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Diffusional Mobility of Golgi Proteins in
Membranes of Living Cells

Nelson B. Cole, Carolyn L. Smith, Noah Sciaky,* Mark Terasaki,
Michael Edidin, Jennifer Lippincott-Schwartzt

The mechanism by which Golgi membrane proteins are retained within the Golgi complex
in the midst of a continuous flow of protein and lipid is not yet understood. The diffusional
mobilities of mammalian Golgi membrane proteins fused with green fluorescent protein
from Aequorea victoria were measured in living HeLa cells with the fluorescence pho-
tobleaching recovery technique. The diffusion coefficients ranged from 3 x 1 0-9 square

centimeters per second to 5 x 10-9 square centimeters per second, with greater than
90 percent of the chimeric proteins mobile. Extensive lateral diffusion of the chimeric
proteins occurred between Golgi stacks. Thus, the chimeras diffuse rapidly and freely
in Golgi membranes, which suggests that Golgi targeting and retention of these mol-
ecules does not depend on protein immobilization.

The Golgi complex contains a large number
of resident components that play important
roles in the processing and sorting of secretory
and membrane proteins, but how these com-
ponents are maintained in the Golgi despite a
continuous flow of protein and lipid through
the secretory pathway is currently a topic of
debate (1). Several mechanisms of Golgi pro-
tein retention have been suggested: oligomer-
ization into structures too large to enter trans-
port vesicles (2), lateral segregation into lipid
microdomains (3), and recognition of reten-
tion or retrieval signals (4). In these models
specific protein-protein or protein-lipid in-
teractions underlie Golgi protein retention.
Whether such interactions affect the dy-
namic properties of Golgi membrane pro-
teins in vivo, including the diffusional mo-
bility of Golgi proteins and trafficking of
these proteins between Golgi stacks, has
not been addressed.
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To probe for interactions that might un-
derlie the retention of Golgi membrane pro-
teins, we examined the diffusional mobility
of Golgi membrane components using fluo-
rescence photobleaching recovery (FPR).
This technique is a powerful tool for inves-
tigating the environment of membrane pro-
teins and has revealed several types of inter-
actions that constrain the lateral diffusion of
proteins in the plasma membrane (5). The
dynamic properties of intracellular mem-
brane proteins have not been thoroughly
explored by FPR because of a lack of appro-
priate fluorescent labels. Here, we used the
Aequorea victoria green fluorescent protein
(GFP) (6) as a tag to investigate the diffu-
sional mobility of four Golgi membrane pro-
teins (7), mannosidase II (Man II), -1,4-
galactosyltransferase (GalTase), and wild-
type and mutant forms of KDEL receptor
(KDELR), within the Golgi and the endo-
plasmic reticulum (ER). We also used fluo-
rescence loss in photobleaching to examine
the extent of lateral membrane continuity
between Golgi stacks, and within the ER.

Man II and GalTase are "resident" en-
zymes of the Golgi complex, which function
in carbohydrate processing. In contrast,
KDELR is an itinerant Golgi component,
which recycles to the ER when it binds
KDEL ligand (8). Substitution of asparagine
for aspartic acid at position 193 in KDELR,
denoted KDELRm, prevents it from redistrib-
uting into the ER in the presence of high
concentrations of ligand (9). GFP was fused
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to full-length Man II at its lumenally orient- A (BFA), which causes Golgi membranes gand-induced recycling of KDELR.
ed COOH-terminus (Man II-GFP), to but not other membranes to redistribute into The diffusional mobilities of the GFP chi-
GalTase truncated at position 60 in its lu- the ER (1 1), further supported a Golgi local- meras within Golgi membranes were exam-
menal domain (GalTase-GFP), and to the ization of the GFP chimeras (Fig. 1, E and F). ined in living cells at 37°C by bleaching out
cytoplasmically oriented COOH-terminus of Overexpression of lysozyme-KDEL (ligand fluorescence in a Golgi region with a high-
wild-type (KDELR-GFP) and mutated for KDELR) caused KDELR-GFP, but not energy laser scan of a confocal microscope and
KDELR (KDELRm-GFP) (10). KDELRm-GFP, to redistribute into the ER then using lower intensity illumination to

When each of the GFP-tagged proteins (Fig. 1, G and H), as observed in previous image the recovery of fluorescence by means
was expressed in HeLa cells, fluorescence studies characterizing wild-type and defec- of diffusion of unbleached GFP chimeras into
was localized almost exclusively to jux- tive KDEL receptors (9). Thus, the GFP tag this region. Fluorescence recovery into the
tanuclear Golgi structures (Fig. 1, A to D). did not interfere with Golgi targeting of photobleached region was rapid for all of the
Observations in cells treated with brefeldin KDELR, Man II, and GalTase or with li- GFP chimeras (Fig. 2). The mobile fraction of

Fig. 1. Expression of A B D
Golgi-targeted GFP chi-
meras revealed by fluo-
rescence microscopy of
living HeLa cells trans-
fected with GalTase-GFP,
Man 1l-GFP, KDELR-GFP,
or KDELRm-GFP (26). (A
to D) Chimera distribu- E
tions in untreated cells.
Distributions of GalTase-
GFP (E) and Man 1l-GFP
(F) after a 30-min treat-
ment with BFA (2 jig/ml),
and KDELR (G) or
KDELRm (H) after overex-
pression of lysozyme-KDEL (ligand). Each of the chimeras colocalized extensively with native protein labeled with antibodies in untreated, fixed cells. Scale bar
= 10 lm.

Fig. 2. Fluorescence photobleaching recovery of GFP A
chimeras in Golgi and ER membranes. Sequence of
images of GalTase-GFP in Golgi of a control cell (A)
and an AIF-treated cell (B) before and after photo-
bleaching. The region of Golgi above the dotted line_
was photobleached immediately after the first image B
(Pre). In (A) the photobleached area rapidly recovered
fluorescence, whereas in (B) there was essentially no
recovery. (C) Sequence of images of GalTase-GFP in
the ER of a BFA-treated cell before (Pre) and after C
photobleaching of the boxed region. Fluorescence
returned to the photobleached region of the ER in
BFA-treated cells whether or not AIF was present.
The region of Golgi above the dotted line in (A) and (B)
or of ER within the boxed area in (C) was photo-
bleached by scanning it three times with the highest
laser energy (100% power, 100% transmission). Re- D
covery of fluorescence into the photobleached region
was then observed by imaging the entire Golgi ele-
ment at low energy (10% power, 3% transmission) at
the times indicated after the bleach. Before photo-
bleaching, the cells in (B) were treated with AIF (30
mM NaF and 50 pM AIC13) for 30 min, and in (C) they
were treated with BFA (2 jig/ml) for 1 hour. (D and E)
Method used to calculate mobile fraction of GFP chi- E
meras. Fluorescence intensities in the boxed regions
of interest (ROls) were measured before bleaching
(Pre) and after recovery (Recovery). The ratio of
bleached to unbleached ROls at these two time
points were used to calculate the mobile fraction (mo-
bile fraction = ratio after recovery/ratio before bleach-
ing). For KDELRm-GFP, the mobile fraction was 98%,
whereas for Man 1l-GFP it was 90%. The absolute
fluorescence associated with Golgi elements was
lower after photobleaching than before photobleaching because photobleaching removed a significant proportion of total fluorescence from the Golgi. The
method described above for calculating mobile fraction is insensitive to this loss. Scale bar in (C) is equivalent to 10 pLm in (C) and 5 p.m in (A) and (B). Scale
bar in (E) is 5 pLm for (D) and (E). A Quicktime movie sequence from the FPR experiment is available at http://www.uchc.edu/htterasaki/flip.html.
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within the bleaching zone and the other out-
side of it, before photobleaching and after
recovery (see boxed areas in Fig. 2, D and E,

B C

D
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0 40 80 120
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Fig. 3. FLIP of GalTase-GFP in Golgi and ER membranes. HeLa cells expressing GalTase-GFP were
untreated (A and B) or treated with BFA (2 ,ug/ml) for 30 min (C) before the FLIP experiment, which was
performed on a 370C stage of a Zeiss LSM 410 microscope. A small rectangular region defined by the
boxed area was repeatedly illuminated with the highest energy of the laser (100% power, 100%
transmission, scan time of 30 s). Between each intense illumination, the entire field of view was imaged
at low-power laser light (10% power, 3% transmission) to assess the extent that fluorescence outside
the box was lost as a consequence of photobleaching within the box. In (A) and (B), areas of Golgi
adjacent to the boxed area that was photobleached rapidly lost fluorescence, but a Golgi in an adjacent
cell [(B), upper right hand corner] remained bright. Different zones within the Golgi in (A) lost fluorescence
at different rates. The rate of fluorescence loss for three selected areas is plotted in (D). The open circles
(D) show the intensity of fluorescence at the same time points in the Golgi of an adjacent cell, which
remained bright. In (C), FLIP of a zone within the ER gradually depleted fluorescence from the entire ER
of the affected cell, but not the adjacent cell above it. That Golgi and ER membranes inside the bleached
zone were not damaged during exposure to the intense light was confirmed by fixing cells after
photobleaching and staining with Golgi-specific antibodies, which revealed intact Golgi and ER struc-
tures. The possibility that regions on the edge of the illuminated zone are progressively bleached by light
leakage during FLIP was ruled out by repeat of FLIP on fixed cells, which showed bleaching only in the
area exposed to intense light illumination. Scale bars = 10 ,um. A Quicktime movie sequence from the
FLIP experiment is available at hftp://www.uchc.edu/htterasaki/flip.html.

for GFP-KDELRm and GFP-Man II, respec-

tively). The ratio after recovery ranged be-
tween 85 to 98% of the ratio before photo-
bleaching in multiple experiments performed
with all of the chimeras. Thus, nearly all of
the GFP chimeras were mobile in Golgi mem-
branes. Recovery was due to diffusion within a

continuous membrane compartment rather
than transfer of fluorescence by fusion of un-

bleached vesicles with the bleached region,
because fluorescence recovered at the same

rate in cells at reduced temperatures (22°C)
or upon energy depletion with a mixture of
2-deoxyglucose and sodium azide, conditions
where vesicle transport has been found to be
significantly slowed or blocked (12).

In contrast to cells in control medium,
the Golgi of cells treated with aluminum
fluoride (AIF) for 30 min showed essentially
no recovery from photobleaching (Fig. 2B).
This effect of AIF appeared to be specific to
Golgi because GFP chimeras localized with-
in the ER after BFA treatment recovered
normally after photobleaching in the pres-

ence of AIF (Fig. 2C). AIF is known to
cause extensive binding of peripheral pro-

tein complexes to Golgi membranes, similar
to the effects of guanosine 5'-O-(3'-thio-
triphosphate) (GTP--y-S) (13), which could
constrain the lateral movement of Golgi
membrane proteins (14).

Quantitative studies of the mobility of the
chimeras were carried out with a convention-
al (nonscanning) light microscope and laser
system designed for FPR experiments (Table
1). Fluorescence loss and recovery was mea-

sured in a 2-iim stripe placed across the Golgi
of individual cells at random orientations.
The diffusion coefficients, D, calculated from
these measurements ranged from 3 x 10- to
5 x 10-9 cm2 s-1. These values are compa-

rable with the largest D known for any cell
membrane protein, that for rhodopsin in rod
outer segments (15). They are three to five
times those reported for antibody-labeled ve-

sicular stomatitis virus G glycoprotein in the
Golgi complex (16), and they are 10 to 30
times the D measured for many plasma mem-
brane proteins, whose lateral mobility is typ-
ically constrained by interactions with each
other, with components of the extracellular
matrix, or with the cytoskeleton (15). The
high D values indicate that the lateral diffu-
sion of the GFP chimeras in Golgi membranes
was not hindered by interactions such as ag-

gregation with other proteins.
The exceptionally high mobile fraction

and diffusion coefficients of the GFP chi-
meras prompted us to investigate the extent
to which Golgi membranes are continuous
and whether all regions of the Golgi com-

plex can contribute to recovery of fluores-
cence at a bleached site. A variation of FPR
was used in which fluorescence loss outside
the photobleached zone was monitored
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(called FLIP for fluorescence loss in photo-
bleaching). A narrow box across the Golgi
complex was bleached repeatedly and the
fluorescence loss in Golgi membranes out-
side this box was followed over time. The
GalTase-GFP fluorescence associated with
Golgi elements extending outside the box
was lost completely after 10 intense illumi-
nations of the boxed region (elapsed time
was 360 s) (Fig. 3B). This observation sug-
gested that during this time period nearly
all of the GalTase-GFP had diffused into
the box to become photobleached. The
Golgi complex at the upper right-hand cor-
ner of Fig. 3B, which was contained within
an adjacent cell, remained bright, indicat-
ing that the low-intensity laser illumination
used for imaging between bleaching radia-
tions led to minimal photobleaching. In
some cells, fluorescence associated with
particular Golgi sites near the bleached line
was lost at different rates (Fig. 3, A and D),
suggesting differences in local densities or
connectedness (or both) of adjacent Golgi
stacks. Movement of GalTase-GFP between
Golgi stacks appeared to be mediated by
lateral diffusion rather than vesicular trans-
port because FLIP was not slowed at 220C
or by energy depletion (17).

The FLIP experiments (18) were consis-
tent with the exceptionally high mobility and
diffusion rates of the GFP chimeras in Golgi
membranes measured in the FPR studies, and
the results imply that Golgi stacks normally
are extensively interconnected, with Golgi
membrane components moving rapidly from
one part of the Golgi to another. Previous
studies have demonstrated lateral movement
of lipid, but not of protein, across the Golgi
(19). The tubulovesicular elements seen con-
necting membranes of adjacent Golgi stacks
in ultrastructural studies (20) could be the

conduit by which these proteins and lipids
diffuse between adjacent Golgi stacks. FLIP
offers a simple method for providing insight
into the nature and role of these membrane
connections by revealing conditions of and
rates of interstack diffusion. Because individ-
ual Golgi cistemae are not selectively photo-
bleached in the FLIP experiments, the ques-
tion remains as to whether intercistemal dif-
fusion occurs within a single stack (21).

FLIP experiments were also used to in-
vestigate the mobility of GalTase-GFP re-
distributed into the ER by BFA (Fig. 3C).
Repeated photobleaching of a small rectan-
gular region of the ER over 480 s resulted in
the complete loss of ER-associated fluores-
cence from the photobleached cell (includ-
ing its nuclear envelope). Thus, GalTase-
GFP was free to diffuse throughout ER
membranes, and all membranes of this com-
partment are completely interconnected, as
expected (22).

To test whether the diffusibilities of the
GFP chimeras in ER membranes were similar
to those in Golgi membranes, we measured
D by FPR of chimeras redistributed into the
ER by either BFA treatment or overexpres-
sion of lysozyme-KDEL. Diffusion of the chi-
meras within ER membranes also was rapid
with D ranging from 2.1 x 10' to 4.5 X
i0-9 cm2 S-1 (Table 1), although D values
for GalTase and KDELR (with overex-
pressed ligand) were only half as large as in
Golgi membranes. Whether the lower D for
these proteins reflects differences in their
physical properties and interactions with lu-
minal ER proteins, or reflects differences in
the geometry of ER and Golgi membranes,
remains to be determined.

These results have important implica-
tions for our understanding of Golgi mem-
brane protein retention and mobility. The

Table 1. Diffusion coefficients (D) of GFP chimeras in Golgi and ER membranes. HeLa cells were
transfected with GalTase-GFP, Man 11-GFP, KDELR-GFP, or KDELRm-GFP cDNAs with or without
lysozyme-KDEL (ligand) cDNA to allow expression of the chimeras. Cells were treated with or without
BFA (2 ,ug/ml, for 30 min) before photobleaching (25). D for Man 1l-GFP was obtained for cells at 37°C,
whereas for GalTase-GFP, KDELR-GFP, and KDELRm-GFP, D was obtained for cells at 22°C. D
measured at 370C for GalTase-GFP, KDELR-GFP, and KDELRm-GFP closely resembled the values
obtained at 220C. The geometric assumption for calculating D was that recovery is due to one-
dimensional diffusion (25). Percentage recovery of fluorescence was 60 to 70% in Golgi and 80 to 90%
in ER. This difference in recovery is likely because photobleaching removed a significant proportion of
total fluorescence from the Golgi but not from the ER. The standard error of the mean is indicated for
each chimera and condition.

Chimer Location ConD value NumberChimera Locaton Condition (x10-9 cm2 S-1) measured

Man 1l-GFP Golgi Untreated 3.2 + 0.3 18
GalTase-GFP Golgi Untreated 5.4 + 0.4 22
GalTase-GFP ER BFA 2.1 ± 0.2 24
KDELR-GFP Golgi Untreated 4.6 + 0.5 14
KDELR-GFP ER BFA 4.3 + 0.5 15
KDELR-GFP ER + Ligand 2.6 + 0.3 15
KDELRm-GFP Golgi Untreated 4.6 ± 0.5 15
KDELRm-GFP Golgi + Ligand 4.6 ± 0.4 24
KDELRm-GFP ER BFA + Ligand 4.5 ± 0.5 38

GFP-tagged proteins all diffused rapidly and
freely within Golgi membranes, as well as
within ER membranes. The high D and
mobile fraction of these proteins appear
inconsistent with mechanistic explanations
of Golgi protein targeting and retention by
means of the formation of large, relatively
immobile protein complexes (2, 23). Fur-
thermore, rapid and widespread loss of flu-
orescence from the Golgi upon repeated
bleaching of a small zone within the com-
plex implies significant lateral diffusion
rather than vesicular transport of the GFP-
tagged proteins between Golgi stacks. Golgi
models (24) thus need to account for how
Golgi membranes maintain their identity
amidst rapid diffusion of resident compo-
nents, and they need to explain the role
played by these dynamic membrane proper-
ties in Golgi structure and function.
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Central Hypotensive Effects of the
ax2,-Adrenergic Receptor Subtype

Leigh B. MacMillan, Lutz Hein, Marta S. Smith,
Michael T. Piascik, Lee E. Limbird*

aL2-Adrenergic receptors (o2ARs) present in the brainstem decrease blood pressure and
are targets for clinically effective antihypertensive drugs. The existence of three a2AR
subtypes, the lack of subtype-specific ligands, and the cross-reactivity of a2AR agonists
with imidazoline receptors has precluded an understanding of the role of individual a2AR
subtypes in the hypotensive response. Gene targeting was used to introduce a point
mutation into the at2aAR subtype in the mouse genome. The hypotensive response to
a2AR agonists was lost in the mutant mice, demonstrating that the Ot2aAR subtype plays
a principal role in this response.

OL2ARs located in the rostral ventrolateral
medulla respond to norepinephrine and epi-
nephrine to decrease sympathetic outflow
and reduce arterial blood pressure (1). This
hypotensive effect has been the rationale for
the use of clonidine, an x2AR agonist, in the
treatment of hypertension (1). There is con-
troversy, however, concerning whether
agents such as clonidine, which contain an
imidazole moiety, elicit their hypotensive ef-
fects by interacting with o2ARs or with a
separate so-called imidazoline receptor pop-
ulation (2). Endogenous agonists of the pu-
tative imidazoline receptor population have
been described (3). We explored the role of
Ox2aAR, one of three a2AR subtypes (4), in
eliciting a hypotensive effect because brain-
stem localization of ox2aAR mRNA suggested
that the ot2aAR subtype might participate in
this response (5).
We used gene targeting to mutate the

o2aAR gene to express an Asp79->Asn
(D79N) at2aAR in mice. The D79N mutation
substitutes asparagine for the aspartate residue
at position 79, which is predicted to lie within
the second transmembrane span of ot2aAR
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and is highly conserved among heterotrimeric
GTP-binding protein (G protein)-coupled
receptors (6). In AtT20 anterior pituitary
cells, the D79N at2aAR is selectively uncou-
pled from activation of K+ currents, but re-
mains coupled to inhibition of voltage-gated
Ca2+ channels and of adenosine 3',5'-mono-
phosphate (cAMP) production characteristic
of the wild-type receptor (7). We created a
mouse line with this D79N a2aAR to explore
both the role of the ot2aAR subtype in cardio-
vascular and other physiological functions and
the role of various signal-transduction path-
ways in (X2aAR effects. We now report the
cardiovascular functions of this mutant D79N
Ot2aAR.

The substitution of the mutant for the
wild-type o2aAR gene in the mouse genome
(8) was documented by Southern (DNA)
analysis of diagnostic restriction digests in
offspring of heterozygous intercrosses (Fig.
IA) and by DNA sequencing (Fig. 1B). The
density of ox2aAR, assessed through use of the
3H-labeled ox2AR antagonist RX 821002,
was significantly reduced (80%) in mice ho-
mozygous for the D79N aL2aAR compared
with wild-type mice (Fig. 2A). This reduc-
tion in density was not caused by changes in
the amount of mRNA encoding D79N
aL2aAR (Fig. 2B). These findings indicate
that, in vivo, the D79N aL2aAR is improp-
erly processed or stabilized in target cells.
cx2aAR binding properties in mutant ani-
mals, however, showed appropriate aL2aAR
selectivity and the absence of allosteric
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