and translation are 
proportional to the number of promoter sites and messenger RNA
molecules, these rates are typically small and imply relatively infre-
quent transcriptional and translational events compared with other
interactions within the cell (for example, protein–protein interac-
tions). In biochemistry, such infrequent events lead naturally to large
fluctuations, and these fluctuations are known as internal noise
because they originate from the underlying biochemical reactions
rather than from some external perturbation or detection limitation.

The notion that such internal noise could be important in the
choice of a developmental pathway for an organism has induced a
flurry of modelling research devoted to the role of fluctuations in gene
regulation (refs 25, 49–51; and see review in this issue by Arkin and co-
workers, pages 231–237). Recently, theoretical models have been
combined with engineered gene networks to elucidate the dominant
source of internal noise in a single-gene network20,23. Given the two-
step process of transcription and translation, the specific goal of this
work was to determine their relative contribution to the fluctuations
observed in the expressed protein concentrations within a cell.

Modelling work predicted that the random variation in expression
from a single gene should scale linearly with the translational rate and
be independent of the transcriptional rate20. Experimentally, point
mutations were used to independently vary the transcriptional and
translational rates, and the results were consistent with the 
theoretical predictions: the fluctuations in the expressed protein con-
centrations were observed to increase linearly with the translational
efficiency while showing only a mild increase with the transcriptional
efficiency23. Of particular note was the finding that the size of the fluc-
tuations induced in the translational step was inversely proportional
to the mRNA half-life, implying that fast mRNA turnover could be a
means of mitigating noise. Because fast mRNA turnover increases the
cellular energy requirement for protein production, the authors 
speculated that the evolution of gene regulation might entail a com-
promise between noise reduction and energy conservation.

The importance of tightly controlled amounts of  cellular protein
has led other researchers to model how specific network properties
might act to decrease or utilize fluctuations24,46,47,50,51. One such study
focused on a linear array of genes forming a network where each gene
activates its nearest downstream neighbour24. The central finding
was that cascades can act as attenuators for a noisy input signal, 
thus elucidating their potential importance in cell-wide signal 
transduction. Other studies showed how a model circadian network
can function reliably in the presence of internal noise46,47. Although
the underlying genetic architecture for the various known circadian
systems has not been deduced, these networks seem to involve both
positive- and negative-control elements40. This information was
used to construct a generic model capable of oscillations that are

resistant to fluctuations. The study also provided evidence that circa-
dian oscillations might actually be enhanced by noise. This leads to
the conjecture that the circadian circuitry has evolved to both reduce
internal fluctuations and to exploit the residual noise that cannot be
fully eliminated.

The cascade and circadian network models described above 
provide clear theoretical predictions that can be tested systematically
with engineered gene circuits. For example, cascades can be syntheti-
cally designed and the noise properties elucidated with single-cell
microscopy. Similarly, the network underlying the proposed circadi-
an oscillator could be built using an autocatalytic feedback loop as the
primary network element18.

Intercell signalling system
The use of signals to coordinate the behaviour of many individual
devices is crucial in microelectronics and robotics, and cells also display
a significant ability to communicate, both within multicellular organ-
isms and within populations of unicellular organisms. Because cellular
membranes act to isolate the cell from its environment, such communi-
cation generally relies on specialized chemicals that either pass 
through the membrane (through passive diffusion or active transport)
or activate membrane-spanning receptors on the exterior of the cell.

insight review articles

228 NATURE | VOL 420 | 14 NOVEMBER 2002 | www.nature.com/nature

a
–

–

–

60 140 250 300 390 450 550 600
Time (min)

120

80

40

0
0 100 200 300 400 500 600

Time (min)

Fl
uo

re
sc

en
ce

 (a
rb

itr
ar

y 
un

its
)

b

tetR-lite cI-litePLtetO1 PR lacI-litePLlacO1

— — — — — — — — — —

Figure 4 Synthetic transcriptional oscillator (the repressilator14). a, Network
architecture. The synthetic system consists of three gene-promoter pairs arranged in a
ring, such that each promoter’s gene product represses the next promoter in the cycle.
The promoter PLlacO1 controls transcription of the gene tetR-lite, and the tetracycline
repressor protein TetR represses the next promoter in the sequence, PLtetO1. 
PLtetO1 controls the transcription of cI-lite, and the protein CI represses the promoter
PR. Finally, PR controls the expression of lacI-lite, and the lactose repressor protein LacI
represses PLlacO1, completing the cycle. Note that the suffix ‘lite’ in the gene names
refers to the presence of ssrA tags, which increase the degradation rate of the
proteins. b, Experimental results showing oscillations in the repressilator14. The growth
and timecourse of green fluorescent protein (GFP) expression was recorded for an
individual Escherichia coli cell containing the repressilator plasmids; the cell was
tracked using fluorescence (upper images) and bright-field (lower images) microscopy.
Scale bar, 4 mm. The plot below these images shows a time series of fluorescence
intensities, clearly indicating oscillatory behaviour in the cell. Bars at the bottom of the
plot indicate the timing of cell division events. Note that the period of the oscillations is
longer than the cell division time. (Adapted from ref. 14.)
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Experiments52 have demonstrated the feasibility of sending signals
between synthetic regulatory networks residing in different cells. This
work made use of a well-studied, natural intercell signalling system,
the quorum sensing pathway in the bacterium Vibrio fischeri53,54. In
quorum sensing, bacteria regulate their behaviour based on the densi-
ty of bacteria present nearby. Each bacterium secretes a signalling
molecule (a homoserine lactone referred to as an ‘autoinducer’),
which passes through the cellular membrane in both directions.
When many bacteria are present, the concentration of autoinducer
reaches levels sufficient to activate a regulatory protein, LuxR, which
then binds to the lux operator region and activates the expression of a
suite of genes causing the bacterium to become luminescent.

In the synthetic system52, two populations of cells were engi-
neered: ‘sender’ cells containing an autoinducer synthase (LuxI)
under the control of a chemically inducible promoter; and ‘receiver’
cells containing a reporter protein (GFP) controlled by the lux
operator region. When the sender cells were induced to express LuxI,
autoinducer was produced and diffused into the extracellular 
environment; the autoinducer then entered the receiver cells, and
stimulated production of GFP by activating the lux region.

A simple example of coordinated behaviour is the synchroniza-
tion of oscillators, and a recent modelling study55 considered the use
of the above-described intercell signalling system to synchronize a

population of synthetic genetic relaxation oscillators18. Relaxation
oscillators exhibit rapid transitions followed by periods of slow
change, and previous theoretical work56,57 showed that such 
oscillators are more readily synchronized than their more smoothly
varying sinusoidal counterparts, such as the repressilator. The theo-
retical analysis indicated that rapid synchronization could be
achieved by coupling each cell’s production of autoinducer to its
oscillatory phase. Experimentally verifying this prediction would be
an interesting application of synthetic gene networks, as would a
direct comparison of the synchronization behaviour of relaxation
and sinusoidal genetic oscillators.

Applications
The above examples of engineered gene circuits serve to highlight
how an integrated approach that combines computational 
modelling with experimental molecular biology can lead to insights
into some of the basic modules that comprise complex, naturally
occurring gene networks. The long-term goal of such work is to
assemble increasingly complete models of the behaviour of natural
systems, while maintaining at each stage the ability to test models in a
tractable experimental system. An important complementary aspect
of this approach is that the designer gene circuits which form the sub-
modules will probably have important biotechnological applications
in their own right. In this context, engineered gene networks repre-
sent a first step towards logical cellular control, whereby biological
processes can be manipulated or monitored at the genetic level.

From the construction of a simple set of genetic building-block
circuits (such as toggle switches and oscillators), one can imagine the
design and construction of integrated biological circuits capable of
performing increasingly elaborate functions. An integrated biologi-
cal circuit could, like electronic control circuits, possess data-
processing and storage circuitry, as well as input–output 
components necessary for sensing and affecting its environment.
Ultimately, synthetic gene circuits encoded into DNA might be
‘downloaded’ into cells creating, in effect, a ‘wet’ nano-robot. These
cellular robots could be used for a variety of functions, including in
vivo biosensing, autonomously synthesizing complex biomaterials,
executing programmed cell death, and interfacing with microelec-
tronic circuits by transducing biochemical events to and from the
electronics.

As an example of an integrated biological circuit, consider a
recently engineered oncolytic adenovirus capable of selectively
killing tumour cells58. In most tumour cells, the p53 gene network
does not function properly, and this dysfunction leads to an unusual-
ly low amount of the tumour-suppressing p53 protein59. The engi-
neered adenovirus is capable of detecting the presence or absence of
p53, and executing a specific task depending on the p53 ‘state’ of the
cell. If the amount of p53 is normal, a viral promoter controlling the
inhibition of replication is turned on and viral replication is halted.
But if the amount of p53 is low, the virus detects the abnormal cell and
replication proceeds along with the expression of viral proteins that
lead to cell lysis and the spread of the adenovirus to other potentially
cancerous cells.

Examples of other complex network-control schemes are provid-
ed by several recent modelling studies that focus on the utility of 
coupling designer gene networks to native cellular processes. One
such study explored the coupling of an oscillating synthetic network
to intrinsic cell-generated oscillations60 (Fig. 5). This work provided
design strategies for entraining and amplifying oscillations in cellular
protein concentrations. Such control could prove useful in the design
of networks that interact with cellular processes that require precise
timing. Along these lines, seminal developments in the modelling of
the cell-division cycle61–63 could be coupled to the oscillator model,
allowing for the design of protein delivery schemes that are signalled
by the cellular growth cycle.

Another modelling study explored the utilization of engineered
gene networks in the reverse engineering of large-scale gene 
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Figure 5 Synthetic oscillator design and synchronization properties. a, Schematic for the
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in a plot of the drive amplitude versus the drive frequency. Within these regions, the period
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regulatory networks64. Here, the central idea is that small, engineered
networks can be inserted into cells to provide a controlled perturba-
tion mechanism for ongoing gene-expression experiments. One then
tracks how the perturbation affects the genes in a naturally occurring
network, and this information can be used to deduce the network
topology. This method may prove useful in identifying and validating
specific drug targets and in unravelling the effects of chemical 
compounds.

By reducing the complexity of the systems under study, synthetic
gene networks offer the ability to gain a detailed understanding of the
mechanisms involved in gene regulation. As our grasp of the funda-
mental principles of gene regulation improves, we will be able to
design and study increasingly complex systems. The conjunction of
the advanced experimental techniques of molecular biology with the
mathematical tools of nonlinear dynamics and statistical physics
provides an exciting opportunity for rapid advances in the under-
standing and control of cellular behaviour. ■■

doi:10.1038/nature01257
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