Spring 2014 Genomics Exam \#1

Genomic Sequences

There is no time limit on this test, though I don't want you to spend too much time on it. I have tried to design an exam that will take less time that exams in the past. You do not need to read any additional papers other than the ones I send to you. There are 4 pages, including this cover sheet, for this test. There are no Discovery Questions on this exam. You are not allowed discuss the test with anyone until all exams are turned in at 10:30 am on Wednesday February 12. ELECTRONIC COPIES OF YOUR EXAM ANSWERS ARE DUE BY 10:30 am ON WEDNESDAY
FEBRUARY 12. You may use a calculator, a ruler, your notes, the book, and the internet. You may work on this exam in as many blocks of time as you want. Submit your electronic version before 10:30 am (eastern time zone).

The answers to the questions must be typed in a Word file and emailed to me as an attachment. Be sure to backup your test answers just in case (I suggest a thumb drive or other removable medium). You will need to capture screen images as a part of your answers which you may do without seeking permission since your test answers will not be in the public domain. Remember to explain your thoughts in your own words and use screen shots to support your answers. Screen shots without your words are worth very few points. Support your answers with data using screen shots liberally.

DO NOT READ or DOWNLOAD ANY PAPERS FOR THIS EXAM. You may search and read abstracts. RELY ON YOUR EXPERIENCE, AND YOUR SKILLS. Spell out your logic for each answer.

-3 pts if you do not follow this direction.

Please do not write or type your name on any page other than this cover page.
Staple all your pages (INCLUDING THE TEST PAGES) together when finished with the exam.

Name (please type): ANSWER KEY

Write out the full pledge and sign (electronic signature is ideal):

How long did this exam take you to complete?

20 pts

1) I want you to analyze some sequences. All of them can be found in the Word file called "Mystery_One.docx".
a) Translate >First_Sequence. How many amino acids does the encoded protein have? (5 pts) From 151 to 11133.
Translation 3660 a.a. MW=422892.6499999991
 151 ATGTCTGCTCACGTGCTTTGGTATGAGGACGTGGAAGATGATTATGAACGGGAAGATGTTCAAAAGAAAACATTC 225
 226 ACGAAATGGATAAATGCACAGTTTGCTAAGTGTGGAAGACGTTGCATTGAAGATCTTTTTAATGATTTTCGAGAT 300
 301 GGACGAAAACTTCTGGAGCTCCTGGAATGCCTTACAGGCCAAAAAATTGCAAAAGAAAAGGGCTCCACAAGAGTT 375
 376 CATGCTCTGAACAACGTCAACAAAGCACTGCAGATTTTGCAAAGAAATAATGTTGATTTGGTAAATATTGGGAGC 450
 451 TCAGACATTGTGGACGGCAATCATAAACTGACCCTTGGTTTGATCTGGAATATAATCCTCCACTGGCAGGTCAAA 525
 526 GATGTAATGAAAAACATTATGGCTGGACTGCAGCAGACAAACAGTGAGAAGATTCTGCTGAGCTGGGTCCGTCAA 600
 601 TCAACTCGTAATTACCCACAGGTCAATGTTATCAATTTCACCAGTAGCTGGTCTGATGGATTGGCTTTCAATGCA 675
 676 СТССТTCACAGTCACAGACCAGACCTGTTTGATTGGAATGCTGTTGCTTCTCAGCAGTCACCTGTGCAACGATTA 750
 751 GACCATGCATTTAACATAGCCAGGCAACACCTGGGCATAGAGAAGCTCCTTGATCCTGAAGACGTTGCAACTGCC 825 $\begin{array}{llllllllllllllllllllllllllll}226 & \mathrm{C} & \mathrm{P} & \mathrm{D} & \mathrm{K} & \mathrm{K} & \mathrm{S} & \mathrm{I} & \mathrm{L} & \mathrm{M} & \mathrm{Y} & \mathrm{V} & \mathrm{T} & \mathrm{S} & \mathrm{L} & \mathrm{F} & \mathrm{Q} & \mathrm{V} & \mathrm{L} & \mathrm{P} & \mathrm{Q} & \mathrm{Q} & \mathrm{V} & \mathrm{T} & \mathrm{M} & \mathrm{E} & 250\end{array}$ 826 TGTCCAGATAAGAAGTCCATCTTAATGTATGTGACTTCCCTCTTCCAAGTTCTGCCACAGCAAGTCACTATGGAG 900 251 A \quad I \quad R $\quad \mathrm{E} \quad \mathrm{V}$ 901 GCCATCAGGGAGGTGGAAATGCTGCCACGGCACTCAAGGGTCACTACAGAGGAGCACATACAAGTACATCATCAA 975
 976 CAGCATTTTTCACAAGAGATCACAGTCAATATACCCCAGAGACCTTCACCTTCTCCTAAACCACGGTTCAAAAGT 1050

301 Y A Y A Q T A Y V 1051 TATGCATATGCACAAACTGCGTATGTCATACCCCCTGACCAAAAAAGGAGGCAGGTTCCTCCACAGTTTTTAGAA 1125
 1126 ACTGTTGAAAAAAGAACGTATACCACCACAGTGATGAGGTCCGAAATGGATCTTGACAGCTACCAAACAGCTTTA 1200
 1201 GAAGAAGTACTCACGTGGCTTCTCTCTGCTGAAGATGCATTACAAGCACAAGGGGATATATCCAGTGATGTAGAA 1275
 1276 GTTGTTAAAGAGCAGTTTCATACTCATGAGGGTTTCATGATGGAATTAACAGCTCACCAAGGCCGTGTTGGTAAT 1350
 1351 GTTTTGCAAGTTGGAAGTCAACTTCTAGCAATGGGAAAGCTTTCTGATGATGAAGAAAATGAAATACAAGAACAA 1425
 1426 ATGAATCTACTCAATTCTCGATGGGAAAGTCTCAGGGTTGCAAGTATGGAAAAACAAAGCAATTTACATAAAATC 1500
$\begin{array}{llllllllllllllllllllllllllll}451 & \mathrm{~L} & \mathrm{M} & \mathrm{D} & \mathrm{L} & \mathrm{Q} & \mathrm{N} & \mathrm{Q} & \mathrm{Q} & \mathrm{L} & \mathrm{A} & \mathrm{Q} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{W} & \mathrm{L} & \mathrm{T} & \mathrm{K} & \mathrm{T} & \mathrm{E} & \mathrm{E} & \mathrm{R} & \mathrm{T} & \mathrm{K} & \mathrm{K} & 475\end{array}$ 1501 CTAATGGATCTGCAGAATCAGCAACTAGCCCAGTTAGCTGACTGGCTAACAAAAACAGAGGAAAGGACAAAGAAG 1575
 1576 ATAGATTCAGAGCCCTTAGGTCCGGATCTAGAGGACCTAAAGCGTCAAGTAGAAGAACATAAGGCATTTCAAGAT 1650
 1651 GATTTGGAACAGGAACAAGTGAAGGTGAACTCTCTAACCCATATGGTGGTGGTGGTGGATGAAAACAGCGGAGAC 1725

1726 AAAGCGACTGCTGCACTGGAAGAGCAGCTTCAGCACTTTGGAAGCCGGTGGGCAGCCATCTGCAGATGGACAGAA 1800

 2251 GCTAAAGAGGAGCTCCCACCACCACCTCCCCACAAAAAGAGGCAACTCCTTGTGGATTCGGAAATTAGGAAGAGG 2325
 2326 TTTGACTCGGATACAACAGAACTCCATAGCTGGATGACACGTTCAGAAGCAGTACTTCAGAGTCCTGAGTTTGCA 2400
 2401 ATATATCGAAAAGAAGGAAATCTCTCAGATCTCAGAGAAAGAGTCAATGCCATCCAGCGAGAAAAGCCTGAGAAG 2475

2476 TACAGAAAGCTGCAAGATGCCAGCAGATCAGCTGAGGCCCTGGTGGAACAGATGGTGAATGAGGGTCTGAATGCT 2550
 2551 GACAACATTAGACAAGCCTCAGAGCAGCTGAAGAGTCGCTGGATTGAGTTCTGTCAGTTACTGAGTGAAAGACTG 2625

2626 GTATGGTTGGAGTACCAAAATAGCATCATTGACTTCTATTCCCAGCTGCAGCGACTGGAGCAGACAGCAATTACA 2700
 2701 GCAGAAAACTGGCTGAAAGCACAACCCACACCAGCAACAGATCCTGCTACAGTAAAAATTCAGTTGGAAAAATGC 2775

2776 AAGGACGAAATCATCCGAATGTCAACTCTTCAGCCTCAAATTGAACGGCTTAAGGCTCAGAGTCAAGCTCTGAAA 2850

2851 GAGAAAGAACAATGCCCAGTGTTTCTGGATGCTGACCTTGCTGCTTTTACCAGCCACTTCAAACAAATACTTGCT 2925

2926 GACATGCACACCAGAGAAAAGCAACTACAGACCATTTTTGACAGTTTGCCTCCTGCACGCTATAAAGACACAGTG 3000
 3001 AСTACTATACTTTCATGGATCCAGCAGTCAGAAACTAAAGTCTCCATACCTCCAGTTGCAGTGGCTGAATATGAA 3075
 3076 ATCATGGAACAGAGACTCGGGGAGCTCAAGGCTCTACAAAGTTCTCTGCAAGAGCAGCAAAAAGGCCTGAAATAT 3150
 3151 CTCAACACAACTGTTGAAGACTTGTCTAGGAAAGCCCCTGCAGAAGTCAGCCAGAAATACCGATCAGAGGTTGAG 3225
 3226 TTGATCGTTGGCCGCTGGAAGAAGCTGTCATCACAGTTGGTGGAACATTGCCAGAAACTGGAGGATCTTATGACT 3300
 3301 AAACTCCAACGATTCCAGAATGACACAAAAACATTGAAGAAGTGGATGGCTGAAGTAGATGTCTTTCTGAAGGAG 3375
 3376 GAATGGCCTGCTCTTGGTGATTCAGAAGCTCTGGAAAAGCAACTTGAGCAGTGTACAGCTTTAGTAAATGATATC 3450
 3451 CAGACTATCCAGCCGAGTTTGAACAGTGTTAATGAGATTGGGAAGAAAATGAAGAGGGAAGCAGAGCCAGAATTT 3525
 3526 GCTTCCAGAATAGCAACAGAACTAAAGGATCTCAATGCTCAATGGGAACATATTTGCCAACAGGCACATGCTAAG 3600
 3601 AAGGCAGCATTAAAAGGTGGTTTGGATAAGACTGTGAGCCTCAGAAAGGATTTGTCAGAGATGCATGAATGGATA 3675

3676 ACACAAGCTGAGGAAGAATATCTGGAAAGAGATTTTGAGTATAAAACACCCGAAGAATTACAGAAAGCTGTTGAA 3750
 3751 GAACTGAAGAGAGCAAAGGAGGATGCCATGCAGAAAGAAGTGAAAGTGAAACTTATTACTGATTCCGTGAATAAT 3825
 3826 TTTATAGCAAAGGCTCCACCTGCAGCTAATGAGGCTTTGAAAAAGGAGCTTGATGTTCTAATTACCAGCTACCAG 3900
 3901 AGACTCTGCAGCAGACTGAATGGAAAGTGCAAAACTTTGGAGGAAGTATGGGCATGTTGGCATGAATTATTGTCA 3975
 3976 TATTTGGATGCAGAAAACAAATGGTTAAATGAGGTGGAATTGAAACTGAAGGCAACTGAAAATATCCAGGGAGGT 4050
 4051 GCAGAAGAGATTTCTGAGTCTTTAGATTCTTTGGAACGTTTAATGAGACATCCAGAAGATAATCGCAATCAGATT 4125
$\begin{array}{lllllllllllllllllllllllllllll}1326 & \mathrm{R} & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{Q} & \mathrm{T} & \mathrm{L} & \mathrm{T} & \mathrm{D} & \mathrm{G} & \mathrm{G} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{I} & \mathrm{N} & \mathrm{E} & \mathrm{K} & \mathrm{L} & \mathrm{E} & \mathrm{K} & \mathrm{F} & \mathrm{N} & 1350\end{array}$ 4126 CGGGAATTAGCTCAGACTTTAACTGATGGTGGAATCTTGGATGAACTGATCAATGAGAAACTTGAGAAGTTCAAT 4200
 4201 ACTCGATGGGAAGAACTGCAGCAGGAGGCTGTGAGAAGACAAAAGAGTCTTGAACAGAGTATTCAATCTGCCCAG 4275
 4276 GAGACTGACAAAACCCTCCGCTTAATTCAAGAGTCTCTTGCTGCTATAGACAAACAGCTGACAGCCTACACTGCA 4350
 4351 GACAGAGTTGATGCAGCACAAGTGCCTCAGGAAGCACAGAAAATACAATCTGAATTAACAAGCCATGAGATTAGT 4425
 4426 TTGGAAGAAATGAAGAAACGAAACCGAGGCAAGGAATCTGCAAAAAGAGTTCTTTCCCAAATTGATGTGGCACAG 4500
 4501 AAAAAGCTGCAGGATGTCTCCATGAAGTTTCGCTTGTTTCAGAAACCAGCTAATTTTGAACAGCGTCTACAAGAA 4575
$\begin{array}{llllllllllllllllllllllllllll}1476 & \mathrm{C} & \mathrm{K} & \mathrm{R} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{E} & \mathrm{V} & \mathrm{K} & \mathrm{L} & \mathrm{O} & \mathrm{V} & \mathrm{P} & \mathrm{K} & \mathrm{L} & \mathrm{E} & \mathrm{T} & \mathrm{K} & \mathrm{S} & \mathrm{V} & \mathrm{E} & \mathrm{O} & \mathrm{E} & \mathrm{V} & \mathrm{V} & 1500\end{array}$ 4576 TGCAAAAGAATTCTAGATGAAGTGAAGTTGCAAGTGCCCAAGTTGGAGACGAAGAGTGTTGAGCAGGAAGTAGTG 4650
 4651 CAGTCACATTTGGACCACTGCATGAAATTATATAAAAGCCTGAGTGAGGTGAAGTCTGAAGTGGAAACAGTGATA 4725
 4726 AAAACTGGGAGGCAGATTGTTCAAAAGCAGCAGACAGAGAACCCAAAAGAACTGGATGAAAGGCTTACAGCTTTG 4800
$1551 \mathrm{~K} \quad \mathrm{~L}$ 4801 AAGTTGCAGTATAATGAATTGGGTGCGAAGGTGACAGAAAAAAAGCAGGAGTTAGAGAAATGCTTGAAATTGTCC 4875
$\begin{array}{llllllllllllllllllllllllllll}1576 & \mathrm{R} & \mathrm{K} & \mathrm{L} & \mathrm{R} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{N} & \mathrm{S} & \mathrm{L} & \mathrm{T} & \mathrm{E} & \mathrm{W} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{T} & \mathrm{D} & \mathrm{V} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{K} & \mathrm{R} & \mathrm{S} & 1600\end{array}$ 4876 CGGAAGCTACGAAAAGAAATTAATTCGCTGACAGAATGGCTTGCAGCAACAGATGTGGAATTGACAAAGAGATCA 4950
$\begin{array}{llllllllllllllllllllllllllll}1601 & \mathrm{~A} & \mathrm{~V} & \mathrm{Q} & \mathrm{G} & \mathrm{M} & \mathrm{P} & \mathrm{S} & \mathrm{N} & \mathrm{L} & \mathrm{D} & \mathrm{A} & \mathrm{E} & \mathrm{I} & \mathrm{A} & \mathrm{W} & \mathrm{G} & \mathrm{K} & \mathrm{A} & \mathrm{T} & \mathrm{R} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{E} & \mathrm{K} & 1625\end{array}$ 4951 GCTGTGCAAGGGATGCCTAGCAATTTGGATGCTGAAATTGCCTGGGGCAAGGCAACACGGAAAGAGATTGAGAAA 5025
 5026 CGCCAAGTCCAGCTTAAGAATATCTGTGATTTAGGAGAGAATTTGAAGACAGTACTGAAAGGAAAGGAAAGTCTA 5100
 5101 GTGGAAGATAAACTCAGTCTCCTGAACAGTAATTGGATAGCAGTAACTTCACGTGCCGAGGAATGGTTAAATCTG 5175
 5176 TTAATGGAATATCAAAAGCACATGGAGGCTTTTGATCAGAAAGTAGCTAATGTCACGACTTGGATATATCGTGCT 5250
 5251 GAAATACTGTTGGATGAATCTGATAAGCAAAAGCCCCAGCAAAAAGAGGAAACTCTTAAGCGCTTAAAGGCTGAG 5325
 5326 CTGAATGATATGCATCCAAAGGTGGACTCTGTGCGTGACCAAGCAGTAGACTTGATGACAAACCGTGGTGATCAC 5400
 5401 TGCAGGAAAGTAATAGAGCCTAAACTATCTGAGCTCAACCATCGATTTGCTGCCATATCACAAAGAATTAAGAGT 5475
 5476 GGAAAGCCCTTCATTCCTTTGAAGGAATTGGAGCAATTTGACTTCGATATACAAAAATTGCTTGAACCACTGGAG 5550
 5551 GTTGAAATTCAGCAGGGGGTGAATCTGAAAGAGGAGGACTTCAATAAAGATATGAGTGAAGATGATGAGAGCACA 5625
 5626 GTGAAAGAATTGCTGCAAAGGGGCGACACGCTTCAGAAAAGAATCACAGATGAGAGAAAACGGGAGGAAATAAAG 5700
 5701 ATAAAACAACAGCTGTTGCAGACTAAACATAATGCTCTCAAGGACTTGAGGTCTCAAAGAAGAAAAAAGGCTTTA 5775
$1876 \mathrm{E} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{H} \quad \mathrm{Q} \quad \mathrm{W} \quad \mathrm{Y}$ Q $\quad \mathrm{Y} \quad \mathrm{K} \quad \mathrm{R}$ 5776 GAGATTTCTCATCAATGGTATCAGTACAAGAGGCAGGCTGATGACCTAATGACATGGCTGGATGACATTGAGAAA 5850
 5851 AAGTTAGCCAGTCTACCAGACCACAAAGATGAGCAGAAGCTAAAGGAGATTGGTGGAGAGTTGGAGAAGAAGAAG 5925
$\begin{array}{llllllllllllllllllllllllllll}1926 & \mathrm{E} & \mathrm{D} & \mathrm{L} & \mathrm{N} & \mathrm{A} & \mathrm{V} & \mathrm{N} & \mathrm{R} & \mathrm{Q} & \mathrm{A} & \mathrm{E} & \mathrm{R} & \mathrm{L} & \mathrm{S} & \mathrm{K} & \mathrm{D} & \mathrm{G} & \mathrm{A} & \mathrm{A} & \mathrm{K} & \mathrm{A} & \mathrm{V} & \mathrm{E} & \mathrm{P} & \mathrm{T} & 1950\end{array}$ 5926 GAAGATCTGAATGCGGTGAACAGACAGGCTGAACGCCTGTCTAAGGATGGGGCTGCAAAAGCAGTGGAGCCAACC 6000
 6001 CTGGTACAGCTCAGCAAGCGCTGGCGAGATTTTGAGAGCAAATTTGCTCAGTTTCGAAGACTCAACTATGCACAA 6075
 6076 ATTCAAACAGTTCTAGAAGATACAACTTTTGTGATGACTGAAAGTATGACTGTGGAAACCACTTACGTGCCTTCT 6150
 6151 AСATACCTGGCAGAGATCCTTCAGCTTCTGCAAGCCTTGTCTGAAGTAGAAGAACGCCTTAATTCTCCTGTTCTG 6225

2026 Q A 6226 CAGGCCAAGGACTGTGAGGATCTCTTGAAACAAGAAGAATGTCTCAAGAACATTAAAGATTGCCTGGGGAGACTC 6300
 6301 CAGGGTCATATAGACATTATTCACAGCAAGAAGACACCGGCTTTGCAAAGTGCTACACCACGGGAAACAGCAAAT 6375
 6376 ATACAAGACAAGCTGACTCAGCTTAATTCCCAATGGGAGAAAGTTAACAAGATGTACCGGGACCGGCAGGCACGC 6450

2101 F $2 \mathrm{D}_{2} \mathrm{~K}$ 6451 TTTGACAAATCCAAGGAAAAGTGGCGGCTTTTTCATTGCGAAATGAAGAGTTTTAATGAGTGGCTAACTGAAACT 6525 $\begin{array}{llllllllllllllllllllllllllll}2126 & \mathrm{E} & \mathrm{E} & \mathrm{K} & \mathrm{L} & \mathrm{S} & \mathrm{R} & \mathrm{A} & \mathrm{Q} & \mathrm{I} & \mathrm{E} & \mathrm{A} & \mathrm{G} & \mathrm{D} & \mathrm{V} & \mathrm{G} & \mathrm{H} & \mathrm{V} & \mathrm{K} & \mathrm{T} & \mathrm{K} & \mathrm{Q} & \mathrm{F} & \mathrm{L} & \mathrm{Q} & \mathrm{E} & 2150\end{array}$ 6526 GAAGAGAAACTGTCAAGAGCACAGATAGAGGCTGGAGACGTGGGTCATGTGAAAACCAAGCAATTTCTTCAGGAG 6600
 6601 CTTCAGGATGGCATTGGGCGACAGCAAACTGTTGTCAAAACACTGAATGTAACTGGCGAAGAAATTATTGAGCAG 6675
 6676 TCATCAGCAGCAGATGCTAACGTGCTGAAGGAGCAACTGGGAAATCTGAATACCCGGTGGCAGGAGATCTGCAGA 6750

2201 Q 6751 CAGCTGGTAGAGAAAAGAAAGAGGATAGAGGAAGAAAAGAATATTTTATCAGAATTTCAAGAAGACTTGAACAAG 6825
 6826 CTGATTTTATGGTTAGAGGAAACAGAGAACGTCATTGCTATTCCCCTTGAACCAGGGAATGAAGACCAGCTAAGA 6900
 6901 GACTGCCTTGGCAAAGTAAAGTTAAGAGTTGAAGAGCTGCTGCCACACAAGGGAATACTGAAACGATTAAATGAA 6975
 6976 ACTGGAGGAACAACGCTTGGAAGTGCATCACTGAACCCAGAAAGAAAACATAAGCTTGAGAGTACACTGAAGGAG 7050

2301 A S 7051 GCTAGCCGTCGCTTGTTAAAGGTGTCCAGAGATCTACCAGAGAAGCAAAAAGAAATAGAGATTCTGCTAAAGGAT 7125
 7126 TTCATCGAACTTAATCAGCAAATAAATCAACTGACACTCTGGATAACACCTGTCAAAAACCAGCTAGAGCTTTAT 7200
 7201 AACCAAGTGGGTCAACCAGGAGCTTTTGATATTAAGGAAACCGAAGCAGCAGTGCAGGCTAAACAGCCGAATGTG 7275
 7276 GAAGAGGTTTTGTCTAAAGGGTGTCATTTATATAAGGAAAAACCAGCCACTCATCCAGTAAAGAAAAAACTAGAA 7350

7351 GACTTGAATGCTGACTGGAAGGCAATAAACCACTTAATTCTACAACTGAAGGAGAAGCCAACATTTGGAGAGCCT 7425

7426 GCCCTTACCTCTCCAGGTGTCTTAACTTCTGGTCAAACTGTTGCTGTGGATACACAAGCCAGGGTAACCAAGGAA 7500
 7501 ACCACCAGCTTCACACCAGAAATGCCATCTTCTGTGCTTTTGGAGGTTCCAGCCTTAGCTGACTTCAATAAGGCA 7575

7576 TGGGCAGAACTCACTGACTGGCTTTCTCGACTGGATCGAGAGATAAAAGCTCAGAGAGTGACAGTAGGTGATCTT 7650

2501 D D I N 7651 GATGATATCAACGACATGATCATCAAACAAAAGGCTAACATGCAAGATCTGGAGCAAAGACGTCCCCAGCTGGAT 7725
$\begin{array}{llllllllllllllllllllllllllll}2526 & \mathrm{E} & \mathrm{L} & \mathrm{I} & \mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{Q} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{N} & \mathrm{K} & \mathrm{T} & \mathrm{S} & \mathrm{N} & \mathrm{Q} & \mathrm{E} & \mathrm{A} & \mathrm{R} & \mathrm{T} & \mathrm{I} & \mathrm{I} & \mathrm{T} & \mathrm{D} & \mathrm{R} & 2550\end{array}$ 7726 GAACTAATAACTGCAGCACAAAATCTCAAAAACAAGACGAGCAATCAAGAGGCCAGAACAATAATTACTGACCGC 7800
 7801 ATTGAAAAGATACAGAGCCAGTGGGATGATGTGCACGGATACCTCCAAAACCGAAGACAACAGCTTCATGAGATG 7875
 7876 CAAAAGGATTCAACACAGTGGCTAGAAGCTAAACAAGAAGCTGAACAGGTTCTTGAACAAGCAAAAGCAAAGCTT 7950

2601 E S W 7951 GAGTCATGGAAAGAAATTTCCTATACTGTGGAAGCTCTGAAAAAGCAGAACTCTGAGCTTAAGCAATTTTCAAAA 8025
$\begin{array}{llllllllllllllllllllllllllll}2626 & E & I & R & Q & W & Q & M & N & I & E & G & V & N & D & V & A & L & K & P & V & R & D & Y & S & A & 2650\end{array}$ 8026 GAGATACGACAGTGGCAAATGAATATAGAAGGGGTGAATGACGTGGCACTTAAGCCTGTCCGCGATTATTCAGCA 8100
 8101 GATGACACCAGAAAAGTAGAACTGATGACAGATAACATTAATGCGACATGGGCTACAATCAATAAGAGGGTTAGT 8175
 8176 GAACGTGAAGCCGCACTGGAATCAGCTCTACTGATGTTGCAGGAATTCTACCTGGATCTTGAAAAGTTCCTTGCT 8250
 8251 TGGCTTACAGAAGCTGAAACAACTGCTAATGTCCTGCAGGATGCTACACACAAGGAAAAGACACTAGAGGATCCC 8325
$\begin{array}{llllllllllllllllllllllllllll}2726 & \mathrm{Q} & \mathrm{M} & \mathrm{V} & \mathrm{R} & \mathrm{E} & \mathrm{L} & \mathrm{M} & \mathrm{K} & \mathrm{Q} & \mathrm{W} & \mathrm{Q} & \mathrm{D} & \mathrm{L} & \mathrm{Q} & \mathrm{A} & \mathrm{E} & \mathrm{I} & \mathrm{D} & \mathrm{A} & \mathrm{H} & \mathrm{T} & \mathrm{D} & \mathrm{I} & \mathrm{F} & \mathrm{H} & 2750\end{array}$ 8326 CAGATGGTTCGGGAGCTCATGAAGCAGTGGCAGGATCTACAGGCAGAAATTGATGCACATACTGACATCTTCCAC 8400
 8401 AACCTGGATGAAAACGGGCAGAAAATCCTGAGATCCCTGGAAGGCTCAGAGGATGCTGTCCTGTTGCAGAGACGT 8475
 8476 CTGGATAACATGAACTTCAGATGGAGTGAGCTTAGGAAGAAATCTCTAAACATTAGATCTCATTTGGAAGCCAGC 8550
 8551 ACAGACCAGTGGAAGCGTTTACATCTCTCTCTTCAGGAACTTTTGGCATGGCTGCAATTGAAGGAGGATGAATTA 8625
$\begin{array}{llllllllllllllllllllllllllll}2826 & \mathrm{~K} & \mathrm{Q} & \mathrm{Q} & \mathrm{A} & \mathrm{P} & \mathrm{I} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{I} & \mathrm{P} & \mathrm{T} & \mathrm{V} & \mathrm{Q} & \mathrm{K} & \mathrm{Q} & \mathrm{N} & \mathrm{D} & \mathrm{V} & \mathrm{H} & \mathrm{R} & \mathrm{T} & \mathrm{F} & \mathrm{K} & \mathrm{R} & 2850\end{array}$ 8626 AAACAGCAAGCACCCATTGGTGGAGATATTCCCACTGTGCAGAAGCAGAATGATGTTCATAGGACTTTCAAGAGG 8700
 8701 GAGCTGAAAACAAAAGAACCTGTTATCATGAATGCACTTGAGACTGTGCGACTCTTCCTGGCAGATCAACCAGTA 8775
 8776 GAGGGACTGGAAAAGGTCTATCCAGAACCAAGAGACCTATCACCTGAGGAGAGGGCCCAGAATGTCACTAAAGTT 8850

8851 CTCCGAAGGCAAGCAGATGATGTCAGAACTGAGTGGGATAAGCTAAATCTACGTTCTGCTGATTGGCAAAAGAAG 8925
 8926 ATAGATGATGCTCTTGAAAGACTGCAGGGTCTTCAGGAGGCAATGGATGAACTAGACCTGAAACTGCGCCAGGCT 9000
 9001 GAAGCATTCAAGGGATCCTGGCAGCCAGTGGGGGATCTGCTGATAGACTCTCTGCAGGATCACTTAGAAAAAGTC 9075
 9076 AAGGTTTATCGAGCAGAAATGGTGCCCCTTAAAGAGAAGGTGCATCAAGTCAATGAGCTGGCTCACCGGTTCGCT 9150
$3001 \mathrm{P} \quad \mathrm{P} \quad \mathrm{D} \quad \mathrm{I}$ Q $\quad \mathrm{L} \quad \mathrm{S}$ 9151 CCCCCTGATATTCAGCTCTCСССАTACACTCTCAGCTGTCTGGAGGACCTGAACACAAGGTGGAAGGTGCTACAG 9225
 9226 GTGGCCATTGATGAGCGCATCAGGCAACTGCATGAAGCTCACAGGGATTTTGGCCCTACTTCCCAGCATTTTCTT 9300
 9301 ACCACTTCTGTCCAAGGCCCCTGGGAGAGGGCAATCTCGCCAAACAAAGTGCCCTATTACATCAACCATGAGACG 9375
$\begin{array}{lllllllllllllllllllllllllllll}3076 & \mathrm{Q} & \mathrm{T} & \mathrm{T} & \mathrm{C} & \mathrm{W} & \mathrm{D} & \mathrm{H} & \mathrm{P} & \mathrm{K} & \mathrm{M} & \mathrm{T} & \mathrm{E} & \mathrm{L} & \mathrm{Y} & \mathrm{Q} & \mathrm{S} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{L} & \mathrm{N} & \mathrm{N} & \mathrm{V} & \mathrm{R} & \mathrm{F} & 3100\end{array}$

9376 CAGACAACCTGCTGGGATCATCCCAAAATGACCGAGCTCTACCAGTCTTTAGCGGACCTGAACAATGTCAGATTC 9450
 9451 TCAGCATACAGAACTGCCATGAAGCTCCGCAGGCTGCAGAAAGCTCTCTGCTTGGATCTCCTGAATCTGTCTGCT 9525
 9526 GCATGCGATGCCTTGGACCAGCACAACCTCAAGCAAAATGACCAGCCGATGGATATTCTGCAGATCATTAACTGC 9600 $3151 \mathrm{~L} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{I} \quad \mathrm{Y} \quad \mathrm{D} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{E} \quad \mathrm{H} \quad \mathrm{N} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{N} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{V} \quad \mathrm{D} \quad \mathrm{M} \quad \mathrm{C} \quad 3175$ 9601 TTGACCACTATTTATGATCGACTGGAACAGGAGCACAATAATCTGGTCAATGTTCCTCTCTGCGTAGACATGTGC 9675
 9676 CTCAACTGGCTGCTGAATGTCTATGACACGGGTCGAACAGGAAGGATCCGTGTCTTATCTTTCAAAACTGGTGTT 9750
 9751 GTATCCCTTTGTAAAGCACATCTGGAAGATAAGTATAGATACCTGTTCAAGCAGGTGGCGAGCTCCACTGGCTTC 9825
 9826 TGTGACCAGCGCCGGCTGGGACTGCTGCTGCACGACTCCATCCAGATCCCACGGCAGCTGGGGGAGGTCGCTTCG 9900
 9901 TTTGGGGGCAGCAACATCGAGCCGAGTGTCAGAAGCTGCTTCCAGTTTGCCAATAACAAGCCTGAGATCGAAGCA 9975
 9976 GCCTTGTTCCTGGACTGGATGAGGCTGGAACCACAATCCATGGTGTGGCTGCCCGTGCTGCACAGGGTGGCTGCT 10050
 10051 GCCGAAACTGCCAAACACCAAGCAAAGTGTAACATCTGCAAGGAGTGCCCCATTATTGGATTCAGGTACAGAAGC 10125
 10126 TTAAAGCACTTTAACTATGACATCTGCCAAAGTTGCTTCTTCTCTGGCCGTGTTGCAAAAGGTCACAAAATGCAC 10200
 10201 TATCCCATGGTGGAGTACTGCACACCGACAACTTCTGGAGAAGATGTCCGTGACTTTGCCAAGGTACTAAAAAAC 10275
$3376 \mathrm{~K} \quad \mathrm{~F} \quad \mathrm{R} \quad \mathrm{T} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{Y} \quad \mathrm{F} \quad \mathrm{A} \quad \mathrm{K} \quad \mathrm{H} \quad \mathrm{P} \quad \mathrm{R} \quad \mathrm{M} \quad \mathrm{G} \quad \mathrm{Y} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{Q} \quad \mathrm{T} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{G} \quad 3400$ 10276 AAATTTCGAACAAAAAGATATTTTGCAAAGCACCCACGAATGGGCTACCTGCCTGTGCAAACTGTCTTGGAGGGA 10350
 10351 GACAACATGGAAACTCCTGTTACTCTGATCAACTTCTGGCCAGTAGATTCTGCGCTAGCAGAAATGGAGAACAGC 10425
$3426 \mathrm{~N} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{Y} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{P} \quad \mathrm{N} \quad \mathrm{E} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{D} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{H} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{I} \quad \mathrm{Q} \quad \mathrm{H} \quad \mathrm{Y} \quad 3450$ 10426 AATGGTTCTTACCTAAATGACAGTATTTCACCTAATGAGAGCATCGATGATGAACACTTGTTAATCCAGCACTAC 10500
$3451 \mathrm{C} \quad \mathrm{Q} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{Q} \quad \mathrm{E} \quad \mathrm{S} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{P} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{P} \quad \mathrm{A} \quad \mathrm{Q} \quad \mathrm{I} \quad \mathrm{L} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{S} \quad 3475$ 10501 TGCCAAAGTCTGAACCAGGAATCCCCCCTGAGCCAGCCCCGAAGCCCTGCCCAGATCTTGATTTCTCTGGAGAGT 10575
 10576 GAAGAAAGAGGTGAACTGGAGAGAATTCTTGCAGATCTGGAAGAAGAGAATCGAAACTTGCAAGCGGAGTATGAC 10650
 10651 CGTTTGAAGCAACAGCATGATCACAAAGGATTATCTCCACTGCCATCCCCACCAGAGATGATGCCAGTTTCTCCA 10725
 10726 CAGAGTCCTCGCGATGCTGAACTCATTGCAGAAGCCAAACTGCTTCGCCAGCACAAGGGCCGCCTGGAGGCCAGG 10800

10801 ATGCAGATTCTGGAGGATCACAACAAACAGCTGGAGTCACAGCTGCACAGGCTGAGGCAGCTGCTGGAGCAGCCA 10875

10876 CAGGCAGATGCCAAGGTGAATGGTACAACACTATCATCTCCTTCTACCTCTTTGCAGAGGTCAGACAGCAGTCAG 10950

10951 CCAATGCTTCTTCGTGTAGTTGGCAGCCAGACTTCAGAAACCATGGGCGAGGACGACCTGCTCAGCCCTCCCCAG 11025
 11026 GACACAAGCACAGGTTTGGAGGAAGTGATGGAGCAGCTTAACAACTCCTTCCCCAGTTCCAGAGGAAGAAATGCC 11100
$3651 \quad \mathrm{P} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{R} \quad \mathrm{E} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{M} \quad$ * 3661
11101 CCTGGAAAGCCAGTGAGAGAGGCCACAATGTAG 11133
b) From what species was this sequence taken? Support your answer with evidence.
/organism="Gallus gallus"
c) I happen to know that >Second_Sequence evolved from >First_Sequence. Analyze
$>$ Second_Sequence. List and describe all the mutations you detect. Support each mutation you describe with the evidence you used. Your analysis should provide the most parsimonious answer.

1) SNP in $10^{\text {th }}$ codon to change amino acid
2) double inversion: first one at 2,200 and 10,500; second one at 6,100 and 9,400.

d) Search NCBI to find a tabular presentation of some of the known SNPs in the original gene for First Sequence. Be sure you are looking at the correct species (see part b above). Your answer must include a screen show showing multiple SNPs and the effects they would have on the encoded protein. http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=396236 something like this:

20 pts

2) Over the last few years, we have sequenced more and more Neaderthal DNA. These questions pertain to those findings.
a) Neander Fig1a shows the analysis of DNA from 6 different fossil bone samples. Which fossil would you use for additional studies and why? Support your answer with data.
VI-80 has the least amount of modern DNA contamination and the most Neanderthal DNA.

Figure 1|Ratio of Neanderthal to modern human mtDNA in six hominid fossils. For each fossil, primer pairs that amplify a long (119 base pairs; upper lighter bars) and short (63 base pairs; lower darker bars) product were used to amplify segments of the mtDNA hypervariable region. The products were sequenced and determined to be either of Neanderthal (yellow) or modern human (blue) type.
b) From an abstract: "Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago." What can you conclude from Neander Fig1b?

If diverged and split mean about the same thing (i.e. 500 K years ago), then about 2,000 individuals gave rise to humans and Neanderthals.

Figure 6 | Estimate of the effective population size of the ancestor of humans and Neanderthals. a, Schematic illustration of the model used to estimate ancestral effective population size. By split time, we mean the time, in the past, after which there was no more interbreeding between two groups. By divergence, we mean the time, in the past, at which two genetic regions separated and began to accumulate substitutions independently. Effective population size is the number of individuals needed under ideal conditions produce the ment of dicersity win a population.
 b, The likelihood estimates of population split times and ancestral population sizes. The likelihoods are grouped by colour. The red-yellow points are statistically equivalent based on the likelihood ratio test approximation. The black line is the line of best fit to red-yellow points (see Supplementary Methods). This graph is scaled assuming a human-chimpanzee average sequence divergence time of $6,500,000$ years.
c) From the figure legend of Neander Fig1c: "a, Individual maps; the marginal probability of Neanderthal ancestry for one European-American, one eastAsian and one sub-Saharan-African phased genome across chromosome 9. b, Population maps; estimated the proportion of Neanderthal ancestry in European individuals (red) and east-Asian individuals (green), averaged across all individuals from each population in non-overlapping $100-\mathrm{kb}$ windows on chromosome 9 . The black bar denotes the coordinates of the centromere. The plot is limited to segments of the chromosome that pass quality filters. CEU, residents of Utah, US, with northern and western European ancestry; CHB, Han Chinese in Beijing, China; LWK, African Luhya in Webuye, Kenya." Interpret panels a and b from this figure. Support your answer with data from the

figure.
panel a:
It appears East Asian and Europeans still carry some Neanderthal DNA on chromosome 9. It looks like they are not identical segments, but maybe the resolution is not precise enough to be sure. The Luhya person does not appear to carry any Neanderthal DNA on chromosome 9 .
panel b:
Similar results for populations of Asians and Europeans with both sharing similar parts of chromosome 9 with Neanderthals.
d) Consider Neander Fig1d and summarize the results. Support your answer with data from the figure. Functionally important DNA from he Neanderthal DNA seems to be less abundant on the X chromosomes of Asians and Europeans than on the autosomes. Suggests some decreased fertility or other form of fitness.

Figure $2 \mid$ Functionally important regions are deficient in Neanderthal ancestry. The median of the proportion of Neanderthal ancestry (estimated as the average over the marginal probability of Neanderthal ancestry assigned to each individual allele at a SNP) within quintiles of a B statistic that measures proximity to functionally important regions (1-low, 5 -high). We show results on the autosomes and the X chromosome, and in European and east-Asian populations.

15 pts

3) This question focuses on the biggest news in biology for several years. I suspect this will win a Nobel prize not long from now.
a) Look up "STAP cells" and briefly summarize what they are. Provide me with a link to your source(s).

These are induced pluripotent stem cells but they are not produced by giving them DNA encoding 4 transcription factors like iPSCs. Treated with acid to stress them. They had GFP and were derived from white blood cells that had rearranged DNA to verify they were somatic.
http://www.cnn.com/2014/01/29/health/stem-cell-discovery/
b) What genomic evidence did the investigators use to convince skeptics that they had converted mature, differentiated cells into stem cells? Provide citation for your source(s).
"gene rearrangement analysis" for T cell receptor or antibodies (T cells is correct, but the abstract did not differentiate which one).
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stimulus-
triggered+fate+conversion+of+somatic+cells+into+pluripotency
c) What sort of changes would you expect to see at the genome level if you compared the original cells to the STAP cells? Do not talk about protein or mRNA differences - focus on the genome.
Epigenetic changes
http://www.utsandiego.com/news/2014/Jan/29/new-stem-cell-stap-vacanti/

25 pts

4) The first two snake genomes (Burmese Python and King Cobra) were sequenced in December, 2013. Answer the following questions.
a) Look at Snake

Fig1 (MKO = mouse knock out phenotype). Summarize what you see about snakes in general as well as each species of snake.

Snakes have gene enrichment in all four categories but metabolism is by far
 the most enriched.
Cobra has slightly more than python in all but metabolism.
b) Snake Fig2 focuses on snake venom that evolved in king cobras. (C) ... the three-finger toxin gene family (D) other pathogenic toxin families of venom-expressed genes, and (E) ancillary toxin families after the split of the Burmese python from the advanced snakes. Compare and contrast evolution of the three toxin gene families.

C three-finger toxin - lots of adaptive radiation in cobra, but not in python.

D other venom genes - adaptive radiation in 3 genes for cobra, not as much as three-finger toxin, and only one paralog in python.

E ancillary toxins - not much adaptive radiation in cobras or pythons in this category. So cobra mainly diversified three-finger toxins.

c) Where are Bermese Pythons found in nature outside their normal range? Are they having an impact on their new location? Support your answer with data including a peer-reviewed journal citation.
Florida Everglades: killing all vertebrates and mammals.
Our own Mike Dorcas:
http://www.pnas.org/content/109/7/2418.abstract?sid=93e23f28-3d72-46e1-bba1-308342442f7d

d) What would you do next to determine if the Burmese Python is evolving in its new habitat? Design the experiment you would like to perform if expense and human resources were not limiting. Lots of options; genome, transcriptome, epigenetic changes in methylome....
e) Find the Homo sapiens kallikrein 1 gene in a human genome browser. What compounds bind to human kallikrein 1? Support your answer with screen shots.

The following chemicals interact with this gene

- D012964 Sodium
- D013311 Streptozocin
f) What is kallikrein 1's normal function and what human tissues transcribe this
- D013749 Tetrachlorodibenzodioxin
- C472791 3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid mRNA? Support your answer with screen shots. How could this function be related to snake venom?
- C006500 4-aminobenzamidine
- C019498 4-nitroaniline

Protease

- D000535 Aluminum

Molecular Function:

- D000584 Amiloride

GO:0003824 catalytic activity

- D000643 Ammonium Chloride

GO:0004252 serine-type endopeptidase activity
GO:0004293 tissue kallikrein activity
GO:0008233 peptidase activity
GO:0016787 hydrolase activity

GeneHub-GEPIS -- From Gene

Integration to Expression Profiling
Most in saliva, then pancreas then lymph system.

In blood, regulates BP.
Expression Distribution for KLK1

g) How could the cobra's kallikrein 1 gene evolve to be venomous in king cobra if snakes use kallikrein 1 the same way humans do?

They had gene duplication, then the paralogs changed expression pattern to be in venom and they use this to break down proteins in prey. Could also cause BP crash in prey.

20 pts

5) The final question is a series of mildly related parts.
a) Look at Seq Fig5a and evaluate the diagram. This is a hypothetical case of one chromosome with three distinct regions (I, II and III). The short segments under the long contiguous piece of DNA are sequencing reads from a 454 machine. On top is the assembly from algorithm \#1 and below is the assembly from algorithm \#2. Summarize what algorithm \#2 did by mistake. Explain how this mistake could take place.

Regions of similarities and \#2 combined them into one locus and put II on a separate scaffold. \#2 did not take into consideration the number of reads as indicating a collapsed region.
b) Some authors stated, "hemizygosity of a 600kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. The corresponding reciprocal duplication is associated with being underweight. The reciprocal impact of these 16 p 11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance." Do your best to determine how many distinct genes are in this region of the human genome. Explain to me how you determined your answer. Support your answer with screen shots.

Gene names appear more than once but it looks like about 100 genes??
Genome Browser packed view.
Different correct answers. It is harder than you think it would be to know how many genes.

c) Look at Seq Fig5b which shows GWAS data plotted on negative $\log _{10} \mathrm{p}$-value on the Y -axes. They were looking for genes that affect systolic blood pressure (SBP) and diastolic blood pressure blood pressure (DBP). The horizontal dotted line is $\mathrm{p}=2.5 \times 10^{-8}$. Pick one gene to study and tell me why you would choose it. What is the function of the encoded protein for the gene you chose (use GO terms)?

Many options. Choose a gene high up on its column.

d) Look at Seq Fig5c. What can you conclude about the microbiome on humans and their pet dogs? The left panel shows the average unweighted UniFrac distance between adult dog-owners and their dogs (blue), between dog-owners and other (not their own) dogs (red), and between adults who do not own dogs and dogs (green). The right panel shows the number of phylotypes shared for the same categories. Comparisons are labeled on the y-axis such that the first body site listed corresponds to the dog and the second site corresponds to the human. Mean $\pm 95 \%$ CI shown. The presence of asterisks lacking brackets indicates that all pairwise comparisons within that group are significant. *p<0.05, **p<0.001 after Bonferroni correction (Wilcoxon test).

Do owners have more bacterial phylotypes than non-dog
 owners in all sites. The
diversity between humans is greatest when compared to non-dog owners in most cases, though not all.

