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Mathematical Analysis of Gene Expression Ratios 
 
 
Introduction 
 
Your microarray experiment measures relative levels of mRNA gene expression in 
cancerous and healthy tissue of a single patient for six genes. The data from this 
experiment consists of six ratios. The numerator of each ratio is the gene expression level 
in cancerous tissue, and the denominator of each ratio is the gene expression level in 
healthy tissue.  Now you will use the ratios from your microarray image and compare 
your data to ratios gathered from other microarrays.  
 
 
Goals 
 
Comparing your data to other data gathered from the same patient will help you 
understand the amount of experimental variation (sometimes called noise) in microarray 
experiments. Comparing similar data from several other patients will demonstrate how 
microarray experiments enable a better understanding of the genetic causes of particular 
cases of cancer. You will also see how to use microarray data to predict which patients 
will benefit most from chemotherapy and which patients will benefit least – the 
beginnings of personalized medicine 
 
 
1. Determining ratios 
 
By describing each spot on your microarray as different shades and intensities of pink, 
purple and blue, you have characterized the expression level of each gene in cancerous 
and healthy tissue. To effectively compare your results to those of other groups, you need 
a more quantitative measure than subjective phrases like “dark blue” or “pinkish purple.” 
The goal of this activity is to turn colors into 
numbers that you can use in the remaining activities. 
 
The scale shown below represents both the shade 
and the intensity of colors you might see in your 
microarray. The shade ranges from blue to pink as 
you go from left to right in the scale. The intensity 
ranges from deep to pale as you go from top to 
bottom in the scale. Match the colors in your 
microarray to those in the scale. Your colors may 
not match exactly. Estimate the ratios as best you 
can, interpolating between numbers as necessary. 
Record each ratio in the space provided. 
 
 

Interpolating is the process 
of selecting a number in 
between two given numbers 
in a table.  In the scale below, 
you may decide that your 
color is halfway between the 
colors for 2 and 4.  You 
would therefore interpolate to 
find the number halfway 
between 2 and 4, resulting in 
a ratio of 3. 



Color Ratio Scale 

 
 
Teacher notes: Try to keep groups working independently on this step.  They should not 
all get exactly the same ratios.  In Section 3, it will be important that there is some 
variability in the ratios across different lab groups.   
 
 

Gene expression ratios 
 
Gene 1 Gene 2 Gene 3 
   

 
Gene 4 Gene 5 Gene 6 
   

 
 
 
Questions 
 

1. What range of ratios could indicate that a gene was not expressed in cancerous 
tissue, but was expressed in healthy tissue? 
 
Answer: A ratio of 0, since the numerator would be 0.  Noise and uncertainty 
might lead to a ratio near 0, but not exactly 0. 

 
2. What range of  ratios could indicate that a gene was not expressed in healthy 

tissue, but was expressed in cancerous tissue? 
 
Answer: Technically, the numerator would be greater than 0, but the denominator 
would be 0, resulting in an undefined ratio.  Experimental noise might lead to a 
very large ratio if the denominator was judged to be a very small number, but not 
exactly 0.  In the language of calculus, the limit of the ratio is infinity as the 
denominator approaches 0, but it is not precisely correct to say that the ratio 
“equals” infinity. 



 
3. What range of ratios could indicate that a gene was equally expressed in both 

cancerous and healthy tissue? 
 
Answer: A ratio of 1, or very near 1, indicates equal expression in both conditions 
(equal numerator and denominator). 

 
4. What range of  ratios could indicate that a gene was not expressed in either 

cancerous or healthy tissue? 
 
Answer: If the gene is not expressed in either condition, the numerator and 
denominator are both 0, and the ratio is undefined.  In calculus, if the numerator 
and denominator both approach 0, this is called an indeterminate form, and the 
limit of the ratio could be 0, a positive constant, or infinity.  Likewise, the ratio 
might be judged to be near 0, or very large, or near 1, depending on noise in both 
the pink and blue channels. 

 
5. Is it easier to determine the ratio when the expression levels are high (deep colors) 

or low (pale colors)? Explain your answer by relating the colors you see to the 
amount of mRNA produced.  
 
Answer: As explained in #4, the most difficult ratio to determine is when both 
expression levels are low.  If at least one condition has a high expression level, 
the ratio can be determined much more easily. 
 

6. Explain why there are more possible gene expression ratios than those shown in 
the color scale above. 
 
Answer: A ratio could be any non-negative real number.  There are an infinite 
number of possibilities between each of the values shown in the color scale. 
 

7. Explain how a single gene expression ratio (e.g., 4) can correspond to many 
different levels of gene expression in the cancerous and healthy tissue samples. 
 
Answer: A ratio of 4 could result from a numerator of 40 and denominator of 10, 
or a numerator of 500 and a denominator of 125, or a numerator of 12436 and a 
denominator of 3109, or infinitely many other combinations of numerator and 
denominator. 

 
 
 
2. Transforming ratios 
 
The goal of this activity is to see why it is useful to mathematically transform gene 
expression ratios, and to perform this transformation on the ratios from your microarray. 
Suppose the following gene expression ratios were measured in a single patient over a 



eight month time period, using one microarray per month, as the lung cancer progressed. 
Each microarray measures the expression ratios of six genes. 
 
 
Table 1: Gene expression ratios during lung cancer progression 
Gene Mar Apr May Jun Jul Aug Sept Oct 

1 1.33 2 4 8 10 12 16 16 
2 0.8 1.4 1 1.2 0.75 1.5 1.2 1 
3 0.75 0.5 0.25 0.125 0.10 0.0833 0.0625 0.0625 
4 0.1 0.08 15 1 11 0.07 9 12 
5 3 4 2 3 4 3 2 3 
6 0.5 0.25 0.33 0.25 0.25 0.33 0.5 0.33 

 
 
Graph the ratio data in Table 1 on the axes provided below. Each gene should be graphed 
as a line so you should produce 6 different lines over the 8 month time period. Use 
different data point markers (e.g., x, o, *), different line styles (e.g., dashed, dotted) 
and/or different colors for each line, so you can easily tell them apart. Create a legend for 
your graph. 
 
 

 
 
 



Questions 
 

8. Look at the ratios for Gene 4, which range between 0.07 and 15, with no apparent 
pattern of increasing or decreasing.  Explain how these values could result from 
very low gene expression levels (i.e., pale colors) in both the cancerous and 
healthy tissues.  
 
Answer: The expression level of this gene is very low in both cancerous and 
healthy tissues.  The true ratio could be much more consistent across the months 
of the study than our data indicate, but experimental noise leads us to a different 
value each time.  See the answer to #4 for more discussion of this issue. 

 
9. By looking at your graph, which genes would you be most interested in studying 

further to understand the progression of cancer? Support your choices with data. 
 
Answer: Looking at this graph, it appears that only Gene 1 is really changing 
much over the months of the study, so it would be interesting to study. Genes 3, 5 
and 6 seem to have fairly consistent ratios, so while they may be indicating 
something about the presence of the cancer, or simply that the person is sick, they 
do not seem to be related to the progression of the cancer.  

 
10. Convert the ratios for Gene 3 from decimals to fractions, and reduce the fractions. 

(Note that the 3 in 0.0833 is repeating.)  Compare these fractions to the ratios for 
Gene 1.  What pattern do you notice?  Was this pattern easy or difficult to see in 
your graph?  Does this change your answer to Question 9? 
 

Answer: 
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reciprocal of the ratios for Gene 1.  This means that Gene 3 is being repressed to 
the same extent that Gene 1 is being induced, and the amount of repression is 
changing steadily over the months of the study.  Now it appears that Gene 3 
would be just as interesting to study as Gene 1 when trying to understand the 
progression of the cancer. 

 
 



Compute the base 2 logarithm of each ratio in Table 1.  Record your results in Table 2.  
 

 
 
 
 
Table 2: Log2 gene expression ratios during lung cancer progression 
Gene Mar Apr May Jun Jul Aug Sept Oct 

1 0.411 1.000 2.000 3.000 3.322 3.585 4.000 4.000 

2 -0.322 0.485 0.000 0.263 -0.415 0.585 0.263 0.000 

3 -0.415 -1.000 -2.000 -3.000 -3.322 -3.586 -4.000 -4.000 

4 -3.322 -3.644 3.907 0.000 3.459 -3.837 3.170 3.585 

5 1.585 2.000 1.000 1.585 2.000 1.585 1.000 1.585 

6 -1.000 -2.000 -1.599 -2.000 -2.000 -1.599 -1.000 -1.599 

 
 
Graph the log2 gene expression ratios you recorded in Table 2 on the axes given below. 
As before, represent each gene with a single line, using the same color and symbol for 
each gene that you used in the previous graph.  
 

 
A logarithm is the power to which a base must be raised to produce the 
desired value. For example, log2 8 = 3 because 2 must be raised to the 
power of 3 to get 8, i.e., 23 = 8. Similarly, 

! 

log2
1
16

= "4 , because 

! 

2
"4

= 1

16
. Using this exponent rule, you can compute (or at least 

estimate) base 2 logs in your head. However, it is also useful to know 
how to compute logs with a calculator. 
 
Log functions are built into most calculators and software such as 
Excel, but some calculators can only compute base 10 and natural (base 
e) logs. To compute a base 2 log with your calculator, you can use one 
of the following change of base formulas: 

! 

log2 x =
log10 x

log10 2
  or  log2 x =

ln x

ln2
 



 
 
 

11. By looking at the graph of log2 ratios, which genes would you select for further 
study of lung cancer progression? Support your choices with data. Reread your 
answers to Questions 9 and 10, and explain why the log-transformed ratios are 
more useful than ratios. 
 
Answer: The graph of log transformed ratios makes it clear that the expression 
ratios of both Gene 1 and Gene 3 are changing over time, and would be natural to 
select for further study of cancer progression.  The reciprocal nature of the 
patterns is clearly illustrated in the log-transformed graph without having to find 
genes for which it would be appropriate to take reciprocals.  This graph depicts 
repression of genes with the same magnitude as induction, so that genes that 
decrease with cancer progression are just as obvious as those that increase. 
 

12. Explain why base 2 is useful when log transforming ratios. When would it be 
more useful to use base 10?   
 
Answer: Base 2 is useful for identifying doubling of halving of ratios.  Every unit 
step on the vertical axis represents a doubling in the positive direction, or a 
halving in the negative direction. For example, the expression ratio of Gene 1 is 
doubled between April and May, and again between May and June.  On the other 
hand, the expression ratio of Gene 3 in September is half what it was in June.  
Base 10 is useful for identifying changes in order of magnitude, and would be 



more helpful if the ratios were much larger, between 0.001 and 1000, for 
example.  Note that Log10(0.001) = -3, and Log10(1000) = 3. 
 

13. What mathematical problem could arise when you take logarithms of ratios?  
Suggest a way to handle this problem.  
 
Answer: If a ratio was determined to be exactly 0, rather than a small positive 
number, then the logarithm (in any base) is undefined.  Excel will print #### for 
the answer to the log of 0.  Numerically, it might be helpful to use a very large 
number, e.g. 99999 to represent this situation in the log-transformed data.  
Graphically, this causes a problem with scaling the axis to see the more reliable 
data.  These undefined values could simply be left off of the graph, leaving a gap 
in the line representing that gene. 

 
 
Log transformed ratios are not only superior to ratios when you are looking for 
interesting patterns in graphs, they are also better for every kind of mathematical analysis 
of gene expression ratios.  Therefore, we will work exclusively with log-transformed 
ratios.  Record the log2 ratios from your microarray in the space given below. 
 
 

Log2 gene expression ratios 
 
Gene 1 Gene 2 Gene 3 
   

 
Gene 4 Gene 5 Gene 6 
   

 
 
 
 
3. Measuring variability 
 
All laboratory experiments involve some degree of variation. Just as you do not get the 
exact same number of granules each time you measure a cup of sugar, you do not get the 
exact same volume of reagents each time you repeat an experiment. Even instruments 
that seem to measure things very precisely still have some variability. In this experiment, 
each lab group in your class is analyzing the same patient, but you will not all get exactly 
the same ratios.  Part of this variability is due to slightly different amounts of reagents 
used by different groups.  Part of the variability is due to different decisions made by the 
groups when they converted colors into ratios. Can you think of any other sources of 
variability in your results? 
 



Mathematically, you can quantify measurement errors and other experimental variability 
using a quantity called variance.  Often, investigators use the square root of the variance, 
called standard deviation, because its units are the same as the units of the original 
measurement.  The goal of this activity is to measure the variability of your microarray 
experiment using standard deviation. 
 
In the following table, record the log2 gene expression ratios obtained by each lab group 
in your class.  Your teacher will number the lab groups so that everyone’s table looks 
exactly the same.  After you have recorded all the log-transformed ratios, compute the 
values in the last five rows as follows: 
 

• N –the number of rows containing data (equal to the number of lab groups in your 
class, unless some groups failed to get readings for all six genes) 

• Avg – average the values in the column.  In statistics, this quantity is called 

! 

x , 
pronounced “x bar”.  If the ratio for group #1 is denoted by R1, then the equation 

for average is 

! 

x =

R
i

i=1

N

"

N
 

• Sum of squares – square each value in the column, and add all the squared values, 

i.e., compute 

! 

R
i

2

i=1

N

"  

• Variance – square the column average, multiply the result by N, and subtract this 
value from the sum of squares; divide the entire result by N-1.  The equation that 

represents what you just did is 

! 

Var =

R
i

2

i=1

N

" # N $ x 
2

N #1
 

• Std dev – take the square root of variance 
 
 
 
Example: Suppose there are 5 lab groups in your class, and their expression ratios for 
Gene 1 are 8, 6, 7, 10 and 8. Then N=5, 

! 

x = 8+6+7+10+8
5

= 7.8, and the sum of squares is 

! 

8
2

+ 6
2

+ 7
2

+10
2

+ 8
2

= 313. Therefore, the variance is 

! 

313"5#(7.8)
2

5"1
= 8.8

4
= 2.2 , and the 

standard deviation is 

! 

2.2 " 1.48. 
 
 
Teacher notes:  
 
Be sure each lab group knows their number before beginning to fill out this table. It 
might be helpful to have a blank overhead of the table, and ask each group to fill in their 
values for everyone else to copy into their own tables. Average, variance and standard 
deviation are common descriptive statistics that can be calculated with Excel using the 
functions average, var, and stdev, respectively. 



 

Gene Lab 
Group 1 2 3 4 5 6 

1       
2       
3       
4       
5       
6       
7       
8       
9       

10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       
N       

Avg       
Sum of 
squares 

      

Variance       
Std dev       



Questions 
 

14. Which gene has the most variable expression ratio? Why did the log ratios of this 
gene vary more from group to group than the log ratios of other genes? 
 
Answer: The gene with the largest standard deviation is the most highly variable. 
It may be Gene 4, since some groups will say the ratio is 0, some will say 1, and 
some may give other values.  However, this variability is somewhat artificial, 
representing the different interpretations of an essentially clear spot.  There will 
also be a numerical effect of using a very large number to represent the log of 0.  
Other likely candidates for the most variable gene are  Gene 5 and Gene 6.  In this 
experiment, variability is caused by low color intensity, which is difficult to 
assign to a ratio in the color scale.  This same effect is seen in real microarray 
experiments: low intensities lead to more variability in ratios. 

 
 
 
4. Clustering gene expression profiles 
 
In Section 2, you gained hands-on experience with one useful application of microarray 
data: discovering genes that indicate the presence or progression of a disease such as lung 
cancer. You characterized genes by their pattern of gene expression over time, and found 
that Gene 1 is increasingly induced over time, and Gene 3 is increasingly repressed over 
time.  In Section 3, you learned how to measure variability in expression levels across lab 
groups. Every time the experiment is repeated by the same or different lab groups, you 
should expect to get slightly different answers because of experimental errors.  
 
However, you have only looked at gene expression ratios for a single patient so far.  Is 
this patient representative of everyone with lung cancer?  Are there sub-categories of 
lung cancer, or are all cases of lung cancer the same? What else could we learn about 
lung cancer by collecting data from more patients?  In this section, you will learn how to 
compare gene expression patterns of different patients, and cluster (i.e., group together) 
patients with similar patterns.  If a group of patients have similar gene expression patterns 
across this set of six genes, and they also have similar clinical outcomes (for example, 
they both responded well to a particular type of chemotherapy), then we may be able to 
predict the clinical outcomes of future patients by measuring their gene expression levels 
in these six genes. This sort of personalized medical treatment is one of the major 
applications of the human genome project.  
 
Table 3 gives gene expression ratios for six different genes in twelve different patients: 
 



Table 3: Log2 gene expression ratios in patients A-L 
 

  Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Avg Std dev 
Patient A 0 3 3.58 4 3.58 3 2.86 1.45 
Patient B 0 1.58 2 2 1.58 1 1.36 0.76 
Patient C 0 2 3 3 3 3 2.33 1.21 
Patient D 0 0 0 -2 -2 -3.32 -1.22 1.42 
Patient E 0 1 1.58 2 1.58 1 1.19 0.70 
Patient F 0 -1 -1.60 -2 -1.60 -1 -1.20 0.70 
Patient G 0 2 3 2 0 -1 1.00 1.55 
Patient H 0 1 0 1 0 1 0.50 0.55 
Patient I 0 0 0 0 1.58 1.58 0.53 0.82 
Patient J 0 1 1.58 2 1.58 1 1.19 0.70 
Patient K 0 -1.60 -2 -2 -1.60 -1 -1.37 0.76 
Patient L 0 -3 -3.59 -4 -3.59 -3 -2.86 1.45 
 
 
Questions 
 

15. Fill in the blank cells in the final two columns of Table 3 for each of the twelve 
patients, using the statistical methods you learned in Section 3. 
 
Answer: See entries in Table 3 above. 

 
Correlation is a way of comparing two lists of numbers (in mathematics, these lists are 
called vectors) to see how well the lists of numbers, or vectors, track one another. To 
compute the correlation between two patients, follow this three step process: 
 

a. Compute the sum product of the corresponding vectors of log2 gene expression 
ratios.  To find the sum product, multiply the corresponding entries in each list, 
then sum all these products. For example, the sum product between Patient A and 
Patient B is (0)(0) + (3)(1.58) + (3.58)(2) + (4)(2) + (3.58)(1.58) + (3)(1) = 
28.6068. In mathematics, the sum product is also called the dot product or the 
inner product. 

 
b. Multiply the average of one vector by the average of the other vector and then 

multiply by n, the number of entries in each vector.  In our example using Patients 
A and B, multiply 2.86 by 1.36, then by 6, to get 23.3795. 

 
c. Subtract the result of Step b from the result of Step a, divide by the standard 

deviation of the first vector (found in the table you completed), divide by the 
standard deviation of the second vector, and finally, divide by n – 1. For example, 
for Patients A and B, subtract 23.3795 from 28.6068 to get 5.2273. Then divide 
by 1.45, divide by 0.76, and finally, divide by 5.  The result is the correlation 
coefficient between Patient A and Patient B, 0.9442. 

 



 
 
Questions: 
 

16. Using the three-step process described above, compute correlation coefficients 
between every pair of patients. Enter your results in the blank cells of the 
following table. You do not need to compute values for the shaded cells, because 
the correlation is a symmetric relationship.  For example, the correlation between 
patients A and B is the same as the correlation between patients B and A. 

 
 

 
 A B C D E F G H I J K L 
A  0.94 0.96 -0.40 0.95 -0.95 0.41 0.36 0.23 0.95 -0.94 -1 
B   0.84 -0.10 0.94 -0.94 0.68 0.24 -0.07 0.94 -1 -0.94 
C    -0.57 0.89 -0.89 0.21 0.30 0.43 0.89 -0.84 -0.96 
D     -0.35 0.35 0.60 -0.43 -0.79 -0.35 0.10 0.40 
E      -1 0.48 0.22 0.11 1 -0.94 -0.95 
F       -0.48 -0.21 -0.11 -1 0.94 0.95 
G        0 -0.75 0.48 -0.68 -0.41 
H         0 0.22 -0.24 -0.36 
I          0.11 0.07 -0.23 
J           -0.94 -0.95 
K            0.94 
L             
 
 
 

17. How many correlation coefficients must be computed in the above table 
(including the one given value)?  How many correlation coefficients would need 
to be computed if there had been 20 patients?  Find a general expression for the 
number of correlation coefficients that need to be computed if there are n patients. 
 
Answer: There is 1 in the 2nd column, 2 in the 3rd column, and so on, up to 11 in 

the 12th column. So a total of 
  

! 

1+ 2+ 3+L+11=
11"12

2
= 66 correlation 

coefficients must be computed. If there had been 20 patients, a total of 

  

! 

1+ 2+ 3+L+19 =
19" 20

2
=190 correlation coefficients would need to be 

computed. In general, the formula for counting the number of correlation 

coefficients when there are n patients is 

! 

k

k=1

n"1

# =
(n "1)n

2
, a formula that is found in 

most calculus textbooks in the section on Riemann Sums. Another way to think 
about this formula is the number of ways to choose 2 patients (a pair) from the n 



patients, which is the binomial coefficient 

! 

n

2

" 
# 
$ 
% 
& 
' =

n(n (1)

2
. This formula is found 

in most statistics textbooks, and is also a fundamental concept in the mathematical 
subfield of combinatorics, also called discrete mathematics. 

 
 
The clustering algorithm begins by finding 
the two patients that are most similar 
across their expression of the six genes.  In 
this example, Patients J and E are the two 
most similar; they are actually identical! 
Join these two together into a single 
“average” patient by averaging their two 
expression vectors, and computed the 
correlation coefficient between this average 
patient and all other individual or average 
patients. (In this case, because J and E are 
identical, this step can be skipped.) Remove the individuals J and E from further 
consideration.  
 
Continue this process, joining two patients or “average” patients together at each step, 
until all patients have been clustered.  You may wish to draw your clustering results in a 
hierarchical tree, showing which two patients or “average” patients were joined at each 
step. You can represent the correlation coefficient between the patients that were joined 
by making the branches of the tree join at that height. 
 
 
Teacher notes: The hierarchical clustering algorithm proceeds as follows: 
 
First, find the two most similar patients in the entire set of patients. As described in the 
main text, patients E and J are the most similar since rEJ = 1. Join these together into a 
cluster, denoted [EJ]. Cluster [EJ] is added to the list of available objects, and the single 
patients E and J are removed from the list.  
 
Now join the next two most similar objects, using the procedure described above. (Note 
that in this case, the average of E and J is equal to both E and J, so we are saved the job 
of computing new correlations.) The most similar patient to the cluster [EJ] is patient A, 
with rAE = rAJ = 0.95. However, patient C and cluster [EJ] are not the two most similar 
objects; rather patients A and C are, with rAC = 0.96. Thus we join patients A and C to 
form cluster [AC]. 
 
At the next iteration, we need to know the correlation of each object with the average log-
transformed expression patterns of patients A and C: 0, 2.5, 3.29, 3.5, 3.29, 3. The 
correlations of all available objects with this pattern representing [AC] are in the 
following table: 
 

 
An algorithm is a step-by-step process 
that performs a computational task. 
Computer scientists often study 
algorithms to find ways to make them 
more efficient. Sorting, pattern 
matching, and clustering are examples 
of algorithms that are important in 
biological applications. 



B D F G H I K L [EJ] 
0.90 -0.48 -0.93 0.32 0.33 0.32 -0.90 -0.99 0.93 

 
Now we see that the most similar object to [AC] is cluster [EJ], with a correlation of 0.93. 
Patient B is even more similar to [EJ], since rBE = 0.94. But the two most similar objects 
now are patients F and L, with rFL = 0.95. Therefore, we join patients F and L to form 
cluster [FL].  We have now completed 3 iterations of the hierarchical clustering 
algorithm. The entire clustering process for these 12 patients takes 11 iterations; the steps 
are summarized in the following table. Note that the final object created is the clustering 
of all 12 patients shown in the hierarchical tree, also called a dendrogram. 
 
 

Two most similar objects Iteration 
Object 1 Object 2 

Correlation New Object 

1 J E 1.00 [EJ] 
2 C A 0.96 [AC] 
3 L F 0.95 [FL] 
4 K [FL] 0.95 [KFL] 
5 [EJ] B 0.94 [EJB] 
6 [AC] [EJB] 0.94 [ACEJB] 
7 G D 0.60 [DG] 
8 H [ACEJB] 0.29 [HACEJB] 
9 I [HACEJB] 0.19 [IHACEJB] 

10 [IHACEJB] [DG] -0.12 [IHACEJBDG] 
11 [KFL] [IHACEJBDG] -0.96 [KFLIHACEJBDG] 

 
 

Patient K 
Patient L 
Patient F 
Patient I 
Patient H 
Patient C 
Patient A 
Patient J 
Patient E 
Patient B 
Patient G 
Patient D 

 
 
 



Questions 
 

18. What group of five patients are highly similar to each other (at correlation greater 
than 0.9? 
 
Answer: ACEJB, joined at iteration 6, at correlation 0.94. This group is most 
easily seen in the dendrogram above. 
 

19. What group of three patients are highly similar to each other (at correlation at 
least 0.95), but very dissimilar from the first group of five patients? 
 
Answer: KFL, joined at iteration 4, at correlation 0.95. Again, the answer to this 
question is easily seen in the tree. 
 

20. If all lung cancers fell into two categories of gene expression patterns, what does 
this tell you about the single disease we call lung cancer? How might this 
information affect cancer patient diagnosis and treatment in the future?  
 
Answer: If there are two distinct gene expression profiles in lung cancers, perhaps 
the associated cancers are different enough to be considered different types of 
cancer. The causes, treatments and prognosis of the two subtypes of lung cancer 
may be very different. In the future, a gene expression profile might be part of the 
diagnosis to determine the optimal treatment. 


