

Mx3000P[™] Real-Time PCR System Instruction Manual Software version 2.0

Table of Contents

Getting Started	
Introduction	
Getting Started with the Mx3000P Instrument Instrument Status Indicator LED's Cautions and Warnings Sample Loading and Unloading Multiple Instrument Set-Up: Optional Use of Multiple Instrument Control	2 2 2 3
Choosing a Detection Chemistry and Experiment Type Overview of QPCR and Detection Chemistries Overview of Mx3000P System Experiment Types	10 10 13
Navigating in the Mx3000P Software	
Menu Commands	
File Menu	16
Edit Menu	
Instrument Menu Tools Menu	
Options Menu	
Options-Optics Configuration	
Options-Analysis Term Settings for Real-Time Experiments	
Options-Analysis Term Settings for Plate Read Experiments	
Section Menu	
View Menu	61
Window Menu	
Help Menu	
Toolbar	
Shortcut Keys	
Quick Protocols	
Plate Setup Quick Protocol	
Thermal Profile Setup Quick Protocol	
Running the Experiment Quick Protocol	
Quantitative PCR Analysis Quick Protocol	71
Comparative Quantitation Analysis Quick Protocol	
Allele Discrimination Real-Time Analysis Quick Protocol	
Molecular Beacon Melting Curve Analysis Quick Protocol	75
Quantitative Plate Read Analysis Quick Protocol	76
Plate Read/Allele Discrimination Analysis Quick Protocol	

How-To (Detailed Protocols)	79
How to Set Up a New Experiment	
Plate Setup	80
Thermal Profile Setup	
How to Run a Real-Time Experiment	
Preparing for the Run	
Starting the Run	
Monitoring the Run	
Analyzing Data During the Run	
Aborting the Run	
Viewing the Thermal Profile Status	
Viewing Raw Data Plots	
Viewing Expanded Amplification Plots (Real-Time Experiments)	
How to Run a Plate-Read Experiment	
Starting the Run	
Monitoring the Run	
Aborting the Run	121
Setting the Read Properties for a Plate-Read Experiment	121
Viewing Raw Data Plots for Plate-Read Experiments	
Viewing Expanded Raw Data Plots for Plate-Read Experiments	
How to Analyze the Data	
Analyzing the Data	125
Analysis Selection/Setup	
Treatment of Replicates	131
Positive and Negative Calling	
Graphs and Graph Properties	
Adjusting the Threshold Fluorescence Manually	136
Mx3000P System Experiments: Quantitative PCR	
The Quantitative PCR Experiment Type	
Quantitative PCR Plate Setup	
Quantitative PCR Thermal Profile Setup	141
Quantitative PCR Data Analysis	143
Analysis Setup	143
Quantitative PCR Amplification Plots	144
Quantitative PCR Plate Sample Values	146
Quantitative PCR Standard Curve	148
Quantitative PCR Initial Template Quantity	152
Quantitative PCR Dual Color Scatter Plot	153
Quantitative PCR Text Report	

Mx3000P System Experiments: Comparative Quantitation	159
The Comparative Quantitation Experiment Type	159
Comparative Quantitation Plate Setup	
Comparative Quantitation Thermal Profile Setup	167
Comparative Quantitation Data Analysis Analysis Setup Comparative Quantitation Amplification Plots Comparative Quantitation Dissociation Curve Comparative Quantitation Plate Sample Values Comparative Quantitation Standard Curve Comparative Quantitation Relative Quantity Chart Comparative Quantitation Relative Quantity Plate Comparative Quantitation Text Report Mx3000P System Experiments: SYBR Green (with Dissociation Curve) The SYBR Green Experiment Type	169 169 171 173 175 177 182 184 186 190 190
SYBR Green Plate Setup	
SYBR Green Thermal Profile Setup	
SYBR Green Data Analysis	197
SYBR Green Data Analysis. Analysis Setup. SYBR Green Amplification Plots SYBR Green Dissociation Curve. SYBR Green Plate Sample Values SYBR Green Standard Curve. SYBR Green Initial Template Quantity. SYBR Green Text Report.	
Mx3000P System Experiments: Allele Discrimination/SNP's Real-Time	214
The Allele Discrimination/SNP's Real-Time Experiment Type	214
Allele Discrimination/SNP's Real-Time Plate Setup	
Allele Discrimination/SNP's Real-Time Thermal Profile Setup	
Allele Discrimination/SNP's Real-Time Data Analysis Analysis Setup Allele Discrimination/SNP's Real-Time Amplification Plots Allele Discrimination/SNP's Real-Time Plate Sample Values Allele Discrimination/SNP's Real-Time Dual Color Scatter Plot Allele Discrimination/SNP's Real-Time Final Call Results Allele Discrimination/SNP's Real-Time Text Report	219 219 220 222 224 224 228 230
Mx3000P System Experiments: Molecular Beacon Meltina Curve	
The Molecular Beacon Meltina Curve Experiment Type	
Molecular Beacon Meltina Curve Plate Setup	
Molecular Beacon Melting Curve Thermal Profile Setup	
Molecular Beacon Melting Curve Data Analysis Analysis Setup Molecular Beacon Melting Curve Annealing Range Molecular Beacons Melting Curve Melting Curves/Temperature	238 238 240 242

Mx3000P System Experiments: Quantitative Plate Read	243
The Quantitative Plate Read Experiment Type	
Quantitative Plate Read Plate Setup	244
Quantitative Plate Read Data Analysis Analysis Setup. Quantitative Plate Read Plate Sample Values. Quantitative Plate Read Standard Curve Quantitative Plate Read Initial Template Quantity Quantitative Plate Read Initial Template Quantity Quantitative Plate Read Initial Template Quantity Quantitative Plate Read Fluorescence Intensity Values Quantitative Plate Read Final Call Results Quantitative Plate Read Final Call Results	247
Mx3000P System Experiments: Plate Read/Allele Discrimination	
The Plate Read/Allele Discrimination Experiment Type	
Plate Read/Allele Discrimination Plate Setup	
Plate Read/Allele Discrimination Data Analysis Analysis Setup Plate Read/Allele Discrimination Dual Color Scatter Plot Plate Read/Allele Discrimination Fluorescence Intensity Values Plate Read/Allele Discrimination Final Call Results Plate Read/Allele Discrimination Text Report	268 268 271 275 278 280
Maintaining the Mx3000P Instrument	
Hardware Information Replacement Parts Fuses Changing the Lamp	
Cleaning the Instrument	
Appendix	
Mx3000P System Troubleshooting	
Getting Support for the Mx3000P Real-Time PCR System	
QPCR Glossary	
Selected QPCR Links	
Trademark Information	
Index	

Getting Started

Introduction

The Mx3000P[™] real-time PCR system is a fully integrated real-time PCR detection system. The system includes a state-of-the-art thermal cycler, a quartz-tungsten halogen lamp to excite fluorescence, a photomultiplier tube for high-sensitivity detection, and real-time quantitative detection and analysis software. With the Mx3000P real-time PCR system, monitoring PCR in real time is fast, easy, and reliable. The Mx3000P system has an open format that allows closed-tube real-time PCR detection with many detection chemistries including SYBR[®] Green dye and fluorogenic probe systems. The Mx3000P system supports both real-time and plate-read experiments.

The software features a variety of specific experiment types with customized plate setup, thermal profile setup, and analysis screens that streamline the process of collecting and analyzing data for specific applications. Some of the features that differentiate the Mx3000P real-time PCR system from other real-time detection instruments include the following:

- View and analyze data in multiple formats, including: amplification plots, scatter plots, sample value screens that display all dyes for the entire plate, fluorescence intensity screens, final call results, melting curves, annealing range and text reports
- Enhanced analysis algorithms, including adaptive baseline, to improve results and reduce the need for manual adjustments
- Melting curve analysis for Molecular Beacon confirmation with automatic melting temperature (Tm) calculation
- Ability to plot individual dyes and wells from an experiment without exporting data
- Real-time amplification plots can be viewed and results analyzed during PCR run
- All results available as raw data

Real-Time Experiments

Real-time experiments monitor and report the accumulation of PCR product, as detected by increased fluorescence, during thermal cycling. Data collection during the early exponential phase of PCR allows the software to accurately calculate initial template quantities. In addition, the status of the experiment may be monitored as the run progresses.

Plate Read Experiments

Plate read experiments add flexibility to the laboratory. A one-time fluorescence reading can be taken on a set of samples and the results viewed immediately. The Mx3000P system can also be used to take and analyze pre-cycling and post-cycling readings for a set of samples that are cycled in another thermal cycler.

Revision #044002

Copyright $\ensuremath{\mathbb{C}}$ 2004 by Stratagene.

Getting Started with the Mx3000P Instrument

Instrument Status Indicator LED's

The status indicators on the front of the Mx3000P instrument consist of two LED's.

The lower LED is a power status indicator. When this LED is lit, the Mx3000P instrument is plugged in and powered on.

The upper LED is a ready status indicator for the instrument and has three separate modes.

Steadily lit mode: the Mx3000P control software is operational and the unit is ready to run an experiment.

Blinking mode: The unit is not currently available to run an experiment. Either an experiment is already in process or a self-test is being conducted.

Off mode: The unit is not currently available to run an experiment. Either the power is off or the Mx3000P instrument control software is not operational.

Cautions and Warnings

Safety Symbols

Other Warnings

Be careful when loading or unloading samples from the thermal block; the thermal block can be hot.

Never touch the glass areas of the filters or the lamp.

Do not open the instrument door during a run. When an experiment is running on the instrument the upper LED on the instrument front is in blinking mode. Opening the door while the instrument is running will abort the run. A warning dialog box will appear on screen if the door has been opened and the run has been aborted.

Sample Loading and Unloading

Mx3000P Thermal Block Hardware

Use care when loading and unloading the samples; the thermal block can be hot.

Prior to loading samples, verify that the status LED (upper LED on the instrument front) is solidly lit (glowing green), indicating that the instrument is **Ready** for use. (If the LED is not illuminated, the instrument is not powered on. If the LED is blinking, the instrument is warming up or a run is in progress and the door should not be opened.)

Open the door located at the front of the instrument by sliding it all the way to the top.

Open the hot-top assembly to expose the thermal block by pulling forward on the hot-top handle and then lifting the hot-top up and away from the thermal block. The hot-top assembly is shown below in the closed (left) and opened (right) positions.

Note The hot-top assembly houses a 96-hole grid (used by the instrument for light path entry) which may be mistaken for a thermal block. Ensure that the hot-top is raised, exposing the thermal block, prior to loading samples.

Use of the Perfect Fit Frame with Single Tubes and Strip Tubes

When using individual tubes or strip tubes, insert the Perfect Fit frame (shown below in the proper orientation for installation) on the thermal block platform before loading the samples.

The Perfect Fit frame optimizes the contact between the sample tubes and the hot-top. It is not necessary to use the Perfect Fit frame with 96-well plates. One Perfect Fit frame is supplied with the Mx3000P System; additional frames are available from Stratagene (Catalog #401421).

To install the Perfect Fit frame, position the frame around the border of the thermal block. When properly installed, each of the six notches on the bottom of the frame will be positioned in the spaces between wells on the perimeter of the thermal block surface. The Perfect Fit frame should be seated on the thermal block platform with limited freedom of movement. There are no audible sounds associated with the installation. (The frame does not "click" into place.)

Preparation of Samples Prior to Loading

Application of Caps

Wear powder-free gloves while applying caps to the sample containers. Caps should be placed on the samples before the samples are loaded into the instrument. For best results, apply the caps while the samples are firmly seated in a 96-well working rack. Apply direct downward force to each cap, and then view the rack from the side to make sure all the caps are seated evenly. Alternatively, caps can be applied using a Corning Storage Mat Applicator.

Centrifugation of Samples

Prior to loading samples in the Mx3000P thermal block, briefly centrifuge the tubes or 96-well plate to collect any drops of liquid on the tube sides or lid.

Positioning of Tube Strips in the Thermal Block

When using tube strips, the 8-tube strips must be oriented vertically in the 8-position columns. Do not load strip tubes horizontally within the 12-position rows.

Consumables

Plasticware that meets the performance specifications of the Mx3000P system may be purchased from Stratagene:

96-well PCR plates, 0.2-ml, non-skirted, Stratagene Catalog #410088 8× strip tubes, 0.2-ml, Stratagene Catalog #401428 8×optical strip caps, Stratagene Catalog #401425 Single PCR reaction tubes (without caps), 0.2-ml, Stratagene Catalog #410023

Accessories

Stratagene Centrifuges

Tube-Strip PicoFuge[®], for 8-tube 200-µl tube strips or individual 200-µl tubes [Catalog #400540 (115-120V) Catalog #400542 (230V)].

96-Well Working Racks

96-well benchtop working racks are available from Stratagene (Catalog #410094).

Storage Mat Applicator

A storage mat applicator may be used for seating caps on tubes [Corning Model #3081 (sold by VWR Scientific, Catalog #29445-134)].

Multiple Instrument Set-Up: Optional Use of Multiple Instrument Control

When multiple Mx3000P instruments are used in a laboratory, the instruments may be set up to be controlled either each by individual computers or all by a shared computer. To set up the instruments using single instrument control by individual computers, simply follow the setup instructions provided on the Installation Guide poster or in the Setup and User's Guide. To set up the instruments to be controlled by a shared computer, follow the guidelines below.

Hardware Connections for Multiple Instrument Control

Using the Multiple Instrument Control mode of the Mx3000P software, up to six instruments may be controlled simultaneously from a single computer.

- Assess the availability of ports on the computer for connection to Mx3000P instruments. Each instrument will be connected using the provided serial cable (Stratagene part #22316-00). Any serial port on the computer may be used without any additional hardware. Any available USB port may also be used, after connecting the port to a USB-to-serial adapter (Stratagene part #22490). If additional ports are required to accommodate a greater number of instruments, a USB hub along with the appropriate number of USB-to-serial adapters may be used.
- 2. Connect each of the instruments to a power source. Verify that the power switch located at the rear of the instrument is toggled off. Attach the power cord to the plug port, adjacent to the power switch. Plug the instrument into a properly grounded outlet.
- 3. For each instrument, connect either end of the provided serial cable to the RS-232 serial port at the rear of the instrument.
- 4. Connect the free end of the serial cable to the computer, connecting either to a serial port or to a USB port outfitted with a USB-to-serial adapter.
- 5. Start-up the system. Power up each of the Mx3000P instruments using the switch located on the back of the instrument. Power up the PC. When the Windows[®] desktop appears, click on the Mx3000P icon to start the Mx3000P application.

Setting Up the Mx3000P Software for Multiple Instrument Control

To establish the associations between the computer and multiple instruments in the Mx3000P software, expand the **Multiple Instrument Control** section of the **Instrument** menu and then select **Add Instruments**.

Note *It is recommended that instruments not be running experiments while setting up multiple instrument control or while adjusting the settings.*

A Wizard will guide you through the process of adding instruments. After a short series of advisory dialog boxes, the following dialog box will appear with newly detected instruments in the list.

Multiple Instrument Control - Add Instruments Select the appropriate Add buttons for instruments newly detected. Once done, select Next.					
Name:	Communic	ations port:			
<newly detected=""></newly>	COM4	Identify	Add		
<newly detected=""></newly>	COM5	Identify	Add		
<newly detected=""></newly>	сом6	Identify	Add		
	(D -	-1 N	Level Connect		
	< Ba		Lancel		

Clicking the **Identify** button associated with a particular communications port causes the front LED of the instrument connected to that port to flash, allowing identification of the detected computers in the list.

To add an instrument to the group of instruments controlled by the computer, click the corresponding Add button. When the Add Instrument – COM# dialog box appears, enter the Instrument name and then click OK.

Add the instrument by naming it and selecting OK.
Instrument name:
Instrument 1
OK Cancel

Repeat this process for any other instruments connected to other communications ports. When all instruments have been added and their names entered, click **Next**, and the Wizard will guide you through completion of the process.

Using the Mx3000P Software in Multiple Instrument Control Mode

Selection of Instrument at Start-Up

Once the computer has been set up to recognize multiple instruments, you will be prompted to specify the instrument to be used each time you launch the Mx3000P software application.

Multiple Instrument Control	×
Select instrument Instrument 1 Instrument 2 Instrument 3	OK Standalone
The instrument name will appear in the application caption.	

Each open copy of the Mx3000P application may only be connected to a single instrument. After launch, the specific instrument connected to the Mx3000P application is indicated in the title bar.

 Mx3000P (Instrument 1) - Quantitative PCR - [New Experiment.mxp]

 File
 Edit
 Instrument
 Tools
 Options
 Section
 View
 Window
 Help

Simultaneous Use of Multiple Instruments

The multiple instruments controlled by a single computer may be used simultaneously by launching multiple copies of the Mx3000P application on the computer. Each time an additional application is launched, select the appropriate instrument from the **Multiple Instrument Control** dialog box.

Instruments that are unavailable are indicated by an In-Use status. Typically an instrument is unavailable because it is being used by another Mx3000P application. Other possible reasons include that the instrument is not powered on or that communications between the computer and the instrument are disrupted (e.g. disconnection of the serial cable or adapter).

After launch, each copy of the application will show the connected instrument in the title bar. Navigate between Mx3000P applications connected to the different instruments by selecting the appropriate application/instrument from the Mx3000P software **Window** menu or by using the taskbar at the bottom of the screen.

Administration of Multiple Instrument Control

To add, remove or rename instruments controlled by the computer, or to change the instrument connected to a specific copy of the Mx3000P application, use the commands available from the **Multiple Instrument Control** section of the **Instrument** menu.

Instrument	Tools	Options	Section	View	Window	Help
Multiple Instrument Control				Add	Instrumen	its
Oualification Test			Ren	ame/Remo	ve Instruments	
Self-Test				Cha	nge Conne	cted Instrument

Adding an Instrument to the Group Controlled by the Computer

Adding an instrument after initial setup involves the same steps used during the initial setup of multiple instrument control. First, establish the hardware connections between the new instrument and the computer (see *Hardware Connections for Multiple Instrument Control*). Next, complete the software setup steps, beginning by selecting Add Instruments from the Multiple Instrument Control menu. Follow the steps outlined by the Wizard. (See *Setting Up the Mx3000P Software for Multiple Instrument Control*, above, for more information).

Renaming or Removing an Instrument

To rename an instrument or to remove an instrument from the group of instruments controlled by the computer, select **Rename/Remove Instruments** from the **Multiple Instrument Control** menu. A Wizard will guide you through the process. After one or more advisory dialog boxes, the following dialog box will appear:

Multiple Instrument Control - Rename/Remove						
Select the appropriate Rename/Remove buttons. Once done, select Next.						
Name:	Communications port:					
Instrument 1	COM4 Identify	Rename/Remove				
Instrument 2 COM5 Identify Rename/Remove						
Instrument 3 COM6 Identify Rename/Remove						
			-			
	< Back	Next > Cancel				

To verify the identity of the instrument to be renamed or removed, click the **Identify** button associated with the instrument name. The front LED of the specified instrument will then flash.

When ready to proceed, click the appropriate Rename/Remove button.

To rename an instrument, select the **Rename** radio button, enter the new name in the box, and then click **OK**. The Wizard will guide you through completion of the process.

Rename/Remove Instrument 1	×
Select the appropriate button to rename or remove the instrument and select OK.	e
Select action	
• Rename	
QC Lab	
C Remove	
OK Cancel	

To remove the instrument, select the **Remove** radio button and then click **OK**. The Wizard will guide you through completion of the process, providing advice or instructions for the following special cases:

If you are removing the instrument that is currently connected to the open Mx3000P application, the Wizard will direct you to select another instrument for connection to the application.

If, after removing instruments, only one instrument remains connected, the Wizard will notify you that the computer is being switched to the single-instrument control mode.

If you attempt to remove the last instrument, the Wizard will prevent this action, since running an instrument-connected version of the Mx3000P application requires that at least one instrument be connected to the computer. If you wish to run the application without connection to an instrument, open an additional **Standalone** copy of the Mx3000P application.

Changing the Instrument Connected to the Software Application

To change the instrument connected to the open copy of the Mx3000P software application, click **Change Connected Instrument** from the **Multiple Instrument Control** menu. When the following dialog box appears, select an **Available** instrument and then click **OK**. The newly selected instrument name will appear in the title bar for the open application.

Multiple Instrument Control - Change Instrument							
Please select the instrument for the current application connection.							
Select instrument:	Communications port:	Status:					
O Instrument 1	COM4 Identify	(Connected)					
C Instrument 2	COM5 Identify	(In Use)					
Instrument 3	COM6 Identify	(Available)					
		DK Cancel					

Choosing a Detection Chemistry and Experiment Type

Overview of QPCR and Detection Chemistries

Overview of Quantitative PCR

The quantitative PCR method represents an important technique for quantifying messenger RNA levels (gene expression) and DNA gene levels (copy number) in biological samples. The amount of a specific target nucleic acid is generally too low in biological samples for direct detection; the target must therefore be amplified by using PCR or other protocols to achieve detection. Endpoint analysis of PCR product accumulation does not allow accurate quantitation of the initial amounts of the target in the samples. As amplification proceeds, reagents may become limiting, PCR inhibitors may accumulate, and any small differences in PCR performance among samples are magnified. Thus PCR product accumulation measured at the end of cycling fails to accurately reflect the initial amount of target in the sample. In contrast, in real-time quantitative PCR analysis, accumulation process when reagents are not limiting, and differences due to other factors are minimized, providing a significantly more accurate quantification of initial RNA or DNA levels. Additional benefits of real-time quantitative PCR include sensitivity and a wide dynamic range. As few as 10 copies of an RNA target can be detected and the linearity of detection is greater than six orders of magnitude.

Mx3000P system quantitative PCR experiments use fluorescence-labeled probes or SYBR Green I fluorescent dye for both RNA and DNA detection, allowing real-time monitoring of PCR product formation during the PCR amplification process in a closed-tube format.

Detection using Fluorescence-Labeled Probes

Fluorescence-labeled oligonucleotides, most commonly molecular beacons and TaqMan[®] probes, are employed for QPCR detection when the most accurate quantitation of PCR product accumulation is desired. Both of these types of probes are designed as oligonucleotides that contain a region complementary to a sequence within the nucleic acid sequence being amplified. Both also contain a fluorophore and a quencher moiety, usually at opposite ends of the oligonucleotide. For both probe types, fluorescence is quenched prior to amplification due to the action of the quencher on the fluorophore. The process of amplification separates the fluorophore from the quencher (using two different mechanisms that are described below), allowing the fluorophore to fluoresce. As a result, the amount of fluorescence at any given cycle is directly proportional to the amount of specific product present at that time.

For both types of fluorescent probes, as PCR proceeds the fluorophore will produce fluorescent light of a color that is characteristic of the fluorophore used. The existence of a variety of spectrally distinct fluorophores available for labeling either molecular beacons or TaqMan probes introduces the possibility of multiplexing, or quantitating multiple targets with different probes in the same reaction well.

Molecular Beacons Probes

Molecular beacons assume a hairpin-structure when free in solution, bringing the end-bound fluorophore and quencher into close proximity, thereby allowing quenching of the fluorescence signal. The binding of the probe to its target disrupts the hairpin structure, resulting in a spatial separation of the fluorophore from the quencher, thereby allowing fluorescence. When the DNA polymerase extends the upstream primer, the bound probe is displaced and resumes its hairpin structure. The transition from free (quenched) to quantitatively bound (fluorescent) is repeated in each subsequent amplification step, allowing the real-time measurement of target levels at each cycle.

TaqMan Probes

TaqMan probes are linear oligonucleotides which are designed to allow a close proximity of the fluorophore and quencher in the intact, unstructured probe. This detection chemistry employs the cleavage of probe molecules during the amplification process to physically separate the fluorophore from the quencher moiety. TaqMan probes are complementary to a region of the target located between the upstream and downstream primer binding sites. As the DNA polymerase extends the upstream primer, it encounters the bound probe. The 5' to 3' exonuclease activity of the polymerase cleaves the probe, releasing the fluorophore into solution, where it is allowed to fluoresce. Quantitative release of additional free fluorophore is repeated in each subsequent amplification step, allowing the real-time measurement of target levels at each cycle.

Detection using SYBR Green Dye

When the most accurate quantitative data are not required, the accumulation of double-stranded DNA (dsDNA), as indicated by a fluorescent dsDNA-binding dye, can be used to quantitate the accumulation of a PCR product in a QPCR assay. The dsDNA-binding dye that is most commonly used in QPCR is SYBR Green I dye.

SYBR Green I dye has a higher affinity for dsDNA than for single-stranded DNA (ssDNA) or RNA, making it ideal for reporting the accumulation of dsDNA. Upon binding DNA, the magnitude of SYBR Green fluorescence emission increases by approximately 1000-fold, making this dye a sensitive indicator for the quantity of dsDNA present in the reaction mixture at any given time.

Specific and non-specific double-stranded PCR products generate the same fluorescence signal upon binding SYBR green dye. To distinguish between fluorescence derived from specific and non-specific products, SYBR green dye-based QPCR assays include a dissociation curve. During the dissociation curve, dsDNA product is melted into ssDNA by a stepwise increase in temperature, with fluorescence data being collected at each step. The magnitude of the reduction in fluorescence intensity at the melting temperature of the specific PCR product of interest provides a qualitative indicator of the proportion of dsDNA attributable to the specific PCR product.

A major advantage of this approach is that no fluorescence-labeled probes are required. SYBR Green I stain is compatible with fluorescence-detection instruments equipped with filters in the 520 nm range (e.g. filters for detecting 6-FAM).

Overview of Mx3000P System Experiment Types

Real-Time vs. Plate Read Experiments

The Mx3000P real-time PCR system software allows you to select from a variety of experiment types, providing setup and analysis screens that are specialized for the specific application. Both real-time experiments that monitor and report the accumulation of PCR product during thermal cycling, and plate-read (sometimes referred to as endpoint) experiments types are available.

Real-Time Experiments

Real-time experiments should be used when accurate quantitation of the levels of a specific RNA or DNA target is required. In real-time experiments, accumulation of the amplified target is monitored during the early exponential phase of the amplification process when reagents are not limiting, and differences due to other factors are minimized, providing a significantly more accurate quantification of initial RNA or DNA levels. *See Overview of Quantitative PCR* for a more detailed discussion of the advantages of using real-time analytical methods.

Note The term quantitative PCR is often used to describe a variety of experimental approaches using different detection chemistries and analysis algorithms to achieve a quantitative analysis of target levels by monitoring PCR product accumulation. The Mx3000P software includes the experiment type **Quantitative PCR** describing a specific assay type in which fluorogenic oligonucleotide probes are used to quantitate target levels by way of a standard curve. Other specific experiments which fall under the general usage of quantitative PCR are featured in other experiment types.

The Mx3000P system includes the following specific real-time experiment types:

- Quantitative PCR: This experiment type uses a standard curve to quantitate the amount of target present in an Unknown sample with high accuracy using a fluorescence-labeled probe for detection. A series of Standard samples, containing dilutions of a known amount of target, are amplified to generate a curve that relates the initial quantity of the specific target to the Ct. The standard curve is then used to derive the initial template quantity in Unknown wells based on their Ct values. This method is sometimes referred to as absolute quantitation or as standard-curve quantitation in the literature. This experiment type is also useful for primer/probe optimization experiments in the absence of a standard curve.
- Comparative Quantitation: This experiment type is a form of relative quantitation, comparing the levels of a target gene in test samples (referred to as Unknowns) relative to a sample of reference (referred to as the Calibrator). For example, the Calibrator sample might contain RNA from untreated cells, while the Unknowns might contain RNA from cells treated with different agents of interest. This experiment type provides an efficient method for comparing levels of RNA or DNA across samples when information about the absolute amounts of target in any sample is not required.

- SYBR Green (with Dissociation Curve): This experiment type uses a standard curve to quantitate the amount of target present in an Unknown sample using SYBR Green I dye for detection. This experiment type is also useful for SYBR Green assay optimization experiments in the absence of a standard curve. The thermal profile includes a dissociation curve, used to discriminate between specific and non-specific PCR products.
- Allele Discrimination/SNP's Real-Time: This experiment type uses fluorescence-labeled probes to determine the allelic composition of DNA samples. Two fluorogenic probes, labeled with two spectrally distinct dyes, are used to discriminate between two different alleles that may differ by as little as a single nucleotide. The presence or absence of a given allele is based on the Ct value determined for the allele-specific probe.
- Molecular Beacon Melting Curve: This experiment type analyzes the melting characteristics of a molecular beacon for the determination of the experimental melting temperature (Tm) and optimal annealing temperature for subsequent PCR experiments. Melting curves are typically performed with the molecular beacon alone and in the presence of both perfectly-matched and mismatched oligonucleotide targets in order to determine the temperature that results in maximum specificity.

Plate Read Experiments

Plate read experiments are appropriate for applications that allow endpoint analysis of fluorescence values. The plate-read function may be used to take fluorescence readings for a set of samples that are cycled in another thermal cycler, collecting either a one-time fluorescence reading or pre-cycling and post-cycling readings.

The Mx3000P software offers two specific plate-read experiment types:

- Quantitative Plate Read: This experiment type uses a standard curve to estimate the amount of target present in an Unknown sample using a fluorescence-labeled probe for detection. A series of Standard samples, containing dilutions of a known amount of target, are included in the experiment to generate a curve that relates the quantity of the specific target to the final fluorescence reading. The standard curve is then used to estimate the template quantity in Unknown wells based on their fluorescence readings.
- Plate Read/Allele Discrimination: This experiment type is used both for general platereading tasks and for allele discrimination assays with endpoint detection. In both cases, samples may be called as positive or negative for the presence of a specific sequence based on whether the endpoint fluorescence readings meet user-defined statistical criteria.

Navigating in the Mx3000P Software

Menu Commands

Menu commands available in the Mx3000P real-time PCR system software are used to manipulate files, to customize and use the experimental setup and analysis features of the software, to initiate several instrument actions and to access **Help** functions. Click on the menu name below for more information on the software commands accessed through each individual menu.

File Menu

Edit Menu Instrument Menu Tools Menu Options Menu Section Menu View Menu Window Menu Help Menu

File Menu

The **File** menu contains commands used to open, close, save and print files. The menu also contains commands for exporting and converting files as well as a list of recently-opened experiments.

File	Edit	Instrument	Tools	Options	Section	View	Window	He	
P	lew						Ctrl+N		
0)pen						Ctrl+O		
0	llose								
9	jave						Ctrl+S		
9	iave As						Ctrl+A		
	mpore v	well Names						_	
E	Export I	nstrument Da	ta						
E	Export (Ihart Data							
E	Export 1	fext Report							
E	xport t	o PowerPoint(B				Ctrl+W		
E	Export t	o Image File	•				Ctrl+I		
(Ionvert	to New Expe	riment 1	ſype					
E	-Mail E:	xperiment							
F	rint Pag	ge Setup							
F	rint						Ctrl+P		
F	rint Scr	reen					Alt+P		
F	Print Report								
F	rint Pre	eview							
1	Allele (Discrimination	Real-Ti	me Exampl	e.mxp				
2	Compa	arative Quanti	itation M	Aultiplex E:	xample.m>	þ			
3) Quant	itative PCR 4-	Plex Ex	ample.mxp					
4	Quant	itative PCR 10)-Fold E	xample.m	<p< td=""><td></td><td></td><td></td></p<>				
5	5 Compa	arative Quanti	itation 9	Separate V	vell Examp	le.mxp			
e	Allele (Discrimination	Plate R	ead Examp	ole.mxp				
E	Exit								

New - Create a New Experiment

To create a new experiment, click **New** in the **File** menu, press **Ctrl+N**, or click the new

experiment button in the toolbar. The **New Experiment Options** dialog box will open, allowing you to select the type of experiment to be created. Click the radio button next to the desired experiment type and then click **OK**. Checking **Turn lamp on for warm-up?** will apply power to the lamp once **OK** is clicked. The lamp should be warmed-up for 20 minutes before an experiment is run.

New Experiment Options	X
Select experiment type Real-time: © Quantitative PCR (Multiple Standards) © Comparative Quantitation (Calibrator) © SYBR® Green (with Dissociation Curve) © Allele Discrimination / SNP's Real-Time © Molecular Reacon Melting Curve	OK Cancel
Plate read: © Quantitative Plate Read © Plate Read / Allele Discrimination Turn lamp on for warm-up?	

After **OK** is clicked, the software will proceed to the **Plate Setup** screen for the specific type of experiment selected.

Open - Open an Existing Experiment 🖻

To open an existing experiment, click Open in the File menu, press Ctrl+O, or click the open button in on the toolbar. The **Open** dialog box will appear. Select the experiment to be opened. (Use the Look in menu to browse to other storage locations if necessary.) Click the Open button at the bottom of the dialog box.

Open				? ×
Look in: 🔂	Storage	•	+ 🗈 💣	·
🚺 Allele Discr	imination Real-Time Examp	le		💋 Plate Rea
🛛 🚺 Comparati	ve Quantitation Multiplex E	×ample		💋 Quantita
🛛 🚺 Comparati	ve Quantitation Multiplex S	tandard Curve	Example	💋 Quantita
🛛 🚺 Comparati	ve Quantitation Separate \	Vell Example		💋 Quantita
🛛 🚺 Comparati	ve Quantitation Separate \	Vell Standard C	iurve Example	💋 SYBR Gre
Molecular B	Beacon Melting Curve Exan	nple		
		1		_
				<u> </u>
File name:				Open
Files of type:	Experiment (*.mxp)		•	Cancel

Close - Close the Current Experiment

To close an experiment without closing the Mx3000P software, click **Close** in the **File** menu. If the experiment has been modified, the Save Current Experiment dialog box will appear. Click Yes to save the changes and close the experiment, click No to close the experiment without saving the changes, or click Cancel to return to the experiment without saving any changes. If the Yes button is clicked to save the experiment, the Save As dialog box will appear, allowing you to specify the name that the file will be saved under.

To save an experiment, click **Save** in the **File** menu, press **Ctrl+S**, or click the save button **I** on the toolbar. If the experiment has already been saved, no dialog box will be displayed and the experiment will be saved under its current name. If the experiment has not already been saved, the **Save As** dialog box will open (see below), allowing you to specify a file name and directory for storing the experiment.

If the experiment has not been modified since it was last saved, the **Save** command and button will be disabled. The Mx3000P software automatically saves the experiment at the end of a run, therefore **Save** is disabled at the conclusion of a run. If any changes are made to the experiment after completion of the run, **Save** will be enabled.

To save an experiment under a different name, use the Save As command in the File menu.

Save As

To save a new experiment or to save an existing experiment under a new name, click **Save As** in the **File** menu or press **Ctrl+A**, and the **Save As** dialog box will open. If the experiment was previously saved, the name of the experiment will appear in the **File name** field where it may be modified. If the experiment has not yet been saved, a default file name will appear in the **File name** field. You can elect to either use the default file name or specify another file name. Experiment files are stored in the default data directory (C:\Program Files\Stratagene\Mx3000P\Storage directory). The default storage location and the default file name structure may be changed on the **File** tabbed page of the **Preferences** dialog box (accessed from the **Options** menu).

Import Well Names

File	Edit	Instrument	Tools	Options	Section	View	Window	Help
N	ew						Ctrl+N	
0	pen						Ctrl+O	
C	lose							
S	ave						Ctrl+S	
S	ave As						Ctrl+A	
Ir	nport \	Vell Names						Manual Manual Import Well Names from Excel File
E	xport I	nstrument Da	ita					Import Well Names from ASC File

Well names may be imported from a Microsoft[®] Excel file or from certain ASC files into the open experiment. The Mx3000P software associates well names with well ID's (A1–H12) using a mechanism appropriate to the input file type.

Import Well Names from Excel File

Well names may be imported from a Microsoft Excel file formatted as shown below with column A containing Well ID's and column B containing the well names to be imported. The Well ID's may appear in any order but must contain the syntax A1–H12 or A01–H12.

	А	В	С
1	Well ID	Well Name	
2	A1	Reference RNA (1)	
3	B1	Reference RNA (10)	
4	C1	Reference RNA (100)	

To import the well names into the **Plate Setup** for the open experiment, first ensure that all wells to be associated with an imported well name are defined (have at least a **Well type** assignment). Select **Import Well Names from Excel File** from the expanded **File** menu. When the **Well Name Import** dialog box appears, browse to the Microsoft Excel file location and then click **Open**.

Well names may be visualized in the Full Screen Plate view.

Import Well Names from ASC File

Import Well Names from ASC File is a specialized feature that allows import of well names from files generated using some other automated instruments. The ASC files do not contain destination (well ID) information. For this reason, the destination wells are specified within the Mx3000P experiment and the well names must be listed in the ASC file in a specific structure. The supported structure of well names in the ASC file is vertical, left-to-right. In other words, well names imported from the ASC file are directed to user-specified wells in the Mx3000P experiment in the order of A1–H1, A2–H2...A12–H12.

To use this well name import feature, first specify the destination wells using the **Plate Setup** screen. The specified wells must be defined with at least a **Well type** assignment. Do not assign replicate symbols prior to import. Select the wells to be associated with well names from the ASC file with the mouse on the **Plate Setup** screen (all defined wells or a subset of the defined wells may be selected).

Next, select **Import Well Names from ASC File** from the expanded **File** menu. The following dialog box will appear. Select the appropriate description of the wells to be associated with a well name under **Import destination**, and then click **Continue**.

Well Name Import (from ASC File)	×							
Please choose where the well names are to be imported and select continue. The ASC file format does not contain destination well information.								
Import destination								
 All defined wells 								
C All defined wells selected in Plate Setup								
Continue								

In the next dialog box, browse to the ASC file location, select the file name, and then click Open.

Well names may be visualized in the Full Screen Plate view.

Exporting Data to Other Applications

The **File** menu export commands allow raw instrument data, chart data, or text report data to be exported to a Microsoft Excel file, a text file or an XML file in a variety of formats. In addition, Mx3000P software screens may be exported to Microsoft PowerPoint[®] or image files. Each of the menu items marked with arrows may be expanded to reveal output file options and formatting options.

Exporting Data to Excel

Raw instrument data (cycle-by-cycle fluorescence readings), chart data points, or text report data may be exported to the Microsoft Excel application.

Selecting Export Instrument Data to Excel, Export Chart Data to Excel, or Export Text Report to Excel from the File menu exports the corresponding data to Microsoft Excel. To maintain the new file as an Excel workbook, execute the Save As command from the Excel application and select the Excel workbook file type from the Save as type menu. If you exit the Excel software without saving the file as a workbook, then the file will be saved as a tab-delimited text file.

Formatting options for instrument or chart data output to the Excel file are described below.

Exporting Data to a Text File

Raw instrument data (cycle-by-cycle fluorescence readings), chart data points, or text report data may be exported to a tab-delimited text (.txt) file. The text file can be opened in any word-processing program.

Formatting options for instrument or chart data output to the text file are described below.

Exporting Data to an XML File

Raw instrument data (cycle-by-cycle fluorescence readings), chart data points, or text report data may be exported to an Extensible Markup Language (XML) file to allow viewing in a browser window and to allow importing of the data into databases.

Selecting Export Instrument Data to XML File, Export Chart Data to XML File, or Export Text Report to XML File from the File menu exports the corresponding data to an XML file (filename.xml). At the same time, two support files (filename.xsl and filename.xsd) are also created. All three files are stored in the same folder [by default, the Mx3000P data storage folder specified in the Preferences-File dialog box (e.g., C:\Program Files\Stratagene\Mx3000P\Storage)].

Note *The .xml, .xsl and .xsd files should be maintained in the same file directory to allow browser viewing.*

The XML file may be opened using your computer's browser (typically, double-clicking on the XML file icon is sufficient).

Formatting options for instrument or chart data output to the XML file are described on the following pages.

Formatting Options for Exported Instrument Data

Three different formats are available from the Export Instrument Data to Excel and the Export Instrument Data to Text File and Export Instrument Data to XML File submenus. Examples of the three formats are shown below.

_									
<u>×</u> ∾	licrosoft Ex	cel - Excel F	ormat 1 [R	ead-Only]					
	🕙 File Edit View Insert Format Tools Data Window Help								
] 🗅	🖻 🖬 🤘	🗐 🗟 🚏	አ 🖻 f	L 🝼 🗠	* CH * 😫	ι 🏟 Σ	f≈ <mark>A</mark> ↓ A↓	🛍 🔮 🚜	
Ari	al	- 1	0 • B	I <u>U</u> ≣		\$ %	•.0 •.0 •.0 •.0		
	04	•	=						
	A	В	С	D	E	F	G	Н	
1	Segment	Ramp/Plat	Ramp/Plat	Well	Dye	Cycle #	Fluorescer	Temperature	
2	2	Р	2	1	ROX	1	23874	54	
3	2	Р	2	1	ROX	1	23889	54.2	
4	2	Р	2	1	ROX	1	23814	54.3	
5	2	Р	2	1	ROX	2	23963	53.9	
6	2	Р	2	1	ROX	2	23883	54.1	
7	2	Р	2	1	ROX	2	24040	54.3	
8	2	Ρ	2	1	ROX	3	23734	53.9	
9	2	Р	2	1	ROX	3	23640	54.1	
10	2	Р	2	1	ROX	3	23697	54.3	

Format 1--Columnar -- Cycle-by-cycle data are listed for each well.

Format 2--Grouped by Dye -- Cycle-by-cycle data for each well are grouped by dye paths.

×M	🗙 Microsoft Excel - Excel Format 2 [Read-Only]										
	🕙 Eile Edit View Insert Format Iools Data Window Help										
D	🛛 🗁 🖬 🎒 🖪 🔍 🖤 👗 🖻 🛍 🝼 🗁 🗠 - 🍓										
Ari	Arial • 10 • B / U ≡ ≡ ≡ ₫										
	02	•	=								
	A	В	С	D	E						
1	Segment	2 Plateau 2	2 Well 1 R	OX							
2		Cycle #	Fluoresce	Temperatu	Jre						
3		1	23874	54							
4		1	23889	54.2							
5		1	23814	54.3							
6		2	23963	53.9							
7		2	23883	54.1							
8		2	24040	54.3							
9		3	23734	53.9							
10		3	23640	54.1							
11		3	23697	54.3							

Format 3--Grouped by Wells (dye columns) -- Cycle-by-cycle data are grouped by wells with the data for each dye path shown in separate sets of columns.

×	🗙 Microsoft Excel - Excel Format 3 [Read-Only]										
	🐏 Eile Edit View Insert Format Tools Data Window Help										
) 🛩 🖬 🏻	S 🔍 🗳	አ 🖻 🕻	s 🛷 🗠	* C4 * 😫	ς 😵 Σ	f _≈ A∣ Z∣	🛍 🔮 🌢	100% •	2	
Ari	ial	- 1	0 - B .	<u>Ι</u> <u>υ</u> ≣		\$ %	•.0 .00 •.0 •.0	te te	🛄 + 🖄 +	<u>A</u> -	
	08 - =										
	A	В	С	D	E	F	G	Н		J	
1	Segment	2 Plateau 0	2 Well 1								
2		RO)	X		FAN	M		CYS	5		
3		1	23874	54	1	19826	54	1	1353	54	
4		1	23889	54.2	1	19923	54.2	1	1359	54.2	
5		1	23814	54.3	1	19996	54.3	1	1354	54.3	
6		2	23963	53.9	2	19611	53.9	2	1362	53.9	
7		2	23883	54.1	2	19877	54.1	2	1368	54.1	
8		2	24040	54.3	2	20279	54.3	2	1367	54.3	
9		3	23734	53.9	3	19548	53.9	3	1373	53.9	
10		3	23640	54.1	3	19926	54.1	3	1377	54.1	
11		3	23697	54.3	3	20211	54.3	3	1377	54.3	

Formatting Options for Exported Chart Data

Two different formats are available from the Export Chart Data to Excel and the Export Chart Data to Text File and Export Chart Data to XML File submenus. Examples of the two formats are shown below.

Format 1—Vertically Grouped by Plot – The coordinates of each plotted data point are listed for each well/dye vertically. (The contents of the x- and y-coordinate columns are dependent on the specific chart type.)

M	🔀 Microsoft Excel - Chart Data Excel.txt [Read-Only]									
8	File	<u>E</u> dit	<u>V</u> iew	Inse	ert F <u>o</u> ri	mat <u>T</u> ools	<u>D</u> ata	<u>W</u> indow	Help	
	2	8) 🔁	6	👌 💞	X 🗈 🕨	o - 🍓	,Σ.	≜ ↓ [<u>11</u> 🛛 👌
1		12	1	6	V 🗣	🔁 🛛 🐄 Rep	bly with \subseteq	nanges	. E <u>n</u> d R	Review 🖕
	A1		-		<i>f</i> ∗ Amp	lification Pl	ots			
		Д	<u>۱</u>		В	C	2		D	E
1	Am	olificatio	on Ple	ots _						
2										
3	A1,	Repl. 1	, SY	BR	Cycles	Fluorescer	nde (dRr)		
4					1		0.0007	'3		
5					2		0.0004	18		
6					3		0.0002	27		
7					4		0.0001	4		

Format 2—Horizontally Grouped by Plot – The coordinates of each plotted data point are listed with each well/dye shown in a separate column. (The contents of the x- and y-coordinate columns are dependent on the specific chart type.)

N 12	Microsoft Excel - Chart Data Excel.txt [Read-Only]										
8	B File Edit View Insert Format Iools Data Window Help										
Ľ	□ 😂 🖬 🔒 🖏 🎒 🔕 😻 🐇 🛍 🗠 • 🍓 Σ • 🛃 🛍 🕄 🗳 Arial 🔹 10 • Β Ι <u>U</u> ≡ Ξ Ξ 🚈										
č a	🚰 🏙 🕍 🖾 📾 😓 🖓 🦉 🖓 Reply with Changes End Review										
	C32 ▼ ∱ 0.05048										
	A	В	С	D	E	F	G				
1	Amplification Plots										
2			A1, Repl. 1, SYBR	A2, Repl. 1, SYBR	A3, Repl. 1, SYBR	A4, Repl. 1, SYBR	A5, Repl. 1, SYBR				
3		Cycles	Fluorescence (dRn)	Fluorescence (dRn)	Fluorescence (dRn)	Fluorescence (dRn)	Fluorescence (dRn)				
4		1	0.00073	0.00071	0.0007	0.00156	0.00155				
5		2	0.00048	0.00048	0.00045	0.00119	0.00117				
6		3	0.00027	0.00027 0.00031 0.00028 0.001/		0.00101	0.00094				
7		4	0.00014	0.00018	0.00014	0.00081	0.00075				
8		5	0.00004	0.00004	0.00002	0.00059	0.00059				
9		6	-0.00004	-0.00004	-0.00005	0.00041	0.00044				
10		7	-0.00018	-0.00016	-0.00016	0.00023	0.00025				

Exporting Content to a PowerPoint File

Selecting **Export to PowerPoint** exports the contents of the active section of the experiment to a Microsoft PowerPoint file. This command may be used to export the content of the screens from any section (**Setup**, **Run**, or **Analysis**) of the Mx3000P software. The PowerPoint application is automatically launched when this command is executed, and the content of the current screen is copied into a new slide.

Exporting Content to an Image File

Selecting **Export to Image File** exports the contents of the active section of the experiment to a bitmap (.bmp) image file. This command may be used to export the content of the screens from any section (**Setup**, **Run**, or **Analysis**) of the Mx3000P software. By default, the new image file is stored in the Mx3000P data folder (e.g., C:\Program Files\Stratagene\Mx3000P\Storage) and can be opened using a variety of graphics applications.

Convert to New Experiment Type

After an experiment has been set up and run as one experiment type, the data may be reanalyzed as different experiment type. When the **Convert to New Experiment Type** command is executed, the Mx3000P software creates a new experiment file and applies the analysis algorithms and display schemes of the newly selected experiment type to the existing data, using the well assignments and fluorescence readings from the original run. If well assignments made in the original run are unavailable in the new experiment type, a dialog box containing information about well type assignment incompatibilities will appear. The Mx3000P software will convert any of the available experiment types to any other available experiment type.

E-mail Experiment

The **E-mail Experiment** command is a shortcut for creating an email that contains the open experiment file in the Mx3000P System file format (.mxp). Clicking **E-mail Experiment** launches Microsoft Outlook[®] and creates a new message with the open Mx3000P experiment file attached to the new message.

Print Page Setup

Print Page Setup is used to adjust the size of the image printed when either **Print** or **Print Screen** is executed. To adjust the image size, click **Print Page Setup**. When the dialog box appears, enter the desired image size (25–100% of the original size) in the **Scale** box and then click **OK**.

Chart printing using most printers will be enhanced by using the **High resolution chart printing** option. If you are experiencing chart print quality problems, try deselecting the **High resolution chart printing** checkbox. Limitations of certain printer drivers cause incompatibilities with this option.

To print any view within the Mx3000P software, click **Print** in the **File** menu, press **Ctrl+P**, or click the print button **b**on the toolbar.

To resize the image prior to printing, use the Print Page Setup dialog box.

If you want to print the contents of the full screen, including toolbars and taskbars, use **Print** Screen instead of **Print**.

Print opens the printer driver dialog box which allows printing configuration and execution.

To print the full contents of the screen including toolbars and taskbars, click **Print Screen** in the **File** menu, press **Alt+P** or click the print screen button and the toolbar.

To resize the image prior to printing, use the Print Page Setup dialog box.

If you want to print only the active Mx3000P software module view, use **Print** instead of **Print** Screen.

Print Report

To print a text report of the well-based information from **Plate Setup**, click **Print Report** on the **File** menu. The printer driver dialog box opens and allows printing configuration and execution.

Print Preview

Clicking the **Print Preview** command generates a new window that displays the image that would be printed after the execution of a **Print** command. You may print directly from the **Print Preview** screen by clicking the **Print** button.

Recent Experiments

The **File** menu displays a list of the six most recently used experiments. Any experiment in the list may be opened by clicking on its file name.

Exit

To exit the program, click the **Exit** command in the **File** menu or click the **Close** button \bowtie in the upper right-hand corner of the screen. If the open experiment has not been saved, the **Save Current Experiment** dialog box appears.

Mx3000P - Save (urrent Experi	ment 🔀
The curr Would y	rent experiment l rou like to save y	has been modified. our changes?
Yes	No	Cancel

Note *A running experiment must be either completed or aborted before exiting the program.*

If you attempt to exit the software while the lamp is on, a dialog box will appear that prompts you to turn off the lamp.

Edit Menu

Edit	Ins	trument
Ur	ndo	Ctrl+Z
Re	edo	Ctrl+Y
Co	opy	Ctrl+C
Po	iste	Cuity

The Edit menu features two pairs of commands: the Undo and Redo command pair and the Copy and Paste command pair.

Undo

Undo allows you to undo multiple actions in **Plate Setup** or **Thermal Profile Setup**. Select **Undo** to effect each undo action.

Redo

Select **Redo** to reinstate the last action undone by the **Undo** command. (These commands are available for use during **Plate Setup** or **Thermal Profile Setup**.)

Сору

The **Copy** command is available in **Plate Setup**, allowing you to copy the information from one or more selected wells to the clipboard for later pasting into other well positions within the same experiment. To copy well information, first select the wells that contain the information to be copied by clicking on one well and then dragging the cursor across the set of wells to be selected. Release the mouse button, then click **Copy** on the **Edit** menu or press **Ctrl+C**.

Paste

The **Paste** command is available in **Plate Setup**, allowing you to paste well information from the clipboard into a selected set of wells. Using the mouse, first select the wells that you want to paste into. To paste the well information, click **Paste** on the **Edit** menu or press **Ctrl+V**.

Instrument Menu

The Instrument menu contains commands that control several functions of the instrument.

Multiple Instrument Control

Multiple Mx3000P instruments may be controlled using a single PC. The multiple instrument control mode is set up and administered by using the **Multiple Instrument Control** portion of the **Instrument** menu. See *Multiple Instrument Set-Up: Optional Use of Multiple Instrument Control* in the *Getting Started* section of the manual for more information on the use of this feature.

Qualification Test

Clicking Qualification Test opens the Instrumentation Qualification Test - Start dialog box.

A **Qualification Test** is completed during the initial instrument setup, using the predispensed qualification plate that was supplied with the instrument. This test verifies that the biological performance of the instrument is within factory specifications for a Quantitative PCR experiment. The **Qualification Test** run uses a preconfigured plate setup and thermal profile setup. The software provides test results upon completion of the run.

The first time that a new experiment is opened using instrument-connected software, the **Instrumentation Qualification Test - Start** dialog box will automatically open. To initiate the run, click **Next**. Follow the instructions that are presented in subsequent dialog boxes for completing the run and analyzing the results. If **Cancel** is selected, the dialog box will open every time a new experiment is opened, until the test has been completed.

Self-Test

The **Self-Test** command initiates a set of tests run by the Mx3000P instrument to validate a variety of performance parameters. When the self-test is complete, a dialog box will appear indicating that instrument passed or failed. In case of a failure result, subsystem failures will be specified; contact <u>Technical Services</u> for assistance.

Instrument Self-Test	t - Results			
Self-Test: PASSED				
Instrument sub-system results:				
Thermal System Motion System Optics System Electronics System	PASSED PASSED PASSED PASSED			
OK I				

Lamp Off

This command turns off the quartz-tungsten halogen lamp. Turning the lamp off when it is not needed extends the life of the bulb.

Lamp On

This command turns on the quartz-tungsten halogen lamp. Turn the lamp on at least 20 minutes prior to a run in order to allow the lamp to warm up. Stratagene recommends that no data be taken during this 20-minute warm up period.

Lamp Reset and Utilities

Lamp Reset and Utilities is used to reset the lamp timer to 0 after the quartz-tungsten halogen lamp has been changed. The Lamp Reset and Utilities dialog box displays the Total time of lamp usage accrued, the Last date the lamp was reset, and whether or not the lamp is within operational limits (the lamp has an average life expectancy of 2000 hours). To reset the timer, click the Reset button. The Total time will be set to 0 and the current date will appear in the Last date reset field.

L	amp Reset and	Utilities				×
	Timer Total time: Last date reset:	0:03	hr:min mm/dd/yyyy	Reset	Close	
	La					

Filter Set Gain Settings

Filter Set Gain Settings determine the amplification of the fluorescence signal readings for each of the four optical paths. Select Filter Set Gain Settings from the Instrument menu to open the Filter Set Gain Settings dialog box, in which the gain settings may be viewed and modified.

Current Settings Filter set FAM HEX-JOE CY5 TAMRA gain multiplier Load Factory Defaults Save as lab defaults	

Factory Defaults are gain settings calibrated to the four filters (optical paths) fitted in the Mx3000P instrument during manufacturing.

If you want to adjust the gain settings (for example, if the relative signal levels for your samples are not optimal using the current settings), use the **Filter set gain multiplier** dropdown menus to change the appropriate gain value(s). Click **OK** for the settings to take effect. To save new settings as **Lab Defaults**, select the **Save as lab defaults** check box before clicking **OK**. Only one set of **Lab Defaults** can be stored at a time.

Click Load Factory Defaults to retrieve the original factory settings. Click Load Lab Defaults to retrieve the last user-defined defaults saved by using the Save as lab defaults checkbox.

Note The fluorescence signal is saturated at 65536 and the accuracy of the fluorescence signal is reduced above 35000. As a general guideline, the gain should be set to a value that causes the highest signals seen from samples to be less than 35000.

Update Filter Configuration

The Mx3000P software stores filter configuration settings that specify the four filters fitted in the optical paths of the instrument during manufacturing. During routine use of the software connected to an individual instrument, these settings do not need to be changed.

If it is necessary to change or reinstate the filter configuration settings (e.g. if the software is used in conjunction with multiple Mx3000P instruments with different filters installed), use the **Update Filter Configuration** command to revise the filter configuration settings. When **Update Filter Configuration** is selected from the **Instrument** menu, a dialog box similar to the one shown below will appear. Click **Yes** to update the filter configuration used by the software to the configuration of the connected instrument.

Download Data from Instrument

In rare situations, when an instrument-connected Mx3000P application is re-started, such as after a PC hardware or instrument communication problem, a dialog box similar to the one below may be displayed.

Mx3000P								×
2	There is a running experiment potentially with data on the instrument. A reconnection is possible. Would you like to recover?							
	ĺ.	<u>Y</u> es		<u>N</u> o				

This dialog box indicates that there may be data on the instrument that can be recovered, and in this case, that the run may be resumed. Selecting **Yes** will perform the necessary data download and resume the run, if appropriate.

Alternatively, the **Download Data from Instrument** command can be executed through the **Instrument** menu.

The downloaded data will automatically be stored in the last open experiment, retaining its original filename. The instrument stores data only for the last run started on the instrument.
Tools Menu

The Tools menu provides access to tools located outside of the Mx3000P software.

Tools Options Section Windows Explorer QPCR Internet Links

Windows Explorer

Clicking on **Windows Explorer** opens the Windows Explorer application and displays the contents of the current Mx3000P software data storage folder.

QPCR Internet Links

If the computer is connected to the Internet, clicking **QPCR Internet Links** will open Microsoft Internet Explorer to a Stratagene web page that contains a number of useful links for primer/probe design and other QPCR-related topics.

Options Menu

The **Options** menu is used to access several dialog boxes which contain important instrument and software settings. The menu commands are summarized below; see the manual subsections (on following pages) dedicated to each of the three menu commands for more details.

Optics Configuration

The Optics Configuration dialog box is used for making Dye Assignments to filters, for defining properties of Dyes & Filters and for specifying the Scan Order.

Analysis Term Settings

Clicking Analysis Term Settings opens the appropriate dialog box: Analysis Term Settings-Real-Time or Analysis Term Settings-Plate Read. These are used for managing several settings that impact data analysis including specifications for background, threshold, curve smoothing and confidence interval calculations.

Preferences

The **Preferences** dialog box allows you to personalize several software settings. These include **File** storage and naming conventions, **Colors** used in the software displays, screen **Display** options and the use of **Defaults** in experimental setup and analysis.

Options-Optics Configuration

Optics Configuration - Dye Assignment

To assign a specific dye to an optical path, select **Optics Configuration** from the **Options** menu. When the **Optics Configuration** dialog box opens, click the **Dye Assignment** tab.

Opt	ics Configuration				x
D	ye Assignment Dyes &	Filters Scan Order	1		
	Optical path dye assigr	nments			1
	Filter position	Filter set	Excitation wavelength (nm.)	Emission wavelength (nm.)	
	1 R0X 💌	ROX Filter Set	585	610	
	2 FAM 💌	FAM Filter Set	492	516	
	3 CY5 💌	CY5 Filter Set	635	665	
	4 HEX 💌	HEXJOE Filter	535	555	
	Additional Dye In	formation			
			OK	Cancel	Help

When the software is running on an instrument-connected PC, the **Filter sets** shown correspond to the four filter sets installed in the instrument. To assign a specific dye, select from the dyes associated with the **Filter set** from the corresponding menu and then click **OK**. Note that if the dye to be assigned is a custom dye, its association with a particular filter set must first be defined in the **Dyes & Filters** tabbed page of the dialog box.

When running the software on a PC that is not connected to an instrument, a dye may be assigned to any of the filter positions by selecting the appropriate dye from the dropdown menu corresponding to each path. The **Filter set** associated with each filter position will change accordingly. When assignments are complete, click **OK**.

Specific information about dye and filter set compatibility is available by clicking **Additional Dye Information**.

Changing a Dye Assignment After Data Collection

To change a dye/filter position assignment in a post-run experiment, two steps are required. First, open the **Dye Assignment** page of the **Optics Configuration** dialog box and select the new dye from the dropdown menu corresponding to the appropriate filter set. (Menus will be available only for the filter sets that are compatible with multiple dyes.) Second, go to the **Plate Setup** screen for the open experiment. Using the **Collect fluorescence data** checkboxes, deselect the dye that was originally assigned to the path. The newly-assigned dye will now appear under **Collect fluorescence data**; re-select the dye checkbox to display the newly-assigned dye on all screens within the experiment.

Optics Configuration - Dyes & Filters

To define a custom dye or filter set, or to view the properties of defined dyes and filter sets, select **Optics Configuration** from the **Options** menu. When the **Optics Configuration** dialog box opens, click the **Dyes & Filters** tab.

Optics Configuration	×
Dye Assignment Dyes & Filters Scan Order	,
Dye definitions	Filter set definitions
Name: CY3	Name: CY3 Filter Set
Filter set: CY3 Filter Set	Excitation wavelength: 545 🛨 nm.
Color	Emission wavelength: 568 🛨 nm.
Add Update Delete	Add Update Delete
	OK Cancel Help

Dye Definitions

The **Dye definitions** section allows you to view the **Filter set** associated with a dye, to view or modify the display **Color** assigned to a dye, and to add new custom dyes. To view information about a particular dye, select the dye from the **Name** menu. The filter set associated with that dye is displayed; for the pre-defined dyes, the assigned **Filter set** may not be changed. The display color for the selected dye is shown. To change the color, click the **Color** button and the **Color** dialog box will open, allowing you to select a new color.

To add and define a custom dye: enter the new dye Name, select the Filter set with which the dye should be associated, and then click Add. The Define New Dye Color dialog box opens. Select a display color for the dye and click OK. The custom dye will then be available for assignment to a filter position on the Dye Assignment tabbed page of the Optics Configuration dialog box.

Filter Set Definitions

When the software is running on an instrument-connected PC, the **Filter set definitions** section of the dialog box will report the excitation and emission wavelength for each of the four filter sets installed in the instrument. Select the filter of interest from the **Name** menu to view the wavelength information.

When running the software on a PC that is not connected to an instrument, you may view information for any defined filter set by selecting the filter set of interest from the **Name** menu. In addition to defining custom dyes, you may also define a custom filter set. To do this, enter the custom filter set **Name**, enter the **Excitation wavelength** and the **Emission wavelength**, and then

click Add. The custom filter set will then be available for dye assignment under **Dye definitions**. To change the wavelengths defined for a custom filter set, enter new wavelength value(s) and then click **Update**.

Dye Information Dialog Box

The **Dye Information** dialog box provides information about each dye: its associated filter set, excitation wavelength, and emission wavelength. This dialog box may be accessed by clicking the **Additional Dye Information** button at the bottom of the **Dye Assignment** tabbed page of the **Optics Configuration** dialog box.

D	ye Inform	ation			x
	Dye ROX FAM CY5 HEX TET SYBR TAMRA TEXRD JOE CY3	Filter Name ROX Filter FAM Filter CY5 Filter HEXJOE TET Filter FAM Filter TAMRA Fil TEXRD Fil HEXJOE CY3 Filter	Excite 585 492 635 535 517 492 556 584 535 545	Emit 610 516 665 555 538 516 580 620 555 568	I
	Oye/filt Detected	er associations ed dyes		Close	

Selecting the **Detected dyes** radio button displays the filter sets installed in the instrument and lists the defined dyes that are compatible with each of the installed filter sets.

Dye Information	×
Dyes Detected by Filter Set ROX Filter Set ROX FAM Filter Set FAM SYBR CY5 Filter Set CY5 HEX-JOE Filter Set HEX JOE	
 Dye/filter associations Detected dyes 	Close

Optics Configuration - Scan Order

Filter sets are scanned in the order shown on the Scan Order page of the Optics Configuration dialog box (accessed from the Options menu).

To change the order in which the four filter sets are scanned, select the filter set label to be placed in a different position, and then use the arrow buttons to change the position of the filter set in the list. Alternatively, by using the mouse, drag the filter set label to the new position. Click **OK** to institute the new scan order.

Optics Configuration	×
Dye Assignment Dyes & Filters Scan Order	
Filter set scan order	
1 ROX Filter Set 2 FAM Filter Set 3 CY5 Filter Set 4 HEXJOE Filter Set Reset Change the scan order by adjusting the relative positions of the filter sets.	
OK Cancel Help	

Options-Analysis Term Settings for Real-Time Experiments

Analysis Term Settings - Real-Time - Threshold Fluorescence

The Threshold Fluorescence tabbed page of the Analysis Term Settings-Real Time dialog box allows you to select an automatic threshold-determination algorithm. Options include Amplification-based and Background-based threshold determination algorithms. For each algorithm, the result is one threshold value for each dye, excluding the reference dye. The threshold fluorescence may also be manually adjusted for each individual dye in any given experiment.

The threshold value is used in determining the dye's individual well product threshold cycle (Ct) results. Real-time final results, such as initial template quantities for **Unknown** wells, are based on Ct values.

Analysis Term Settings - Real Time	×
Threshold Fluorescence Baseline Correction Smoothing Replicates	
Active settings Amplification-based threshold Advanced Settings	
Background-based threshold	
Cycle range Use cycles 5 📻 through 9 🚔	
Sigma multiplier: 10 👘 Defaults 🔻	
OK Cancel He	lp

Amplification-based Threshold

When the **Amplification-based threshold** radio button is selected, the Mx3000P software automatically determines threshold values by one of two methods. The first method performs a search of fluorescence values within product exponential amplification to minimize Ct spread among replicates. The fluorescence associated with minimum Ct spread is assigned as the dye-specific threshold value. The second method assigns fluorescence associated with a fixed amplification position as the threshold value. The search range for the first method, and the fixed position used in the second method, can be set through the **Advanced Settings** dialog box.

Method 1

A minimum Ct spread algorithm is used for experiments that include at least two wells per replicate set for all replicates measuring a given dye. The algorithm calculates the Ct standard deviation for each replicate at each potential fluorescence value within the search range. The result is the fluorescence where the overall spread of the Ct standard deviation is minimized for all replicates, indicating the best overall position during amplification. The algorithm takes into account experiments with large dynamic ranges. Typically, the exponential amplification phase of all plots of interest (Standards and Unknowns) is included in the search. Whether or not all products' amplification are included is primarily determined by the search range specified under Advanced Settings.

Method 2

If method 1 cannot be performed due to an insufficient number of wells per replicate (i.e. fewer than two wells per replicate), a fixed amplification position is used. When it is necessary to employ this backup method, the software assigns the fluorescence associated with the midpoint of the search range (specified under **Advanced Settings**) as the threshold value.

Advanced Settings for Amplification-based Threshold

To view or modify the algorithm Search range, click the Advanced Settings button to open the Amplification-based Threshold dialog box. Valid Search range entries are between 0% and 100%, and the Original Settings are 5% to 60%.

The 0% position on an amplification plot is the point at which amplification begins to be detected. Typically for baseline corrected data, this point has a fluorescence value very close to 0 (e.g. 0.001). The 100% fluorescence value represents the maximum of the first derivative. It is near the ending of the exponential amplification phase and is sufficiently past the optimal search range of interest.

The algorithm will use the Ct spread minimization method (method 1) if two or more wells per replicate set are included in the experiment. The appearance of the **Amplification-based Threshold** dialog box under these conditions is shown below.

Amplification-based Threshold	X
Advanced Settings Search range Lower %: 🛐 📩 Upper %: 60 📩	OK Cancel

Changing the **Lower** % and **Upper** % range limits biases the threshold result accordingly. For example, if the threshold result is consistently too high (based on personal preference), the **Upper** limit may be lowered, resulting in a lower threshold result. If the threshold result is consistently too low, the **Lower** limit may be increased. This modification will further separate the beginning of the search range from the noise level and may improve results derived from certain data, increasing the confidence of the individual plot results. Alternatively, raising the **Lower** limit can be avoided by increasing the number of wells per replicate.

If fewer than two wells per replicate are included, the midpoint of the specified range is used for the fixed position method of threshold determination (method 2). When this occurs, the **Amplification-based Threshold** dialog box appears as shown below, specifying the range midpoint used. The **Upper** and **Lower** limits of the range may be modified, biasing the threshold result accordingly.

Amplification-based Threshold	×
Advanced Settings	OK
Search range	Cancel
Using midpoint of 32.5% Not enough wells	
per replicate to perform search.	

Analysis Term Settings - Real Time	×
Threshold Fluorescence Baseline Correction Smoothing Replicates	
Active settings • Amplification-based threshold Advanced Settings • Background-based threshold Cycle range Use cycles 5 * through 9 * Sigma multiplier: 10 * Defaults *	
UK Cancel Help	

Background-based Threshold

To analyze data from the experiment using a threshold fluorescence that is determined based on the noise in the background, select the **Background-based threshold** radio button. Enter the desired settings in the **Background cycle range** and **Background sigma multiplier** spin boxes.

Background cycle range specifies the cycles that will be used to calculate the threshold fluorescence levels. Threshold fluorescence is determined by calculating the standard deviation (sigma) of the raw fluorescence for all selected wells for the specified cycles and multiplying this value by the **Background sigma multiplier** constant. Typically, the **Background cycle range** should encompass only early cycles, before the PCR process starts to affect the fluorescence values. The **Original Settings** values for the background cycle range are cycles 5 through 9, and for the **Background sigma multiplier** is 10.

Analysis Term Settings - Real-Time - Baseline Correction

The **Baseline Correction** tabbed page of the **Analysis Term Settings-Real Time** dialog box allows you to specify how baseline fluorescence should be determined in order to generate baseline-corrected fluorescence (dR) data.

For each plot, the raw fluorescence data over a specified range of cycles are fit to a line using a linear least mean squares algorithm to produce a baseline. The value of the baseline function is calculated for every cycle and subtracted from the raw fluorescence to produce baseline corrected fluorescence (dR). The cycles used to determine the baseline may be the same for all plots in the experiment or may be defined differently for each individual plot.

Analysis Term Settings - Real Time				
Threshold Fluores	scence Baseline (Correction S	moothing Re	eplicates
Active setting Adaptive t Use M Non-adap Start cycle	s baseline x4000 v1.00 to v3.1 tive baseline s 3 🚔 throug	00 algorithm	Defaul	ts 🔽
- Resulting cycl	e range			
Well	Dye	Start	End	
A1	SYBR	7	18	
A2	SYBR	7	18	
A3	SYBR	7	18	
A4 A5	STBH CVDD	5	19	
	SYBB	7	18	
A7	SYBR	2	18	
A8	SYBR	7	18	▼
Select All * indicates we	Edit R ell dyes which are n	ange nanually adjust	Reset ed. Selecting	
Set to Defaul	t will reset.			
		ок	Cancel	Help

The **Baseline Correction** page is divided into two sections. Use the **Active settings** section to specify the baseline corrections settings prior to analysis. During experimental analysis, use the **Resulting cycle range** section to view and adjust the baseline corrections cycle ranges determined for each plot.

Options for baseline correction include **Adaptive baseline**, where the Mx3000P automatically determines the optimal baseline cycle range for each dye in each experiment, or **Non-adaptive baseline**, where user-defined settings are used to determine the baseline.

Active Settings-Adaptive Baseline

When **Adaptive baseline** is selected, the Mx3000P software will automatically determine the optimal background cycle range for each plot individually, resulting in the most accurate Ct value for each well/dye combination. After the experiment is run and analyzed using an adaptive baseline calculation, the resulting cycle range may be modified for any or all plots by the user as described in **Baseline Correction-Resulting Cycle Range**.

Note If you want use the Mx3000P software to analyze data that was collected using Stratagene's Mx4000[®] software (versions 1.00 to 3.00), select the Use Mx4000 v1.00 to 3.00 algorithm checkbox.

Active Settings-Non-adaptive Baseline

When **Non-adaptive baseline** is selected, the Mx3000P software will determine the baseline function using the range of cycles specified in the **Start cycle** and **through** menus. The starting and ending cycles in the software's **Original Settings** are 3 and 15, respectively.

See *Preferences-Defaults* for information about the use of the **Defaults** menu and the application of defaults sets to the settings specified in this dialog box.

Resulting Cycle Range

After running the experiment, use the **Resulting cycle range** section to view and adjust the baseline correction cycle ranges for each plot. Prior to completing the run, this section will be empty. After the run is complete, the starting and ending cycles being used to calculate the baseline are listed in this section. If **Adaptive baseline** is selected, the starting and ending cycles listed will be variable, since the Mx3000P software calculates the optimal baseline cycle range for each plot individually. If **Non-adaptive baseline** is selected, the starting and ending cycles listed will be constant and equal to the values entered in the **Active settings** section.

The baseline correction cycle range for one or more plots may be modified manually. To specify the range of cycles used to calculate the baseline for a particular plot, select a well/dye combination by highlighting its entry in the **Resulting cycle range** list. Multiple plots can be selected by holding down the **Ctrl** key when selecting, or all plots can be selected by clicking the **Select All** button. Once the desired well/dye combinations are selected, click the **Edit Range** button. The **Edit Cycle Range** dialog box appears.

Edit Cycle Rang	e 🗙
- E dit-	
Both start and	ending cycle 💌
Start cycle:	Ending cycle:
0 -	50 🐳
	Connect

In the spin control boxes, enter the desired start and ending cycle for the baseline algorithm to use to calculate the baseline correction.

The top menu provides 3 options for choosing the endpoints for the baseline calculation. **Both start and ending cycle** allows you to set both endpoints for all selected wells. **Start cycle only** allows the start cycle to be set for all selected wells without changing the ending cycle values. **Ending cycle only** allows the ending cycle to be set for all selected wells without changing the start cycle values.

To reset the start and end cycles to the **Active settings** values (for **Non-adaptive baseline**) or to the Mx3000P system-calculated values (for **Adaptive baseline**), select the desired well/dye combinations and then click **Reset**.

Analysis Term Settings - Real Time
Threshold Fluorescence Baseline Correction Smoothing Replicates
Active settings
Moving average
Amplification averaging points: 5
Dissociation averaging points: 5
Graphical temperature resolution
Dissociation point separation: 1.0*
Note: data are collapsed and averaged to Defaults
OK Cancel Help

Analysis Term Settings - Real-Time - Smoothing

The **Smoothing** tabbed page of the **Analysis Term Settings-Real Time** dialog box allows you to apply curve-smoothing to amplification plots and dissociation curve plots.

Moving Average

Moving average is an optional algorithm enhancement that uses curve-smoothing to help improve the precision and accuracy of the Ct determination from amplification plots and the Tm determination from dissociation curves by decreasing the effect of signal noise. When this enhancement is selected, the value for each data point in the curve represents the average of the values for a specified range of cycles surrounding a given point. Selecting a greater number of points increases the magnitude of curve smoothing that is achieved but decreases the resolution of the curve data.

To perform amplification data analysis employing a moving average calculation, select the **Moving average** checkbox and select the number of data points to be averaged in the **Amplification averaging points** box.

To perform dissociation data analysis employing a moving average calculation, select the **Moving** average checkbox and select the number of data points to be averaged in the **Dissociation** averaging points box.

Graphical Temperature Resolution

Graphical temperature resolution is a second optional algorithm enhancement available for dissociation curve smoothing. This algorithm is based on collapsing data by averaging adjacent data points to arrive at the desired point separation. Application of this algorithm increases the ratio of dissociation peak height to noise level.

To perform dissociation data analysis employing this algorithm, select the **Graphical temperature resolution** checkbox. Next, select the desired **Dissociation Point Separation**. Note that as the point separation is increased, the ratio of peak height to noise will increase. Note also that in some cases, the ability to differentiate between products with unusually closely spaced melting temperatures may decrease as the point separation is increased. The final results are displayed in the dissociation chart display.

Analysis Term Settings - Real Time	×
Threshold Fluorescence Baseline Correction Smoothing Replicates	
Active settings Replicates: Treat individually Treat collectively Defaults	
OK Cancel Help	

Analysis Term Settings - Real-Time - Replicates

Wells identified as replicates in **Plate Setup** may be treated either individually or collectively during **Analysis**. Selecting **Treat individually** under **Replicates** will cause the software to analyze each well independently and display or report results for each well separately. Selecting **Treat collectively** will cause the software to average the data from the replicate wells and report data from all replicate wells as a group, effectively treating the measurements as if they came from the same well. See *Treatment of Replicates* in the *How-To (Detailed Protocols)* section for more information on replicate treatment during analysis.

Analysis Term Settings - Real-Time - Efficiency Settings

When the Analysis Term Settings - Real Time dialog box is opened from a Comparative Quantitation experiment, the dialog box includes a tabbed page for Efficiency Settings. This dialog box is accessed through the **Options** menu.

Analysis Term Settings - Real Time	×
Threshold Fluorescence Baseline Correction Smoothing Replicates Efficiency Settings	
Active settings Amplification efficiencies: Dye Slope HEX -3.32 FAM -3.39 97.4 N/A	
Efficiency Settings are used in determining Comparative Quantitation results. Consequently, these settings are available only for this experiment type.	
OK Cancel Help	

This feature allows you to specify the amplification efficiency for the gene of interest and Normalizer targets used in a Comparative Quantitation experiment, in order to compensate for any difference in the efficiencies while calculating results. The amplification efficiency for each target is determined by performing a Comparative Quantitation Standard Curve.

After the standard curve slopes have been determined, enter the Slope from the standard curve for each dye. Alternatively, enter the amplification Efficiency for each dye. (The efficiency may be calculated from the slope using the Amplification Efficiency Calculator on the Standard Curve results screen.) The efficiency settings recorded in Analysis Term Settings are used by the Mx3000P software in calculating the Relative quantity results.

Options-Analysis Term Settings for Plate Read Experiments

Analysis Term Settings - Plate Read	×
Confidence level for calls (%) 😏 📑	Defaults 🔻
OK Cance	ı

Confidence Level For Calls (%)

The user-defined confidence level for calls is the statistical probability required before the algorithm will call an amplification occurrence in a well as positive. See *Positive and Negative Calling* in the *How-To (Detailed Protocols)* section for more information. In the **Confidence level** for calls box, type or select the desired value. The factory-set default confidence level is 99%.

Options-Preferences

Preferences - File

To view or change the default file storage and file naming settings, select **Preferences** from the **Options** menu. When the **Preferences** dialog box opens, click the **File** tab.

Preferences	×
File Colors Display Defaults	
Mx3000P data folder:	
Files\Stratagene\Mx3000P\Storage Browse	
Auto-filenaming Include in auto-filename Ir Experiment type	
✓ Date ● MM-DD-YYYY ○ DD-MM-YYYY ○ YYYY-MM-DD	
I Time Example filename	
Quantitative PCR, 03-05-2003, 14Hr 59Min	
Export decimal using Point e.g. 34.32 C Comma e.g. 34,32	
OK Cancel Help	

The default storage location for saved Mx3000P experiments is specified using the Mx3000P data folder box. The factory default location is C:\Program Files\Stratagene\Mx3000P\Storage. If you wish to specify a different default file storage location, type the directory address into the text box or click **Browse** to navigate to another directory.

The Auto-filenaming feature allows you to select the contents of the default file name for all Mx3000P instrument experiments. Three components (Experiment type, Date, and Time) can be excluded or included using the selection checkboxes, and the format of the date may be selected using the radio button controls. View the resulting filename structure under Example filename.

In the **Export decimal using** box, specify the form of the decimal used in the numerical values reported in **Text Reports** as either **Point** (period character) or **Comma** by selecting the appropriate radio button.

Preferences - Colors

To view or change the color settings for the various elements of the Mx3000P software screens, select **Preferences** from the **Options** menu. When the **Preferences** dialog box opens, click the **Colors** tab.

Preferences	×
File Colors Display Defaults	
Color Scheme	
Lab Defaults	
Add Scheme Original Settings Delete Scheme	
Scheme Colors	
Color Category: Application	
Window Background Tab Highlight Active Tab Active Section Button Invalid Replicate Sets Invalid Association Sets	
OK Cancel Help	

Color Schemes

By using color schemes, you can define new sets of colors for various software elements and save the settings as a group. The **Color Scheme** menu allows you to select one of several built-in color schemes or to add and delete user-defined color schemes. To add a scheme, type in a new scheme name (e.g. Lab Defaults, in the example above) and click the **Add Scheme** button. The scheme will be added and the colors can then be defined under **Scheme Colors**.

To change the color scheme used by the software, select the scheme of interest from the color scheme menu and then click OK.

To restore the colors of all software elements to the colors that were in place when the instrument was originally installed, click **Original Settings** and then click **OK**.

Scheme Colors

The colors of individual Mx3000P software display components can be defined in the Scheme Colors section of the dialog box. The components whose colors may be defined are grouped into five categories under Color Category pull-down menu: Application, Charts, Plate Wells, Stock Well Types and Thermal Profile. Selecting one of these categories causes a corresponding list of graphical elements to appear in the list below the menu. To display the color used for a specific element, click the element name in the list and the color assigned to that element will appear in the color box to the left.

To change the color for any specific element, select the element name and then click the **Edit Color** button. The **Color** dialog box opens. Select any color from the **Basic colors** grid and click **OK** to use this color. Alternatively, click **Define Custom Colors** to set a custom color.

Custom Colors

To define a custom color, click the **Define Custom Colors** button and the dialog box will expand to include a palette for choosing custom colors.

Custom colors can be defined by clicking and dragging the mouse within the color matrix (the large rectangle with colors blending together). The color that the cursor is selecting will appear in the **Color Solid** box. The color's brightness can be adjusted by using the dark/light vertical adjustment slider on the right-hand side of the dialog box. Custom colors may also be defined by entering numerical values directly in the **Hue**, **Sat**, and **Lum** boxes or in the **Red**, **Green** and **Blue** boxes.

To add the color that appears in the **Color Solid** box to the available custom colors, click **Add to Custom Colors**.

Preferences - Display

The **Display** tabbed page of the **Preferences** dialog box allows you to modify the display properties of several Mx3000P software features. To access the dialog box, select **Preferences** from the **Options** menu and then click the **Display** tab.

Preferences X
File Colors Display Defaults
Toolbar size ○ Small ○ Large General ☑ Display tooltips ☑ Enable well type colors At start-up ☑ Prompt for new experiment type
OK Cancel Help

Toolbar Size

The size of the buttons displayed on the toolbar may be modified by selecting the appropriate radio button under **Toolbar size**. Sizes of other software features are not affected.

Display Tooltips

When **Display tooltips** is selected, tips summarizing the function of a variety of software features appear on-screen when the mouse cursor rests over the feature icon. See below for an example of a displayed tooltip.

Full-Screen Plate	Ne <u>x</u> t >
View a full-scre see more infor	en version of the plate to mation.

When viewing **Results** screens with **Display tooltips** selected, you may view the information associated with a specific data point by placing the cursor over the point of interest.

Enable Well Type Colors

When **Enable well type colors** is selected, a horizontal color bar is displayed across the top of each well. The color of this bar corresponds to the well type selected to allow a quick identification of well types. Well type colors can be changed in the **Colors** tabbed page of the **Preferences** dialog box. When **Enable well type colors** is selected, wells appear as shown below.

Standard	Standard
REF	REF
1.00e+008	1.00e+008
1.00e+008	1.00e+008
1.00e+008	1.00e+008

The same cells are shown below with **Enable well type colors** cleared.

Standard REF	Standard REF
1.00e+008	1.00e+008
1.00e+008	1.00e+008
1.00e+008	1.00e+008

Prompt for New Experiment Type at Start-up

When **Prompt for new experiment type** is selected, the **New Experiment Options** dialog box will open each time the Mx3000P software is started.

ew Experiment Options	×
Select experiment type Real-time: Quantitative PCR (Multiple Standards) Comparative Quantitation (Calibrator) SYBR® Green (with Dissociation Curve) Allele Discrimination / SNP's Real-Time Molecular Beacon Melting Curve	OK Cancel
Plate read: C Quantitative Plate Read C Plate Read / Allele Discrimination Turn lamp on for warm-up?	

Preferences - Defaults

The Mx3000P system will store a variety of user-defined default settings in addition to the software's **Original Settings**. For example, if different users of the Mx3000P system wish to maintain differentiated settings over the course of multiple experiments, this may be facilitated by creating a different default set for each user. Once a new default set has been created, it may be used for the setup and analysis of new experiments, expediting the application of uniform customized settings across experiments.

The active default set dictates the default settings with which each new experiment is opened. These settings may include well definitions in **Plate Setup**, the properties of the default thermal profile used for **Thermal Profile Setup**, and the well selection and analysis settings in **Analysis Selection and Setup**. Any of the settings contributed by the default set in a new experiment may be modified during the course of experimental setup or analysis. Conversely, a default set containing established experimental setup and analysis parameters may be created for a routine assay, and runs may be performed with no further modifications to the default settings.

To create and manage default sets for use by the Mx3000P software, open the **Defaults** tabbed page of the **Preferences** dialog box (accessed through the **Options** menu).

Creating a New User-Defined Default Set

To create a new user-defined set of defaults, open an experiment that was set up and analyzed using the desired settings. Open the **Defaults** page of the **Preferences** dialog box. Expand the pulldown menu under **Choose set** and select **<ADD SET>**. Type the name under which the new the default set should be stored (e.g. *BRCA Allele Discrimination* in the example above). Next, define the segments of the open experiment (**Plate Setup**, **Thermal Profile Setup**, and **Analysis** settings) that should be included in the default set by selecting the appropriate checkboxes under **Include**. For any segments that are not selected, the settings comprising the original software

settings will be used in new experiments. In the example shown above, the new default set *BRCA Allele Discrimination* will contain the thermal profile and the analysis settings specified in the open experiment, but will contain a generic (blank) plate setup segment. When finished naming and defining the segments to be included in the new default set, click **Add Set**.

Click **OK** to establish the new default set as the active default set used for new experiments. Click **Cancel** to restore the previous default set as the active set.

Modifying Settings Stored in a User-Defined Default Set

Once a default set has been created, the individual settings that comprise the set may be changed from the appropriate software view. For example, to change the confidence level value stored in a default set, access the **Analysis Term Settings-Plate Read** dialog box. Enter the desired value in the **Confidence level for calls** box. To change the default set setting to this value, click the **Defaults** menu arrow, then select **Save**. The default set that the new value will be saved into is indicated in the last entry of the **Default** menu, **Change Default set (Currently <set name>)**.

Viewing the Active Default Set

To view the identity of the active default set, open the **Defaults** tabbed page of the **Preferences** dialog box (accessed through the **Options** menu). When this dialog box is first opened, the active default set appears in the **Choose set** menu.

Preferences	X
File Colors Display Defaults	
Choose set (and select OK to apply)	
Plate Setup	
Thermal Profile Setup	
Analysis	
Add Set Original Settings Delete Set	
OK Cancel Help	

The active default set may also be identified from any of the software sections containing a default set (**Defaults**) menu, by clicking the **Defaults** arrow. The active default set is indicated in the final entry of this menu: **Change Default Set (Currently <set name>)**.

Changing the Default Set

To change the default set used in the open experiment, open the **Defaults** page of the **Preferences** dialog box (accessed from the **Options** menu). Select the name of the desired default set from the **Choose set** menu. Click **OK** to apply the selected default set to the open experiment and to use the selected default set when creating new experiments.

Preferences	×
File Colors Display Defaults	
Choose set (and select OK to apply)	
BRCA Alelle Discrimination Comparative Quantitation Standard Curve	
ADD SET>	
Add Set Original Settings Delete Set	
Note: Experiment was last saved with set "ACTIN ".	
OK Cancel Help	

Changing the default set causes the software to apply all of the settings stored in the default set to the open experiment, as relayed by the warning dialog box that opens when a new default set is selected. Click **Yes** in the warning dialog box to continue with changing the setup and analysis properties of the open experiment, or click **No** to return to the **Defaults** page without changing default sets or changing any experimental settings.

Mx3000P			×
	You have chosen a different default set. When the preferences dialog OK is selected analysis values will be set to new defaults. Do you wish to continue?		
	Yes	No	

Changing the Default Set in a Post-Run Experiment

When changing the default set in a post-run experiment, **Plate Setup** and **Thermal Profile Setup** information cannot be applied to the open experiment, and a warning dialog box like the one shown below will appear. Click **OK** to change the active default set and apply only the default set analysis settings to the open post-run experiment.

Mx3000P	- Unable to Load Setup Defaults
⚠	Unable to load Plate Setup and Thermal Profile Setup since this is a post-run experiment.
	ОК

Changing the Default Set from Other Software Screens

Changing the default set may be initiated from any of the command panels or dialog boxes that contain settings stored in a default set. One example is shown below. From any of the software sections containing a default set settings menu, click the **Defaults** arrow and then select **Change Default Set (Currently <set name>)**. The **Preferences** dialog box will open to the **Defaults** page, allowing you to select a different default set from the **Choose set** menu.

Analysis Term Settings - Real Time		X
Threshold Fluorescence Baseline Correction	Moving Average	Replicates
Active settings		
Moving average		
Points: 5	Defaults	•
Get		
Save		
Change Default Set (Currently BRCA ALLELE	DISCRIMINATION)
ОК	Cancel	Help

Reinstating the Software's Original Settings

The original software setup and analysis settings (**Original Settings**) that were in place when the software was first installed have been designed to provide generally-applicable settings for the new user and to maximize experimental flexibility. These settings are stored separately from the default sets, and unlike the default sets, may not be modified. This ensures the ability to reinstate these settings at any time, after any number of modifications have been made to default sets. Reinstating the software setup and analysis **Original Settings** may be initiated from the **Defaults** tabbed page of the **Preferences** dialog box.

Preferences	×			
File Colors Display Defaults				
Choose set (and select OK to apply)				
Include: Plate Setup Thermal Profile Setup Analysis				
Add Set Original Settings Delete Set				
OK Cancel Help				

Clicking the **Original Settings** button in this dialog box will reset the active default set to the original software settings. If you wish to reinstate the original software settings without altering any existing default sets, first create a new default set, and then click **Original Settings** to apply the original software settings to the new default set. Click **OK** to activate the new default set (containing the original software settings) in the open experiment.

The original color settings for the software may be accessed through the **Colors** tab of the **Preferences** dialog box.

Section Menu

Use the Section menu commands to move between the Setup, Run, and Analysis areas of the application. These commands mirror the Setup, Run, and Analysis selection buttons in the upper right-hand corner of the screen.

Section	⊻iew	<u>W</u> indo	
✓ Setup	p Al	t+S	
<u>R</u> un	Al	t+R	
Analy	vsis Al	t+A	

View Menu

View	Window	Help		
Full-Screen Plate				
Zoo	om In	Alt+Z		
Zoo	om Out	Alt+O		

Full-Screen Plate

The Full-Screen Plate view command changes the display on the screen to a full-screen view of the Plate Setup for the open experiment.

Zoom In/Zoom Out

Use the **Zoom In** command to magnify a rectangular portion of a chart or plot from a **Results** screen. To use this feature, click **Zoom In**. The cursor will change to cross-hairs when it is positioned over a chart or graph. Click at one corner of the rectangle to be enlarged and drag the mouse until the area to be enlarged is enclosed by the rectangle. Release the mouse button and the rectangle contents will be enlarged. The resulting expanded chart can be further enlarged multiple times by repeated use of the **Zoom In** command. Clicking **Zoom Out** returns a chart or plot that has been enlarged to its normal view.

Window Menu

The Window menu commands Tile Plots and Cascade Plots control the format of expanded amplification plots displayed when viewing Raw Data Plots in the Run section of the software. (These commands are disabled on all other software screens.)

Tile Plots

Clicking **Tile Plots** causes the plots for individual wells to be displayed in a tile format, with plots lined up in rows and columns.

Cascade Plots

Clicking Cascade Plots causes the plots to be layered one on top of the other.

Help Menu

The **Help** menu accesses the Mx3000P software help system. Selecting the first command, **Mx3000P Help**, causes a help topic appropriate to the current screen to be displayed. This feature can also be accessed from anywhere within the program by pressing the **F1** key.

Contents and **Index of Topics** provide access to the help system in a broad manner to allow browsing or searching for help on any topic. Selecting one of the remaining options opens the Mx3000P help system to a specific, applicable area.

Help				
He	lp	F1		
Co	ntents			
Ind	lex of Topics			
Me	nu Commands			
Ho	w To			
Qu	Quick Protocols			
M×	Mx3000P Experiment Types			
Tro	Troubleshooting			
Ob	taining Support			
Stratagene's Website				
Ab	About			

Selecting **Stratagene's Website** will open the Stratagene home page, www.stratagene.com if the computer is connected to the World Wide Web.

Selecting **About** will open a dialog box which lists the software version of the Mx3000P system interface and the firmware version of the instrument software.

Toolbar

A toolbar containing shortcut buttons provides convenient access to many of the frequently-used functions of the Mx3000P system. The buttons on the toolbar perform the same function as the similarly-named commands in dropdown menus or dialog boxes.

New

The New button allows you to create a new experiment. Pressing the New button opens the New Experiment Options dialog box.

Open

Use the **Open** button is to open an existing experiment. Pressing this toolbar button causes the **Open** dialog box to appear.

Save

To save an experiment, click the **Save** button in the toolbar **I**. If the experiment has already been saved, no dialog box will be displayed and the experiment will be saved with any modifications under its current name. If the experiment has not yet been saved, the **Save As** dialog box will open.

Print

To print any view within the Mx3000P software, click the **Print** button in the toolbar. The printer driver dialog box opens to allow printing configuration and execution.

Print Screen

Use the **Print Screen** button is to print any screen in the Mx3000P software. The image printed using the **Print Screen** command can be sized from 25% to 100% by using the **Print Page Setup** dialog box (accessed by selecting **Page Setup** from the **File** menu).

Undo

Undo allows you to undo multiple actions when working on Plate Setup and Thermal Profile

Setup screens. Click the Undo button to effect each undo action.

Redo

Click the **Redo** button to reinstate the last action undone by the **Undo** command. The **Redo** function is available on **Plate Setup** and **Thermal Profile Setup** screens.

Lamp On/Off

Click the Lamp On/Off button to switch the lamp on or off. The warm-up time for the lamp is 20 minutes. Stratagene recommends that no data be taken during this period. Turning the lamp off when it is not needed extends the life of the bulb.

The button is also an indicator of lamp status. If the lamp is off, the bulb shown in the button

will be red.

If the lamp is warming up, the bulb will be yellow.

If the lamp is warmed up and ready, the bulb will be green.

Optics Configuration

Click the Optics Configuration button 😧 to open the Optics Configuration dialog box.

Replicate Wells Treatment Setting

The **Replicate Wells Treatment Setting** button is a shortcut for changing the analysis algorithm used for the open experiment such that wells defined as replicates are treated either collectively or individually during analysis. When the button appears with the replicate symbol underlined

(2), the replicate wells are treated collectively. When the replicate symbol appears without an

underline 2, the replicate wells are treated individually. Clicking on this button will switch the treatment of the replicate wells from individually to collectively or from collectively to individually. See *Treatment of Replicates* for more information.

Term Settings

The Term Settings button \checkmark opens the Analysis Term Settings dialog box, where you can modify several data analysis settings. Click <u>here</u> for more information on Analysis Term Settings Real-Time or <u>here</u> for more information on Analysis Term Settings Plate Read.

Full-Screen Plate View

The Full-Screen Plate View button changes the view displayed on the screen to a full-screen view of the Plate-Setup for the open experiment.

Zoom In

Use the **Zoom In** button is to magnify a rectangular portion of a chart or plot from a **Results** screen. To use this feature, click the **Zoom In** button. The cursor will change to cross-hairs when it is positioned over a chart or graph. Click at one corner of the rectangle to be enlarged and drag the mouse until the area to be enlarged is enclosed by the rectangle. Release the mouse button and the enclosed rectangle will be enlarged. The resulting expanded chart can be further enlarged multiple times by repeating the **Zoom In** function.

Zoom Out

Clicking the **Zoom Out** button returns a chart or plot that has been enlarged to its normal view.

Help

The **Help** button opens the Mx3000P help system, giving access to help by contents, index, or searching.

In addition, context-sensitive help is available at any time by pressing the F1 key. The appropriate help screen will automatically open.

Shortcut Keys

Shortcut keys allow rapid execution of common commands and facilitate movement between the different sections of the Mx3000P software.

Section Movement Shortcuts

Ctrl+<tab> takes you to the next tab within a section. For example, when on the Plate Setup screen of the Setup section, pressing **Ctrl+<tab>** takes you to the Thermal Profile screen.

Menu Commands Shortcuts

Menu commands may be executed by using keystroke shortcuts. Once a menu has been expanded (caused to drop down) by using a keystroke shortcut (AIt + the underlined letter in the menu name), the individual menu choices can be executed by pressing the key for the underlined letter within the command. For example, when the File menu is expanded by pressing AIt + F, pressing the C key will cause the experiment to close.

Eile	<u>E</u> dit	Instrument	<u>T</u> ools	Options	Section	⊻iew	Window
N	ew					Ctr	I+N
<u>o</u>	pen					Ctr	1+0
⊆	lose						

The keystroke combinations listed below will execute their associated command even if the menu has not been expanded.

File Menu	Edit Menu
New experiment Ctrl+N	Undo Ctrl+Z
Open an existing experiment Ctrl+O	Pada Ctrl+V
Save an experiment Ctrl+S	
Save as Ctrl+A	Copy Ctrl+C
Print Ctrl+P	Paste Ctrl+V
Print Screen Alt+P	View Menu
Export to PowerPoint Ctrl+W	
Export to Image File Ctrl+I	Zoom In Alt+Z
	Zoom Out Alt+O
Quick Protocols

Plate Setup Quick Protocol

Plate setup is performed by selecting a well or wells and then assigning well information for the selected well(s) using the command panel at the right of the screen. The command panel should generally be used in a top-to-bottom order, beginning with **Well type** assignment.

- 1. Select the well or wells to be configured.
- 2. Define the well type using the **Well type** menu. Available well types are specific to the type of experiment.
- 3. Using the **Collect fluorescence data** check boxes, choose the dyes for which data should be collected in the selected well(s).
- 4. If one of the dyes selected is a passive reference dye used for normalization, choose the dye from the **Reference dye** menu. (If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.)
- 5. If the well is a **Standard**, select the name of the standard dye and then enter the known amount of template in **Standard quantity**. Select the units from the **Standard units** menu. The **Auto-Increment** feature expedites assigning quantities to **Standards** set up using a dilution series.
- 6. Where appropriate, designate replicates by choosing the appropriate replicate set number from the **Replicate symbol** menu. It is often beneficial to define all wells on the plate according to steps 1–5 prior to replicate assignment. This facilitates using the **Auto-Increment** feature to automatically assign sequential replicate numbers to the replicate sets on the plate.

When **Plate Setup** is complete, for real-time experiments, click on the **Next** button to proceed to **Thermal Profile** setup. Plate read experiments may be initiated from the **Plate Setup** screen.

Time-Saving Tips

The Mx3000P software features several plate setup shortcuts including options for the **Import** of an existing setup, for the use a **Default** setup, and for rapidly specifying collection of data for all dyes in all wells by using **Quick Setup**.

Within a given experiment, information from groups of wells may be copied from one set of wells and pasted into another set of wells by using the **Copy** and **Paste** commands on the **Edit** menu or using the corresponding shortcut keys (**Ctrl+C** and **Ctrl+V**).

Thermal Profile Setup Quick Protocol

When a new **Thermal Profile** screen is opened, a default thermal profile appropriate to the experiment type appears on screen. Modify the default thermal profile as required for the new experiment.

Adding and Modifying Plateaus

To add a plateau in a segment, first select the plateau that will be positioned just before the new plateau. Next, under **Add** on the control panel, click **Plateau with Ramp**. A plateau will be added after the selected plateau, with a default temperature of 25° C and duration of 30 seconds.

To add a plateau to the beginning of a segment, select the whole segment then click **Plateau with Ramp**.

Adjust the duration and temperature of a plateau by double-clicking on the plateau to open the **Plateau Properties** dialog box. Enter the **Duration** and the **Temperature** for the plateau in the **First** cycle section of the dialog box. If all cycles should have the same **Duration** and the **Temperature** as the **First cycle**, enter null values in the **Cycle increments** section of the dialog box. To incrementally change the **Duration** or the **Temperature** for the plateau at each successive cycle, enter the appropriate increment or decrement in the **Cycle increments** section of the dialog box.

The plateau temperature may also be adjusted by grabbing the plateau with the mouse and dragging it up or down.

Adding and Modifying Segments

To add a segment, first select the segment that will be positioned just before the new segment, and then click **Normal Segment**. A new segment will be added with a default plateau temperature of 25°C and duration of 30 seconds.

Adjust the number of cycles for a segment by double-clicking in the segment to open the **Segment Properties** dialog box, and then entering the **Number of Cycles**.

Adding and Modifying Data Collection Markers

To add a data collection marker, grab the Endpoints data collection marker or the All points

data collection marker and drag the icon to the appropriate plateau or ramp on the thermal profile. To remove a data collection marker, drag the marker icon from the thermal profile to any other part of the screen. The number of collection points appears at the upper right of the marker, and can be changed by clicking on the number to open a spin control.

When **Thermal Profile Setup** is complete, click **Start Run** to begin thermal cycling and data collection.

Time-Saving Tip

The Mx3000P software features thermal profile setup shortcuts including the ability to **Import** the profile from of an existing experiment, and to store and retrieve user-defined **Default** thermal profiles.

Running the Experiment Quick Protocol

Real-Time Experiments

Verify that the lamp is ready and, after loading the samples, that the instrument door is closed.

Start the run from the **Thermal Profile Setup** screen by clicking the **Start Run** button. When the **Run Status** dialog box opens, click **Start**.

The **Run Status** dialog box remains open for the duration of the run, reporting the run status. During thermal cycling, the status of the run can also be monitored on the **Thermal Profile Status** screen. The vertical green marker tracks the progress through the thermal cycling profile.

To view accumulated fluorescence data during the run, click on the **Raw Data Plots** tab. On the **Raw Data Plots** screen, amplification plots for each dye in each well are displayed. The amplification plots can be expanded by selecting wells of interest and clicking **Show Plots**.

When the thermal profile is complete, the software will automatically proceed to the **Analysis** section to analyze the data.

Plate-Read Experiments

Verify that the lamp is ready and, after loading the samples, that the instrument door is closed.

On the **Plate Setup** screen, click **Set Read Properties**, and then enter the temperature and number of reads for the run.

Start the run by clicking the Start Run button on the Plate Setup screen.

When the **Run Status** dialog box opens, initiate collection of the appropriate set of data by clicking either **Pre-Read** or **Post-Read**.

Single-Reading Experiments

For single-read experiments, either **Pre-Read** or **Post-Read** may be used. Click<u>here</u> for more information on how this selection affects the reporting of results.

Pre- and Post-Read Experiments

For an experiment that utilizes pre-read and post-read data, complete the **Pre-Read** run and then exit and save the experiment. When ready to complete the post-read run, open the saved experiment, click **Start Run** from the **Plate Setup** screen, and then click the **Post-Read** button in the **Run Status** dialog box.

During data collection, the status of the run is reported in the **Run Status** dialog box, which remains open for the duration of the run. The run can also be monitored on the **Raw Data Plots** screen.

When the read is complete, the software will automatically proceed to the **Analysis** section to analyze the data.

Quantitative PCR Analysis Quick Protocol

After the thermal profile has run, the Analysis Selection/Setup screen will appear.

- 1. Select the wells to be analyzed.
- Select the data set to be analyzed from the list under Select data collection ramp/plateau.
 Only ramps or plateaus associated with a collection marker Q may be selected.
- 3. Select preferences for treatment of **Replicates** and for the use of **Algorithm enhancements: Amplification-based threshold, Adaptive baseline** and **Moving average**. If you wish to review or modify other settings that will be used for analysis, click **Analysis Term Settings** or **Adv. Algorithm Settings**.
- 4. Select the **Results** tab.
- 5. Select the type of data analysis to be performed under Area to analyze:

The Amplification plots screen shows a plot of cycles versus fluorescence for each well and dye for which data was gathered. Plots of baseline-corrected fluorescence (dR or dRn) allow the threshold fluorescence (used to determine Ct values) to be displayed and adjusted.

The **Plate sample values** screen displays **Fluorescence** or **Ct** values for the sampled wells in a plate format.

The **Standard curve** screen shows a plot of the log of the initial template quantity versus **Ct** values for the **Standard** wells. Standard curves are used to determine (by interpolation) the initial template quantities for **Unknown** wells.

The Initial template quantity screen displays interpolated quantities of template in **Unknown** wells before thermal cycling. The interpolation is based on the standard curve.

The **Dual color scatter plot** screen displays a scatter plot of **Fluorescence** or **Ct** for any two dyes assigned to the same wells. This plot helps in assessing the suitability of a specific control target by displaying any correlation between amplification of a gene of interest and amplification of the control target.

The **Text report** screen shows the run data in text format. The columns included in the report are specified using the **Column** check boxes.

Comparative Quantitation Analysis Quick Protocol

After the thermal profile has run, the Analysis Selection/Setup screen will appear.

- 1. Select the wells to be analyzed.
- Select preferences for treatment of Replicates and for the use of Algorithm enhancements: Amplification-based threshold, Adaptive baseline and Moving average. If you wish to review or modify other settings that will be used for analysis, click Analysis Term Settings or Adv. Algorithm Settings.
- 4. Select the **Results** tab.
- 5. Select the type of data analysis to be performed under Area to analyze:

The Amplification plots screen shows a plot of cycles versus fluorescence for each well and dye for which data was gathered. Plots of baseline-corrected fluorescence (dR or dRn) allow the threshold fluorescence (used to determine Ct values) to be displayed and adjusted.

The **Dissociation curve** screen displays the fluorescence data collected during a dissociation segment of the run as a function of temperature. When performing SYBR Green dye-based detection, these data are used to verify that the predominant PCR products are amplicons of the gene of interest or the **Normalizer** targets.

The **Plate sample values** screen displays **Fluorescence** or **Ct** values for the sampled wells in a plate format.

The **Standard curve** screen shows a plot of the log of the initial template quantity versus **Ct** values for the **Standard** wells. The slope of the standard curve is used to calculate amplification efficiency for both the gene(s) of interest and the **Normalizer** targets.

The **Relative quantity chart** screen displays a graphical representation of the amount of target present in **Unknowns** relative to the **Calibrator** (after correction using the **Normalizer** target). Results may be displayed as either a bar graph (default) or a scatter plot.

The **Relative quantity plate** screen shows, in plate format, the relative quantities for each well and dye corresponding to a gene of interest (the **Normalizer** and **Reference** dyes are not quantified). **Calibrators** are defined as 1.0 and values for all **Unknowns** are relative to this benchmark.

The **Text report** screen shows the run data in text format. The columns included in the report are specified using the **Column** check boxes.

SYBR Green Analysis Quick Protocol

After the thermal profile has run, the Analysis Selection/Setup screen will appear.

- 1. Select the wells to be analyzed.
- 2. Select the segment (Amplification or Dissociation) to be analyzed by clicking the corresponding button on the command panel. From the dialog box that opens, select the data set to be analyzed from the list. Only ramps or plateaus associated with a collection marker Q may be selected.
- 3. Select preferences for treatment of **Replicates** and for the use of **Algorithm enhancements: Amplification-based threshold, Adaptive baseline** and **Moving average**. If you wish to review or modify other settings that will be used for analysis, click **Analysis Term Settings** or **Adv. Algorithm Settings**.
- 4. Select the **Results** tab.
- 5. Select the type of data analysis to be performed under Area to analyze:

The Amplification plots screen shows a plot of cycles versus fluorescence for each well and dye for which data was gathered. Plots of baseline-corrected fluorescence (dR or dRn) allow the threshold fluorescence (used to determine Ct values) to be displayed and adjusted.

The **Dissociation curve** screen displays the fluorescence data collected during the dissociation segment of the run as a function of temperature. These data are used to verify that the predominant PCR products are amplicons of the gene of interest. Plotting the temperature versus the first derivative of the fluorescence (-R'(T) or -Rn'(T)) generates a dissociation profile with peaks that identify the melting temperatures of each of the major product populations in the reaction mixture.

The **Plate sample values** screen displays **Fluorescence** or **Ct** values for the sampled wells in a plate format.

The **Standard curve** screen shows a plot of the log of the initial template quantity versus **Ct** values for the **Standard** wells. Standard curves are used to determine (by interpolation) the initial template quantities for **Unknown** wells.

The Initial template quantity screen displays interpolated quantities of template in **Unknown** wells before thermal cycling. The interpolation is based on the standard curve.

The **Text Report** screen shows the run data in text format. The columns included in the report are specified using the **Column** check boxes.

Allele Discrimination Real-Time Analysis Quick Protocol

After the thermal profile has run, the Analysis Selection/Setup screen will appear.

- 1. Select the wells to be analyzed.
- Select the data set to be analyzed from the list under Select data collection ramp/plateau.
 Only ramps or plateaus associated with a collection marker Q may be selected.
- 3. Select preferences for treatment of **Replicates** and for the use of **Algorithm enhancements: Amplification-based threshold, Adaptive baseline** and **Moving average**. If you wish to review or modify other settings that will be used for analysis, click **Analysis Term Settings** or **Adv. Algorithm Settings**.
- 4. Select the **Results** tab.
- 5. Select the type of data analysis to be performed under Area to analyze:

The Amplification plots screen shows a plot of cycles versus fluorescence for each well and dye for which data was gathered. Plots of baseline-corrected fluorescence (dR or dRn) allow the threshold fluorescence (used to determine Ct values) to be displayed and adjusted.

The **Plate sample values** screen displays **Fluorescence** or **Ct** values for the sampled wells in a plate format.

The **Dual color scatter plot** screen displays a scatter plot of **Fluorescence** or **Ct** for any two dyes assigned to the same wells. Each point represents the coordinates of the **Fluorescence** or **Ct** for the two dyes in a single well. The plot provides a simple method for grouping the sample wells according to the amplification events indicated by either single dye (i.e. homozygous for one of two alleles) or by both dyes (i.e. heterozygous for the two alleles).

The **Final call results** screen provides a simple depiction of whether product was accumulated for each dye in each well. A plus sign (+) signifies accumulation of product, while a minus sign (-) signifies that product accumulation was not detected. Calling is based on Ct, where + is returned if the Ct is less than the last cycle for which data was collected.

The **Text report** screen shows the run data in text format. The columns included in the report are specified using the **Column** check boxes.

Molecular Beacon Melting Curve Analysis Quick Protocol

After the thermal profile has run, the Analysis Selection/Setup screen will appear.

- 1. Select the wells to be analyzed.
- Select the data set to be analyzed from the list under Select data collection ramp/plateau.
 Only ramps or plateaus associated with a collection marker may be selected.
- 3. Select preferences for treatment of **Replicates**. If you wish to review or modify the read statistic that will be used for analysis, click **Adv. Algorithm Settings**.
- 4. Select the **Results** tab.
- 5. Select the type of data analysis to be performed under **Area to analyze**:

The **Annealing range** screen displays the optimal annealing range for the beacon(s) tested. The optimal range is the temperature range in which the molecular beacon plus perfectly- matched oligo (**MBO**) has a greater fluorescence than the beacon plus mismatched oligo (**MBMO**) and in which the background fluorescence is low.

The **Melting curves/temperature** screen calculates and displays the optimal melting temperature for the beacon(s) tested.

Quantitative Plate Read Analysis Quick Protocol

After the read is complete, the Analysis Selection/Setup screen appears.

- 1. Select the wells to be analyzed.
- Select preferences for treatment of Replicates. If you wish to review or modify other settings that will be used for analysis, click Analysis Term Settings or Adv. Algorithm Settings.
- 3. Select the **Results** tab.
- 4. Select the type of data analysis to be performed under Area to analyze.

The **Plate sample values** screen displays **Fluorescence** values for the sampled wells in a plate format.

The **Standard curve** screen shows a plot of the log of the initial template quantity versus **Fluorescence** values for the **Standard** wells. Standard curves are used to determine (by interpolation) the initial template quantities for **Unknown** wells.

The **Initial template quantity** screen displays interpolated quantities of template in **Unknown** wells. The interpolation is based on the standard curve.

The **Dual color scatter plot** screen displays a scatter plot of **Fluorescence** for any two dyes assigned to the same wells. This plot helps in assessing the suitability of a specific control target by displaying any correlation between amplification of a gene of interest and amplification of the control target.

The **Fluorescence Intensity Values** screen displays a colorized image of final calls and fluorescence intensities. A plus sign (+) indicates a positive call and a minus sign (-) indicates a negative call. A spectrum of colors is used to indicate the relative fluorescence readings for each dye in each well.

The **Final call results** screen provides a simple depiction of whether product was accumulated for each dye in each well. A plus sign (+) signifies accumulation of product, while a minus sign (-) signifies that product accumulation was not detected. Calling is based on fluorescence, where + is returned if the fluorescence value is statistically greater than the value measured for the control.

The **Text report** screen shows the run data in text format. The columns included in the report are specified using the **Column** check boxes.

Plate Read/Allele Discrimination Analysis Quick Protocol

After the read is complete, the Analysis Selection/Setup screen appears.

- 1. Select the wells to be analyzed.
- Select preferences for treatment of Replicates. If you wish to review or modify other settings that will be used for analysis, click Analysis Term Settings or Adv. Algorithm Settings.
- 3. Select the **Results** tab.
- 4. Select the type of data analysis to be performed under Area to analyze:

The **Plate sample values** screen displays **Fluorescence** values for the sampled wells in a plate format.

The **Dual color scatter plot** screen displays a scatter plot of fluorescence for any two dyes assigned to the same wells. Each point represents the coordinates of the **Fluorescence** for the two dyes in a single well. The plot provides a simple method for grouping the sample wells according to the amplification events indicated by either single dye (i.e. homozygous for one of two alleles) or by both dyes (i.e. heterozygous for the two alleles).

The **Fluorescence intensity values** screen displays a colorized image of final calls and fluorescence intensities. A plus sign (+) indicates a positive call and a minus sign (-) indicates a negative call. A spectrum of colors is used to indicate the relative fluorescence readings for each dye in each well.

The **Final call results** screen provides a simple depiction of whether product was accumulated for each dye in each well. A plus sign (+) signifies accumulation of product, while a minus sign (-) signifies that product accumulation was not detected. Calling is based on comparing the experimentally determined **p-value** (probability that a reading differs from the control readings) for each dye in each well to the user-defined **Confidence level for calls**.

The **Text report** screen shows the run data in text format. The columns included in the report are specified using the **Column** check boxes.

How-To (Detailed Protocols)

How to Set Up a New Experiment

To set up an experiment on the Mx3000P real-time PCR system, choose the experiment type from the **New Experiment Options** dialog box (accessed by clicking the **New** button \square on the toolbar).

The setup consists of two steps for a real-time experiment:

- 1. **Plate Setup**: In this step, the plate is configured including assigning well types and dyes to wells
- 2. **Thermal Profile Setup**: In this step, the thermal profile is configured for temperature cycling and data collection parameters

For plate read experiments, only Plate Setup is required.

Some aspects of the contents of the **Plate Setup** and **Thermal Profile Setup** screens for a new experiment are determined by the properties of the software's active default set. For example, user-defined default sets may be set up to include the plate configuration as well as the thermal profile and analysis settings. See *Preferences-Defaults* in the *Navigating in the Mx3000P Software* section for more information on creating and managing default sets.

If the experiment will be started within the next 20 minutes, and the lamp is off, turn the lamp on to allow it to warm to operating temperature by the time the experiment begins. To turn on the lamp, click the Lamp On/Off button not the toolbar.

Plate Setup

Introduction to Plate Setup

To access the **Plate Setup** window, click the **Setup** button on the toolbar and then click the **Plate Setup** tab. Use the **Plate Setup** window to provide the specifications for sample wells in the experiment.

Adding well information during plate setup consists of two steps:

1) Select the wells to be configured

2) Assign the appropriate characteristics to the selected wells

Alternatively, plate setup may be accomplished using one of three shortcuts: using **Import** plate setup, using a **Default** plate setup or using **Quick Setup**.

Most features of the plate setup can be modified before, during, and after a run.

Comments can be entered in the **Plate setup comments** text box at the lower right-hand corner of the screen and the comments will be saved along with the experiment.

After all plate setup functions are complete, for real-time experiments, click **Next** in the lower right-hand corner to proceed to the **Thermal Profile Setup** screen. For plate read experiments, you may start the run from the **Plate Setup** screen.

M M	Mic3000P (Standalone) - Allele Discrimination / SNP's Real-Time - [Allele Discrimination Real-Time Example.mxp]												
	The Lot instrument fore options section view window resp Image: Section view wi												
AI	1	2	3	4	5	6	7	8	9	10	11	12	Igport Delauits
A				TET NHO FAM REP TET	Unknown FAM REF	Unknown FAN REF	Unknown FAM REP TET	NTC FAN REF					Quick Setup
в				FAM REF TET	FAN REF TET	FAM REF TET	TET	REF TET					FAM CY5 FROX FTET
c				FAM REF TET	REF TET	FAN REF TET	REF TET	REF TET					Reference gye: ROX All wells Identity replicates Reference symbol
D				FAM REF TET	FAM REF TET	FAM REF	FAM REF	REF					AutoIncrement
E				FAM REF TET	FAM REF TET	FAM REF	FAM	FAM REF TET					Lipar selected wiess
F				PAM REF TET	FAM REF TET	FAM REF TET	FAM REF 1et	FAM REF TET					Plate setup gomments: Replicates 1-10 are for an allele discrimination assay using molecular beacons for SDF-1 A/0, allele in Brilliant
G													UPLH master min. TET is the wild type allele and FAM is the mutant allele.
н													
	Full-Screen Plate Negt >												
	Vydas stroven West types stroven FAM ROX TET TET Neg Unknown NTC												

Plate Setup Display Options

A number of modifications to the appearance of the **Plate Setup** screen may be made to facilitate the plate setup process. Using any of these display modification features will not affect the data collected or the analysis available for the experiment.

Displaying or Hiding Dyes

The dyes in use on the plate may be displayed or hidden by using the **Dyes shown** selection bar at the lower left-hand corner of the screen. When the button is depressed (like **FAM** in the picture below), the dye's well assignments are displayed, but when the button is released (like **ROX** in the picture below), the dye's well assignments are hidden from display. Note that using this feature **does not affect data collection**.

— Dyes shown —	
ROX	FAM

Displaying or Hiding Specific Well Types

The well types that are displayed on the plate are controlled by using the buttons in the **Well types shown** selection bar. Any of the well type buttons may be depressed in order to display the information for wells of the indicated type or may be released to hide the information. For example, if you want to view only the **Unknown** wells on the plate, depress the **Unknown** button and release all other well type buttons (such as the **NTC** button in the example below). **Note that using this feature does not affect data collection.**

-Well types show	~n
Unknown	NTC

Color Coding Well Types

The **Enable well type colors** command, accessed on the **Display** tabbed page of the **Preferences** dialog box, causes a horizontal color bar to be displayed across the top of each well. The color of this bar corresponds to the well type selected to allow a quick identification of well types. Well type colors can be changed in the **Colors** tabbed page of the **Preferences** dialog box. When **Enable** well type colors is selected, wells appear as shown below.

When Enable well type colors is cleared, the same wells appear as shown below.

Standard REF	Standard REF
1.00e+008	1.00e+008
1.00e+008	1.00e+008
1.00e+008	1.00e+008

Selecting Wells

The first step of **Plate Setup** is selecting the wells to which well information will be assigned. Wells must be selected/highlighted before well types and other information can be assigned.

To select an individual well, single click in that well.

To select an entire row or column, click on the row header or column header.

To select all wells in the plate, click All in the upper left-hand corner of the plate.

Select a contiguous block of wells by dragging across the range of wells with the mouse while holding the left mouse button down. A visible rectangle will appear. Release the left mouse button to select the cells included in the rectangle.

Select a group of non-contiguous wells by holding down the **Ctrl** button on the keyboard while selecting wells.

To deselect a well, hold down the **Ctrl** key and click on the well to be deselected. To rapidly deselect many wells, click the **All** button twice. This will select and then deselect all wells.

Assigning Well Types and Dyes for Data Collection

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

I <u>m</u> port	Defaults 🔻						
<u>Q</u> u	<u>Q</u> uick Setup						
Well type: Unknown							
Collect fluorescer	nce data						
🗖 ROX	CY5						
FAM	□ HEX						
Reference <u>d</u> ye:	<none> 💌 All wells</none>						
Standard quantity:	ROX 🔽						
	Auto-Increment: 10x 🔻						
Standard units:	copies 💌						
⊢ Identify replicates	;						
Replicate sym <u>b</u> ol	: <none> 💌</none>						
Auto-Increment							
Clear Selected Wells							

Assigning the Well Type

After selecting one or more wells, assign the well type to the selected wells.

To assign the well type, click on the arrow in the **Well type** menu. A list of well types specific to the experiment type will appear. Select the well type to be assigned to the well(s).

Selecting the Dyes for Data Collection

Once a well type is assigned, select the dyes for which fluorescence data are to be collected for the well(s) using the **Collect fluorescence data** checkboxes. Data can be collected for up to four dyes. Fluorescence data are collected for **only** those dyes selected for each well.

Clearing Wells

To clear the information assigned to selected well(s), including well type, data collection specifications and replicate set designations, click the **Clear Selected Wells** button.

Use of Copy/Paste for Entering Well Information

Within a given experiment, information from groups of wells may be copied from one set of wells and pasted into another set of wells by using the **Copy** and **Paste** commands on the **Edit** menu or using the corresponding shortcut keys (**Ctrl+C** and **Ctrl+V**).

Assigning a Reference Dye

Passive reference dyes are used for normalization of the fluorescence signal, in order to compensate for non-PCR related variations in fluorescence. Typically, ROX is used as the reference dye. Only dyes assigned to optical paths in the **Optics Configuration** dialog box are available for assignment as reference dyes.

If a dye was added as a passive reference dye in the experiment, select the dye from the **Reference dye** menu. The assignment of that dye as a reference dye will be indicated in the selected well(s) by the presence of the text **REF** in the position of the dye in the well.

If all sample wells on the plate will contain the same passive reference dye, depress the **All Wells** button. This will cause the selected dye to be assigned as a reference dye for all sample wells on the plate.

I <u>m</u> port Defaults ▼							
<u>Q</u> uick Setup							
Well type: Unknown							
Collect fluorescence data							
ROX CY5							
FAM FAX							
Reference <u>dy</u> e: <none> All wells Standard quantity:</none>							
Standard units:							
Identify replicates							
Replicate sym <u>b</u> ol: <none> 💌</none>							
A <u>u</u> to-Increment							
Clear Selected Wells							

Unknown	Unknown
REF	REF
FAM	FAM
CY5	CY5
HEX	HEX
Unknown	Unknown
REF	REF
FAM	FAM
CY5	CY5
HEX	HEX

Assigning Quantities to Standard Wells

If a sample type of **Standard** is assigned to the selected well(s), specify the quantity of the standard added and the unit of measurement using the **Standard quantity** box and the **Standard units** menu. This section of the command panel is enabled only when wells assigned as **Standards** are selected.

First, select the dye associated with the standard from the pulldown menu following **Standard quantity**. Next, enter the quantity of the standard added to the selected well(s) in the rightmost box following **Standard quantity** as a decimal number (for example, 500 or 1.234). Specify the units for the quantity in the **Standard units** menu. The standard quantity value will be converted to scientific notation and will appear in the selected wells in the position of the designated dye. When using a dilution series to generate a standard curve, the **Auto-Increment** utility can be used to expedite the process of assigning quantities to **Standard** wells. See below for more information on the use of this feature.

I <u>m</u> port	Defaults 🔻					
<u>Q</u>	uick Setup					
Well type: Stand	ard 💌					
Collect fluoresce	nce data					
R0X	🔽 CY5					
FAM	✓ HEX					
Reference dye: none-tailta.com						
Standard quantity: FAM 💌 500						
	Auto-Increment: 10x					
Standard units:	copies 💌					
- Identify replicate						
Benlicate symbo	millimoles					
hopiloato sym <u>b</u> e	micromoles					
	picomoles					
	femtomoles					
Clear	attomoles					
	micrograms					
	nanograms					
Plate setup <u>c</u> omm	picograms femtograms					
attograms						

Standard	Standard
5.00e+002	5.00e+002
0.00e+000	0.00e+000
0.00e+000	0.00e+000
0.00e+000	0.00e+000
Unknown	Unknown
FAM	FAM
ROX	ROX
CY5	CY5
TET	TET

Time-Saving Tip - Using the Auto-Increment Feature

When using a dilution series to generate a standard curve, the **Auto-Increment** utility may be used to expedite standard quantity assignments during plate setup. When using this feature, given one quantity in the dilution series, the software will automatically assign standard quantities to sequential sets of **Standard** wells according to the specified dilution factor.

To assign **Standard quantities** using **Auto-Increment**, first complete the well type and data collection assignments for all of the **Standard** wells in the dilution series. When finished, select all replicates of the first set of **Standard** wells in the dilution series. Select the dye associated with the target, and then enter the quantity of target in the box to the right of the dye. Specify the standard quantity units for this dilution series from the **Standard units** menu.

Standard quantity:	FAM 1.00e+002
	Auto-Increment: 10x
Standard units:	nanograms 💌

After the assignment of the first replicate set in the dilution series is complete, click the **Auto-Increment: 10x** menu to expand the menu. Select the appropriate description of the dilution series from the menu. Note that if you begin the process with the wells containing the lowest concentration of target in the dilution series, a positive increment (e.g. $10 \times \text{ or } 2 \times$) should be selected such that the subsequent wells will be assigned with multiples of the dilution factor. Conversely, if you begin the process with wells containing the highest concentration of target, a negative increment (e.g. $-10 \times \text{ or } -2 \times$) should be selected. If the dilution factor used in the current experiment is not listed in the menu, select **Custom** to access the **Custom Auto-Increment** dialog box, in which user-defined increment values may be entered. Note that positive custom increment values should be entered when starting assignments with the lowest concentration in the series and negative custom increment values should be entered when starting assignments with the highest concentration in the series.

Standard quantity:	FAM • 1.00e+002	
	Auto-Increment: 10x	
Standard units:	2x 4x	
Eldentify replicate	5x	
Replicate sym <u>b</u>	10×	
	-2x	Custom Auto-Increment
	-4x	
	-5x	Auto-increment value: 🕄 📑
Clear	-10×	
	Custom	OK Cancel

When the cursor is moved to the plate area on the screen, it will change to a hand symbol containing the incrementally-adjusted standard quantity value.

Using the hand-cursor, select the range of cells corresponding to the next set of **Standards** in the dilution series. When the mouse button is released, the quantity that had shown in the cursor will appear in the wells that had been selected and the number showing in the cursor will change incrementally.

Repeat the standard quantity assignment process using the hand-cursor until all members of the dilution series have been assigned, and then click on the **Auto-Increment: 10x** button again to restore the standard cursor.

Converting Standard Quantity Units

To convert standard quantity units in assigned wells, select a **Standard** well that contains the original standard quantity defined in the original units and then select the new unit description from the **Standard units** menu. When the basic unit type is the same (e.g. milligrams to micrograms) the conversion will occur automatically. When the units describe different properties of the sample (e.g. moles to grams), the **Standard Quantity Unit Conversion** dialog box will open and prompt for the molecular weight.

To complete the conversion, which will change the numerical value in the **Standard** wells in addition to changing the units, enter the molecular weight and then click **Convert**. The conversion will be applied to all **Standard** wells on the plate.

To change the units while retaining the numerical values assigned to **Standards** (e.g. to simply correct erroneous units for a correct numerical value) click **Don't Convert**. To return to **Plate Setup** without changing any numerical values or unit designations, click **Cancel**.

Assigning Replicates

Identify replicate wells on the plate by assigning the same replicate symbol to the group of wells that make up a replicate set. Assigning replicates allows the option of treating the wells collectively during analysis. See *Treatment of Replicates* for more information on the effects of treating replicates individually or collectively during analysis. Note that although replicates are assigned on the **Plate Setup** screen, you can choose whether or not to use replicates during data analysis on the **Analysis Selection/Setup** screen.

Identifying Samples as Replicates

To specify replicates during **Plate Setup**, select those wells which contain the replicated samples and then select the appropriate replicate set number from the **Replicate symbol** menu.

Replicates are assigned to the selected wells as soon as the replicate number is selected.

Unknown	Unknown	Unknown	Unknown	Unknown
FAM	FAM	FAM	FAM	FAM
нех	нех	нех	нех	нех
Unknown	Unknown	Unknown	Unknown	Unknown
FAM	FAM	FAM	FAM	FAM
HEX	HEX	HEX	HEX	нех
Unknown	Unknown	Unknown	Unknown	Unknown
FAM	FAM	FAM	FAM	FAM
HEX	HEX	HEX	HEX	HEX

Time-Saving Tip - Using the Auto-Increment Feature

The **Auto-Increment** utility may be used to expedite replicate set assignments during plate setup. This utility is used to sequentially assign a series of different replicate sets with increasing replicate symbol numbers using an automatic counting mechanism.

To assign replicates using **Auto-Increment**, first assign well types and dye collection attributes to all of the wells that will be assigned with replicate symbols. When finished, click on any sample well to enable the **Auto-Increment** feature. Click the **Auto-Increment** button in the **Identify replicates** section of the command panel.

– Identify replicates – Replicate sym <u>b</u> ol:	
	Auto-Increment

When the cursor is moved to the plate area on the screen, it will change to a hand symbol

containing the next available replicate set number 2. Using the hand-cursor, select a range of cells to be grouped as replicates. When the mouse button is released, the replicate symbol that had shown in the cursor will appear in the wells and the number in the cursor will increase

incrementally.

Select the next set of replicate wells with the hand-cursor to assign the new replicate symbol to those wells. Repeat this process until all replicates have been assigned. When finished making assignments, click on the **Auto-Increment** button again to restore the standard cursor.

Invalid Replicate Sets

Only identically assigned wells should be designated as replicates. The software uses a number of methods to prevent incompatible wells from being assigned as replicates. If the warning below appears, non-identical wells have been assigned the same replicate number.

 Identify replicates Replicate symbol: 	
INVALID SETS	A <u>u</u> to-Increment

Clicking the **Invalid Sets** button opens a dialog box that indicates which replicate sets have a conflict. To resolve these conflicts, reassign replicates such that only wells with the same attributes are grouped.

Mx3000P	×
٩	The following replicate sets are invalid: Set 1 has different well types. Set 1 has different reference dye paths.
	ОК

Entering Custom Well Information

Each well in **Plate Setup** has a comment box available for entering a well name (48-character maximum) and well-specific comments. The **Well Information** dialog box is accessed by double-clicking on the well while in **Plate Setup**. The well name is visible in the well in the **Full-Screen Plate** view (first 10–14 characters) and may be included in the **Text Report** (all characters).

Well Inf	ormation
<u>N</u> ame:	
<u>C</u> omme	nts:
	Close

Using Import Plate Setup

The Import Plate Setup function allows you to recall a plate setup from an existing experiment. Clicking Import Plate Setup on the Plate Setup screen causes the software to display the Import Plate Setup From dialog box.

The Import Plate Setup From dialog box lists Mx3000P experiments stored in the Mx3000P data storage folder. Select the experiment that includes the desired plate setup information, then click **Open**.

Import Plate Setu	p From			? ×
Look in: 🔂 Stora	ige	-	🗕 🖻 🔿	* ⊞-
🚺 Allele Discriminat	ion Real-Time Exampl	e.mxp		💋 Plat
🛛 🚺 Comparative Qu	antitation Multiplex Ex	kample.mxp		🚺 Qua
🛛 🚺 Comparative Qu	antitation Multiplex St	andard Curve B	Example.mxp	o 🚺 Qua
🛛 🚺 Comparative Qu	antitation Separate W	/ell Example.m>	(p	🚺 Qua
Comparative Qu	iantitation Separate W	/ell Standard Ci	urve Example	e.mxp 🚺SYB
Molecular Beaco	n Melting Curve Exam	ple.mxp		
		1		
		1		
File name: 📕 🔭	1 E			Open
Files of type: Exp	eriment Files (*.mxp)		•	Cancel

If the experiment selected is not compatible with the experiment being set up, a warning dialog box appears as shown below. If this warning appears, click the **OK** button and select another experiment of the same type as the one being set up.

Mx3000P	
	The selected file contains an Allele Discrimination / SNP's Real-Time experiment. A Quantitative PCR experiment cannot import from an Allele Discrimination / SNP's Real-Time experiment because experiment types don't match.
	OK

Using a Default Plate Setup

Plate setup may be completed by incorporating a user-defined default plate configuration into the **Plate Setup** for new experiments.

Using a default plate setup requires creating a default set containing the desired plate configuration. Note that the **Plate Setup** checkbox under **Include** must be selected when the default set is created in order for **Plate Setup** information to be included in the default set.

Once the appropriate default set is created, select this default set as the active default set in the **Choose set** menu of the **Preferences-Defaults** dialog box and then click **OK**. The plate configuration stored in the active default set, including all well assignments, will automatically be applied to the open experiment and to all new experiments, until the active default set is changed again.

The plate configuration in an existing default set may also be applied to the plate setup in an open experiment by using the **Defaults** menu on the control panel of the **Plate Setup** screen. To retrieve the plate configuration from the active defaults set, click **Defaults** to expand the menu, and then select **Get**.

See *Preferences-Defaults* for more information about creating and using default sets to streamline experimental setup and analysis.

Using Quick Setup

Clicking the **Quick Setup** button on the Plate Setup screen automatically enters well information for all wells, such that fluorescence data are collected for all four dyes in all 96 wells. This feature saves up-front setup time. Because all other parts of **Plate Setup** can be modified during and after a run, using **Quick Setup** allows you to collect all dye data for all wells and then configure the plate after the run.

Using the Full-Screen Plate View

To enlarge the view of the plate to cover the full screen, click the **Full-Screen Plate** button at the bottom of the command panel (lower right-hand corner of the **Plate Setup** screen). No modifications to the plate setup parameters can be performed in the full-screen view.

To print the plate from full-screen plate view, click **Print** in the upper right of the screen. If you want to print all contents of the screen, including title bars and toolbars, select **Print Screen** from the **File** menu. The size of either type of printed image can be altered by selecting **Page Setup** from the **File** menu, which opens the **Print Page Setup** dialog box. The valid size range is from 25% to 100%.

If a Name was assigned to a well under Well Information, it will be visible in Full-Screen Plate view. To see or edit Comments recorded in the Well Information dialog box, select the well of interest, and then click Name & Comments. Alternatively, double-click on the well of interest to access the Well Information dialog box for that well.

All	1	2	3	4	5	6	7	8	9	10	11	12
-										1.0	<u> </u>	
A	Standard 8 C/	Standard RC/	Standard RC/	Standard RCP	Standard RCP	Standard R C/	Standard R CP	Standard R CP	Standard R CP	Standard REF	Umanoun REF	Uninoun REF
	1.00+-010	2200-001	1.36e-101	4.68+- 101	3.58+- HI1	3,78+-101	2.98+101	169+101	120+101	3.48++ 100	нез	не
	Standard	Shrvberd	Standard	Dandard	Standard	Standard	Standard	Standard	Standard	Standard	Delenours	Unknown
в		2	3	" 4	5	6	7	" 8	" 9	1 10	11	11
	1.00+102	7.76+-001	1.36+- 001	4.68+-101	2.58+- 801	3,78+-901	2.18+-101	168+-801	138+-101	3.4He+ 100	HES	HES
c	Standard RCF	Standard RC/	Standard RCP	Standard RCP	Standard RCP	Standard RCP	Standard RCT	Standard RCT	Standard REP	Standard REP	Distancion REF	Geanoun REF
	1.00+-002	2200-001	1.200-101 J	4.50+-101	5.5H-H1	278+-101	2.10+101	168+ 161	120+101	3.6h+-100	HES	HES
	Standard	Standard	Finded	Standard	stancent	Standard	Standard	Standard	Standard	Standard	BRADOSD	Jannosh
D	1	2	" 3	" 4	5	6	7	** 8	" 9	‴10	"12	12
	1.00++002	2.26+-001	120+-001	4.68+-101	3.5H++ H01	278+-101	2.94+101	1.04+101	120+101	2.68++100	HES	HES
F	Standard RCP	Standard RCP	Standard RCP	Slandard RCP	Standard RCP	Standard RCP	Standard RCP	Standard RCP	Standard HEP	Standard REP	REP	BRANDON MEP
1	1.000-000	2.76+-901	1.200-001 J	4.00+-101	2.58+- 801	170+101	2.94+101	10H-M1	120+01	2.484+300	HES 1 4	HES 1 4
	Sportere	stancers	Shoard	stancerd	stancers	stancers	standard	stancerd	stancero	stancerd	PRINCIPAL	UMANOUN
F	···	2	" 3	" 4	5	6	7	** 8	** 9	10	12	12
	1.00++002	7.76+-901	120+-001	4.00+-101	0.58++ 001	278+-101	2.94+101	1.00+-101	120+01	2.48++100	нез	HES
G	Standard FCP	Shoderd RCP	Standard RCP	Standard RCP	Standard RCP	Standard RCP	Standard REP	Standard REP	Rtandard HEP	Standard HEP	NTC MEP	MTC MEP
Ĩ	1.000-002	2.700-001	1.000-001	4.000-001	2.50-001	2,764-101	2.94+101	LEN- M1	1204-001	2.484+ 100	HEI 1-0	HES LO
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	8tandard	standard	standard	нтс	NIC
н	** 1	2	" 3	" 4	5	" 6	7	*** 8	*** Q	"10	13	^{##} 13
	1,000-002	7.766-001	1,500-001	4.000-001	2.56+-901	2,784-901	2,984-901	1.00+-001	1204-001	5.494+ 900	HEI	HEI

To return to **Plate Setup** in order to continue with experimental setup, click the **Return to Setup Screen** button.

Thermal Profile Setup

Thermal Profile Introduction

The Mx3000P real-time PCR system thermal profile is a visual representation of the temperature cycling program that directs the instrument to incubate samples at specific temperatures at specific times. The programmed temperatures represent the desired fluid temperatures of the reaction samples. The Mx3000P system thermal profile consists of **plateaus**, **ramps** and **segments**. Thermal profiles are used only in real-time experiments; in plate read experiments, samples are held at a single temperature.

Elements of the Mx3000P Thermal Profile

A **plateau** is a temperature held over a period of time. It is represented with a solid horizontal line in a thermal profile. The valid temperature range is 25° (ambient) to 99°C. The valid range for a plateau duration is 1 second to greater than 18 hours.

A ramp is the transition between two plateaus.

A **segment** is a group of 1 to 127 plateaus and the intervening ramps that has been set to cycle at least one time. Segments are delineated in the thermal profile by vertical dotted lines.

A cycle is one pass through a segment. Each segment can be set to cycle up to 255 times.

Data Collection During Thermal Cycling

The Mx3000P system can collect data during the plateaus and ramps of a thermal profile.

Two types of data collection are available: **Endpoints** and **All Points**. See *Data Collection* for more detailed information on how readings are taken and analyzed using these collection settings.

Data collection markers show the points designated for data collection on the **Thermal Profile** display.

Endpoint collection, indicated by the Endpoint data collection marker causes the system to take readings at the end of a plateau or ramp.

All points collection, indicated by the All points data collection marker causes the system to take readings as often as possible during a plateau or ramp.

Thermal Profile Setup Procedures

When the **Thermal Profile Setup** tab is selected in a new experiment, a default thermal profile appropriate to the experiment type appears. The default thermal profile offers a starting point for creating the appropriate thermal profile for the experiment. Instructions for modifying the default thermal profile by adding or changing segments, plateaus and ramps are provided below.

For information on importing a thermal profile from another experiment, see *Import Thermal Profile Setup*. For more background information on the nomenclature and functions of the thermal profile components, see *Thermal Profile Introduction*.

Adding a Normal Segment

To add a normal segment, go to the **Add** section of the command panel and click the **Normal Segment** button. The segment added will have one plateau with a default temperature of 25°C and a default cycle number of 1 cycle. See *Adding a Plateau to a Segment*, below, for information on adding or modifying plateaus in the new segment.

Position of the Added Segment

If no segment is selected when the **Normal Segment** button is clicked, the new segment will be added to the beginning of the profile. If an entire segment is selected when the **Normal Segment** button is clicked, the new segment will be added after the selected segment.

Properties of the Added Segment

To adjust the number of cycles for the segment, double-click in the segment to open the **Segment Properties** dialog box, and then enter the **Number of Cycles**. Alternatively, click on the cycle number text below the segment to change the value.

If you want to add a descriptive label for the segment, double-click in the segment to open the **Segment Properties** dialog box, and then enter the desired text in the **Label** box.

For more information, see Segment Properties Dialog Box.

Adding a Plateau to a Segment

To add a plateau, go to the **Add** section of the command panel and click the **Plateau with ramp** button. When a plateau is added, ramps leading to and from the new plateau are also added by the software.

Position of the Added Plateau

If no segment or plateau is selected when the **Plateau with ramp** button is clicked, the new plateau will be added at the beginning of the first segment of the profile. If an entire segment is selected when the **Plateau with ramp** button is clicked the plateau will be added to the beginning of the segment. If a plateau is selected when the **Plateau with ramp** button is clicked, the new plateau will be added after the selected plateau within the same segment.

Properties of the Added Plateau

The default temperature for a new plateau is 25°C and the default duration is 30 seconds.

The plateau temperature and duration may be modified by any of the following methods:

- Grab the plateau with the mouse and drag it up or down to change the temperature
- Double-click on the plateau to open the Plateau Properties dialog box
- Click on the temperature or duration value associated with the plateau on the **Thermal Profile** screen; this action opens a spin box in which the value may be changed

A data collection marker may be added to the plateau by using the Plateau Properties dialog box

or by dragging the appropriate collection marker from the command panel to the plateau on the **Thermal Profile** screen.

For more information, see Plateau Properties Dialog Box.

Modifying Ramps

When a plateau is added, ramps leading to and from the new plateau are automatically added. Likewise, when a segment or plateau is deleted, the associated ramps are deleted or modified as necessary to connect adjacent plateaus.

A data collection marker may be added to the ramp by using the Ramp Properties dialog box or

by dragging the appropriate collection marker from the command panel to the ramp on the **Thermal Profile** screen.

For more information, see Ramp Properties Dialog Box.

Deleting a Plateau or Segment

A plateau or segment can be deleted by selecting the plateau or segment and then clicking the **Delete** button in the **Selection** section of the command panel. If a plateau is deleted, the associated ramps are also deleted or modified as necessary to connect adjacent plateaus.

Modifying Data Collection Settings

Data collection events are shown on the Thermal Profile screen as either Endpoint or All

points data collection markers. A data collection marker may be added to any ramp or plateau, by dragging the appropriate collection marker from the command panel to the plateau on the **Thermal Profile** screen. See *Data Collection* for a detailed description of data collection options.

Adding Comments

Information about the thermal profile can be entered in the **Thermal profile comments** text box at the lower right-hand corner of the screen. The comments are saved as part of the experiment. Note that the **Thermal profile comments** are distinct from any comments entered on the **Plate Setup** screen.

Displaying a Full-Screen Thermal Profile

If the profile becomes too wide to fit on the screen, a horizontal scroll bar will appear below the profile. The entire profile can be seen on the screen by clicking on the **Full Screen Profile** button in the lower right-hand corner of the screen. In full-screen view, the profile cannot be edited. To edit the profile, press the **Return to Thermal Profile** button in the lower right-hand corner.

Starting the Run

When finished setting up the **Thermal Profile**, click on the **Start Run** button at the lower righthand corner of the screen. This will save the experiment and start the run. If the experiment has not already been saved, the **Save As** dialog box will appear.

Thermal Profiles for Individual Experiment Types

Additional information on **Thermal Profile Setup** specific to the individual experiment types is found in the individual experiment sections:

Quantitative PCR Thermal Profile Setup

Comparative Quantitation Thermal Profile Setup

SYBR Green Thermal Profile Setup

Allele Discrimination/SNP's Real-Time Thermal Profile Setup

Molecular Beacons Melting Curve Thermal Profile Setup

Plate read experiments do not use a thermal profile; the temperature is constant during the read. See <u>Running a Plate-Read Experiment</u>.

Plateau Properties Dialog Box

The **Plateau Properties** dialog box is used to modify the properties of a plateau, including temperature, duration, and data collection. To access this dialog box, do one of the following:

- Double-click on the plateau.
- Select the plateau. Go to the Selection section of the command panel and click Edit **Properties**.

Plateau Properties	×
First cycle Duration: 01:00 🚽 min:sec	Close
Temperature: 60 🔤 degrees	
- Cycle increments	
Time: 00:00 🚔 min:sec 7 cycle	
Temperature: 0.0 A degrees (negative # for decrement)	
Data collection	
Type: Endpoint	
# of endpoints: 3	

Temperature and Duration (First Cycle)

Set the **Temperature** and **Duration** of the first cycle in the **First cycle** section of the dialog box. The values listed under **First cycle** will be used for all cycles unless the **Cycle increments** default null values are modified. **Duration** and **Temperature** values may be typed directly or may be selected by using the spin controls.

When data are collected for a plateau, the plateau has a minimum duration based on the time required for data collection. The amount of time required for data collection depends both on the configuration of wells from which data are being collected and on the number of data collection points specified. If the duration specified for the plateau is not sufficient to allow the specified data collection routine, a dialog box similar to the one shown below will appear. Adjust either the plateau **Duration** or the **Data collection** settings accordingly.

Cycle Increments

The **Cycle Increments** controls allow you to set the instrument to incrementally increase or decrease the temperature or duration of a plateau with each cycle within the segment.

Setting **Time** to a positive number will cause the duration of the plateau to increase by the specified amount of time with each cycle. Setting **Time** to a negative number will cause the plateau duration to be shortened by the specified amount of time each cycle.

Similarly, setting **Temperature** to a positive number will cause the temperature to increase by the specified number of degrees with each cycle and setting the **Temperature** to a negative number will cause the temperature to decrease by the specified number of degrees with each cycle. This setting can be adjusted in 0.1-degree increments.

Example of Thermal Profile using Cycle Increments

An important use of cycle increments is in performing a dissociation curve. A thermal profile for a **SYBR Green** experiment is shown below and includes a **Dissociation** segment that is set up with a 1.0 degree **Cycle increment**. On the **Thermal Profile**, the incremental change in plateau temperature is indicated by the upward-arrow adjacent to the plateau temperature text. In this segment of this experiment, the temperature of the plateau in the first cycle will be 55°C and then will increase by 1.0°C at every cycle.

Data Collection Settings in Plateau Properties

In the Plateau Properties dialog box, each plateau will have one of the following Data collection settings: None, Endpoints or All Points.

Plateau Properties	×
First cycle Duration: 01:00 min:sec Temperature: 55 degrees	OK Cancel
Cycle increments Time: 00:00 Immin:sec / cycle Temperature: 0.0 Immin:sec / cycle (negative # for decrement)	
Data collection Type: Endpoint # of endpoints: 1	

To set the instrument to collect data for the plateau, select either **Endpoints** or **All Points** from the **Type** menu. Selecting **Endpoints** will enable the **#of endpoints** selection box. Type or select the number of reads to be taken at the end of the plateau period in each cycle.

See the *Data Collection* section for a detailed discussion of how the **Data collection** settings options affect data collection and analysis.
Ramp Properties Dialog Box

The **Ramp Properties** dialog box is used to modify the properties of a ramp, including whether and how data are collected during the ramp. To access this dialog box from the **Thermal Profile** screen, do one of the following:

- Double-click on the ramp.
- Select the ramp. Go to the Selection section of the command panel and click Edit **Properties**.

Ramp Properties	X
Data collection Type: Endpoint	OK
# of endpoints:	Cancel
-	

Data Collection Settings in Ramp Properties

In the Ramp Properties dialog box, each ramp will have one of the following Data collection settings: None, Endpoints or All Points.

To set the instrument to collect data for the ramp, select either **Endpoints** or **All Points** from the **Type** menu. Selecting **Endpoints** will enable the **#of endpoints** selection box. Type or select the number of reads to be taken at the end of the ramping period in each cycle.

See the *Data Collection* section for a detailed discussion of how the **Data collection** settings options affect data collection and analysis.

Segment Properties Dialog Box

The **Segment Properties** dialog box is used to modify the properties of a **segment**. To access this dialog box, do one of the following:

- Double-click on the segment (but not directly on a ramp or plateau).
- Select the plateau. Go to the Selection section of the command panel and click Edit **Properties**.

Segment Properties	×
Number of cycles: 40 🔭	OK
Label:	Cancel

Number of Cycles

Enter or select the number of times that the segment should be repeated (cycled) in the Number of cycles box. The acceptable range is 1-255.

Label

To add a descriptive label to the segment, which will appear below the number of cycles on the **Thermal Profile**, type the desired text in the **Label** box. The maximum length is 22 characters.

Data Collection

The points at which data should be collected by the Mx3000P instrument during thermal cycling are specified on the **Thermal Profile**. Two types of data collection are available: **Endpoints** or **All Points**.

Data collection markers show the points designated for data collection on the **Thermal Profile** display.

In the Plateau Properties or Ramp Properties dialog box, each plateau or ramp will have a Data collection setting of None, Endpoint or All Points in the Type menu.

Plateau Properties	×
First cycle Duration: 01:00 immin:sec Temperature: 55 im degrees	OK Cancel
Cycle increments Time: 00:00 min:sec / cycle Temperature: 0.0 degrees / cycle (negative # for decrement)	
Data collection Type: Endpoint # of endpoints: 1	

Endpoint Data Collection

Endpoint data collection causes the system to take readings at the end of a plateau or ramp. Setting the number of data collection points (the range is 1–31) specifies how many data points will be collected. The system calculates the time necessary to read the plate the specified number of times and then begins reading when that amount of time remains in the plateau or ramp. For example, if reading a plate takes 7 seconds and the specified number of data collection points is 3, the system will begin collecting data when 21 seconds remain in the plateau or ramp. How the multiple endpoint readings are handled during analysis is specified using the Advanced Algorithm Settings dialog box during Analysis Selection/Setup.

To include an Endpoint data collection step in a ramp or plateau, in the Plateau Properties or Ramp Properties dialog box (accessed by double-clicking the ramp or plateau) select Endpoint from the Type menu. Enter the desired number of data collection points in the **# of endpoints** spin box.

Identical results are achieved on the Thermal Profile display screen by dragging an Endpoints

data collection marker from the command panel to the desired plateau or ramp. Once the marker is in place, the number of collection points appears at the upper right of the marker, and can be changed by clicking on the number to open a spin control.

Mx3000P[™] Real-Time PCR System

All Points Data Collection

All Points data collection causes the system to take readings as often as possible during a plateau or ramp. How the multiple readings for each cycle are handled during analysis is specified using the Advanced Algorithm Settings dialog box during Analysis Selection/Setup.

To include an All Points data collection step in a ramp or plateau, in the Plateau Properties or Ramp Properties dialog box (accessed by double-clicking the ramp or plateau) select All Points from the Type menu. Identical results are achieved on the Thermal Profile display screen by

dragging an All points data collection marker from the panel on right-hand side of the screen to the desired plateau or ramp.

No Data Collection

In the **Plateau Properties** or **Ramp Properties** dialog box (accessed by double-clicking the ramp or plateau) a setting of **None** in the **Type** menu causes no data to be collected during the plateau or ramp. This is the default setting for new plateaus or ramps added to a thermal profile.

Plateaus or ramps that currently have data collection settings of **Endpoint** or **All Points** may be changed to **None** by selecting **None** from the **Type** menu or by dragging the appropriate **data collection marker** off of the **Thermal Profile** display area.

Data Collection-Based Constraints on the Thermal Profile

A plateau has a minimum duration needed to acquire data. If the duration specified is not sufficient for the indicated data collection on the plateau, a dialog box similar to the one shown below will appear. Adjust either the plateau **Duration** or the **Data collection** settings accordingly.

Mx3000P	- Invalid Time X		
⚠	The valid time range is 19 seconds to 18 hours, 12 minutes and 15 seconds (18:12:15).		
	ote that the minimum time has been increased from 1 second to 19 second ue to the required time for data collection.		
	ОК		

The plateau minimum duration for acquiring data varies based on the **Plate Setup** configuration. The configuration determines the minimum duration by specifying the number of well rows collected and the amount of data collected per well. Consequently, if changes are made to the **Plate Setup** such that the duration of a plateau becomes insufficient to allow the specified data collection settings, a dialog box similar to the one shown below will appear upon exiting the **Plate Setup** screen. The plateau duration will automatically be increased to the minimum required time.

Using Import Thermal Profile Setup

The **Import** function of **Thermal Profile Setup** allows you to recall the thermal profile from an existing experiment when setting up a new experiment.

To use an existing thermal profile for the new experiment, click the **Import** button on the command panel. **The Import Thermal Profile Setup From** dialog box will appear.

This dialog box lists Mx3000P experiments stored in the Mx3000P data storage folder. Select the experiment that includes the desired thermal profile setup information, and then click the **Open** button.

If the experiment you selected is not compatible with the experiment being set up, a warning box will appear. If this warning appears, click the **OK** button and select another experiment of the same type as the one being set up.

Mx3000P	
⚠	The selected file contains an Allele Discrimination / SNP's Real-Time experiment. A Quantitative PCR experiment cannot import from an Allele Discrimination / SNP's Real-Time experiment because experiment types don't match.
	OK

Using a Default Thermal Profile Setup

In addition to the pre-configured default thermal profiles supplied by the Mx3000P software (as part of the **Original Settings**), user-defined default thermal profiles may be created and retrieved for setting up new experiments.

Using a user-defined default thermal profile for **Thermal Profile Setup** requires creating a default set containing the desired thermal profile. Once the appropriate default set is created, select this default set as the active default set in the **Choose set** menu of the **Preferences** dialog box and then click **OK**. The thermal profile stored in the active default set will automatically be applied to the open experiment and to all new experiments, until the active default set is changed again.

Preferences				
File Colors Display Defaults				
Choose set (and select OK to apply)				
Include: Plate Setup Thermal Profile Setup Analysis				
Add Set Original Settings Delete Set Note: Experiment was last saved with set "Set 1 ".				
OK Cancel Help				

The thermal profile in an existing default set may also be applied to the thermal profile setup in an open experiment by using the **Defaults** menu on the **Thermal Profile Setup** screen. To retrieve the thermal profile from the active defaults set, click **Defaults** to expand the menu, and then select **Get**.

See *Preferences-Defaults* for more information about creating and using default sets to streamline experimental setup and analysis.

How to Run a Real-Time Experiment

Preparing for the Run

Either open an existing experiment or set up a new experiment. Complete both Plate Setup and Thermal Profile Setup steps. In preparation for running the experiment, verify that the lamp is ready. Place the samples in the instrument and close the instrument door. The indicators at the bottom of the screen should appear as shown below.

Door Closed 🛛 Lamp Ready 🛛 🖃 🖬

The warm up time for the lamp is 20 minutes. Stratagene recommends that no data be taken during this period. If a run is started before the warm-up time is complete, a dialog box appears displaying the remaining warm-up time. Click **Run After Warm-Up** to automatically start the run at the end of the warm-up period. Click **Run Now** to proceed with the experiment before the lamp is warmed-up (not recommended).

Starting the Run

Initiate the run from the Thermal Profile Setup screen by clicking the Start Run button.

	Full Screen Profile		Start Run	
Ι)oor Closed	La	mp Ready	-ус Ца-ба

The **Run Status** dialog box will appear. If you want to **Turn the lamp off at end of run** select the checkbox at the bottom of the dialog box. Click **Start** to begin the run.

Run Status - Stopped				
	Start			
	Add Cycles			
Time remaining:				
Temperature:				
Segment:				
Cycle:				
Ramp:				
Turn lamp off at end of run				

Note that a run can only be started once for any given experiment to ensure that data are not mistakenly overwritten.

Mx3000PTM Real-Time PCR System

Monitoring the Run

Run Status Dialog Box

The **Run Status** dialog box is displayed throughout the run, reporting the **Time remaining** in the run, the **Temperature** (estimated current temperature of the sample reactions within the tubes) and the current cycling status of the run (the **Segment**, **Cycle**, and **Plateau** in progress). The dialog box may be moved to a different position on the screen by dragging the box from the title bar.

Run Status - Running			
Abort			
	Add Cy	ycles	
Time Rem	aining:	02:04:45	
Temperatu	ure:	53.7	
Segment:		2	
Cycle:		1 of 40	
Plateau #:		2	
Turn lamp off at end of run			

If desired, additional cycles may be added to the currently-running segment of the thermal profile by clicking the **Add Cycles** button. The **Add Cycles** dialog box will appear. Use the spin controls to specify the number of cycles to be added to the currently-running segment and then click **OK**.

	×		
Number of cycles to extend the currently running segment:			
5 -			
Cancel			
	e currently running		

Thermal Profile Status

By default, the **Thermal Profile Status** screen is displayed during the run to provide a graphical representation of the progress of the thermal cycling. (The view may also be switched to **Raw Data Plots** during the run.)

Analyzing Data During the Run

To analyze data during a run, click the Analysis tab. The following dialog box will appear.

If you choose to open a standalone Mx3000P application, a second copy that does not have communications with the instrument, the data collected from the beginning of the run to that point will be available for analysis. Unless you abort the run, data collection will continue and the complete data set will be saved at the end of the experiment.

Aborting the Run

To stop a running experiment, click Abort in the Run Status dialog box.

Run Status - Running		
Abort		
Add Cycles		
Time Remaining: 02:04:45		
Temperature: 53.7		
Segment: 2		
Cycle: 1 of 40		
Plateau #: 2		
Turn lamp off at end of run		

The Abort Running Experiment dialog box will appear. Click Yes to stop the experiment. To save the already-collected raw data from the run, select the Save collected data checkbox before clicking Yes. To allow the run to continue, click No.

Abort Running Experiment 🛛 🛛 🗙				
Abort the currently running experiment?				
Yes	No			
Save collected data.				

If the real-time experiment is aborted very early, then in some cases it may be possible to begin again, cycling the samples and generating useful data. In many cases, however, the samples will no longer be useful for generating data. For example, if some rounds of amplification have already occurred when a run is aborted, it is not possible to generate legitimate standard curves or determine initial template quantities from the samples in a new run.

Mx3000PTM Real-Time PCR System

Viewing the Thermal Profile Status

By default, the **Thermal Profile Status** screen is displayed during the run to provide a graphical representation of the progress of the thermal cycling. During the run, a yellow dot and green status line are displayed on the thermal profile image to indicate the current status of the run with respect to the profile. If, instead, you want to monitor product accumulation during the run, click the **Raw Data Plots** tab. Likewise, clicking the **Thermal Profile Status** tab returns the view to the **Thermal Profile Status** screen.

Viewing Raw Data Plots

During the run, raw data plots can be viewed to give an immediate indication of product accumulation. To view the full-screen raw data amplification plots while the thermal profile is running, click on the **Raw Data Plots** tab. (Raw data plots may also be viewed after the run by clicking the **Run** section button, and then clicking the **Raw Data Plots** tab.) The plots shown are raw fluorescence (R) on the Y-axis versus cycle number on the X-axis. For a more detailed view of the plot in an individual well, double-click on the well to open the well's expanded amplification plot.

Display Options for Raw Data Plots

Selecting the Ramp or Plateau to Display

After the run, it is possible to view raw data amplification plots for each ramp and plateau for which data was collected. Select the ramp or plateau of interest from the list under **Select**

ramp/plateau. A magnifying glass Q indicates that the ramp or plateau has had data collected; a gray dash indicates that the ramp or plateau was not selected for collection, so there is no data to display.

Displaying or Hiding Dyes

The dyes in use on the plate may be displayed or hidden by using the **Dyes shown** selection bar at the lower left-hand corner of the screen. When the button is depressed (like **FAM** in the picture below), the dye's well assignments are displayed, but when the button is released (like **ROX** in the picture below), the dye's well assignments are hidden from display. Note that using this feature **does not affect data collection**.

– Dyes shown —	
ROX	FAM

Displaying or Hiding Well Type Assignments

The well types that are displayed on the plate are controlled by using the buttons in the **Well Types Shown** selection bar. Any of the well type buttons may be depressed in order to display the information for wells of the indicated type or may released to hide the information. For example, if you want to view only the **Unknown** wells on the plate, depress the **Unknown** button and release all other well type buttons (such as the **NTC** button in the example below). **Note that using this feature does not affect data collection.**

Setting the Range of the Y-axis

The minimum and maximum Y-axis values for the plots can be set using the **Y-axis display range** slider controls on the command panel. By adjusting the Y-axis range, the scale can be expanded or contracted to show better differentiation between curves. The minimum value is 0 and the maximum value is 65535.

The X-axis value is fixed to include the number of cycles that are being collected.

Y-axis disp Minimum:	ay range
Maximum: 65535]

Viewing Expanded Amplification Plots (Real-Time Experiments)

When viewing **Raw Data Plots** for a real-time experiment, an individual well's plot can be expanded for a clearer picture of product accumulation in that well. To expand a well's plot, double-click on the well. The plot will appear as shown:

Display Options for Expanded Amplification Plots

Multiple wells can be shown (up to a maximum of 9 wells) by selecting a group of wells and then clicking on the **Show Plots** button on the command panel.

Plot controls Consolidate Plots	
Show Plots	
Hide Plots	
Clear Selection	

When **Consolidate Plots** is selected, the selected plots appear together in a single window.

When **Consolidate Plots** is cleared, the selected plots appear in individual windows, in a tiled format by default. To change the arrangement of plots to a cascade format, select **Cascade Plots** from the **Window** menu.

A plot can be resized by dragging any side or corner with the cursor.

A plot can be moved by pressing and holding the left mouse button down in the title bar of the plot box and dragging the plot to a different location.

Using the panel of colored buttons below the plot, an individual dye can be shown in the plot (by depressing the corresponding color button) or hidden (by releasing the corresponding color button).

The Y-axis range displayed for the expanded plots can be adjusted using the **Y-axis display range** slider controls on the command panel. The minimum value is 0 and the maximum value is 65535.

To hide a single displayed plot, click the plot's **Close** button **X**. To hide all plots, click **Hide Plots** on the command panel. Clicking **Clear Selection** will clear (deselect) any highlighted wells.

How to Run a Plate-Read Experiment

Preparing for the Run

Either open an existing experiment or set up a new experiment. Complete the Plate Setup. In preparation for running the experiment, verify that the lamp is ready. Place the samples in the instrument and close the instrument door. The indicators at the bottom of the screen should appear as shown below.

The warm up time for the lamp is 20 minutes. Stratagene recommends that no data be taken during this period. If a run is started before the warm-up time is complete, a dialog box appears displaying the remaining warm-up time. Click **Run After Warm-Up** to automatically start the run at the end of the warm-up period. Click **Run Now** to proceed with the experiment before the lamp is warmed-up (not recommended).

Starting the Run

Starting a plate-read run requires the following steps, each of which are detailed below:

- 1. Set the **Read Properties** (temperature and number of reads)
- 2. Start the run using the Start Run button on the Plate Setup screen
- 3. Initiate data collection and specify whether the run is a Pre-read or Post-Read in the Run Status dialog box

Step 1: Specify the read properties by clicking the Set Read Properties button on the Plate Setup screen. The Set Read Properties dialog box opens, allowing you to set the temperature and number of readings to be taken.

Set Read Propertie	25	×
Read temperature:	25 ×	OK
Number of reads:	1 •	Cancel

Step 2: Click the Start Run button at the bottom of the Plate Setup screen. The Run Status dialog box opens when the Start Run button is clicked, allowing you to initiate the plate read run.

Run Status - Stopped	
Pre-Read	
Post-Read	
Time remaining: Temperature:	

Step 3: Click either the Pre-Read or the Post-Read button in the Run Status dialog box to initiate data collection by the instrument.

A plate read run can be completed as either a one-time read or a pre- and post-read sequence.

One-time Plate Read Experiments

One-time plate readings may be initiated by clicking either the **Pre-Read** or the **Post-Read** button in the **Run Status** dialog box. Note that once the run is complete, fluorescence data type selections on **Results** screens are affected by the choice made in the **Run Status** dialog box. If the run was initiated using the **Pre-Read** button, select fluorescence data types of **Rpre** or **Rn,pre** on **Results** screens. If the run was initiated using the **Post-Read** button, select fluorescence data types of **Rpost** or **Rn,post** on **Results** screens.

Pre-Read and Post-Read Sequence Experiments

To run a pre-read/post-read sequence, start the pre-read segment by clicking the **Pre-Read** button. When the read is complete, exit and save the experiment. To run the post-read segment for the same samples after cycling, open the saved experiment (containing the pre-read data), click **Start Run** from the **Plate Setup** screen, and then click the **Post-Read** button in the **Run Status** dialog box.

Monitoring the Run

The **Run Status** dialog box is displayed throughout the run, reporting the **Time remaining** in the run and the **Temperature** (estimated current temperature of the sample reactions within the tubes).

Run Status - Waiting		
Abort Pre-Read		
Post-Read		
Time Remaining: Temperature:	00:00 :32 23.1	

During the run, the **Raw Data Plots** screen is also displayed, showing readings for each well while data collection occurs.

Aborting the Run

To stop a running experiment, click Abort Pre-Read or Abort Post-Read in the Run Status dialog box.

The Abort Running Experiment dialog box will appear. Click Yes to stop the experiment. To save the already-collected raw data from the run, place a check mark in the box next to Save collected data before clicking Yes. To allow the run to continue, click No.

Abort Running Experiment		
Abort the running experiment?		
Yes	No	
Save collected pre-read data.		

Note that, for plate read experiments, if a run is aborted the read can generally be taken again.

Setting the Read Properties for a Plate-Read Experiment

To access the Set Read Properties dialog box, click the Set Read Properties button on the command panel of the plate-read experiment Plate Setup screen.

Set Read Propertie	25	×
Read temperature:	25 ×	OK
Number of reads:	1 -	Cancel

Set the temperature (25–99°C) at which the samples should be held during the run by using the **Read temperature** spin controls. Set the number of times for the plate to be read by using the **Number of reads** spin controls. If the run includes multiple reads, you can specify whether the data should be reported as the average, the minimum value, the maximum value, or the endpoint of the read series by clicking the **Advanced Algorithm Settings** button on the **Analysis Selection/Setup** screen.

Viewing Raw Data Plots for Plate-Read Experiments

During the run, the **Raw Data Plots** are displayed to give immediate indication of fluorescence readings for the samples. (Raw data plots may also be viewed after the run by clicking the **Run** section button, which opens to the **Raw Data Plots** screen.) The plots shown are bar graphs of raw fluorescence (R) on the Y-axis versus pre-read and/or post-read data collection points on the X-axis. For a more detailed view of the plot in an individual well, double-click on the well to open an expanded plot for that well.

Display Options for Raw Data Plots

Displaying or Hiding Dyes

The dyes in use on the plate may be displayed or hidden by using the **Dyes shown** selection bar at the lower left-hand corner of the screen. When the button is depressed (like **FAM** in the picture below), the dye's well assignments are displayed, but when the button is released (like **ROX** in the picture below), the dye's well assignments are hidden from display. Note that using this feature **does not affect data collection**.

Displaying or Hiding Well Type Assignments

The well types that are displayed on the plate are controlled by using the buttons in the **Well Types Shown** selection bar. Any of the well type buttons may be depressed in order to display the information for wells of the indicated type or may released to hide the information. For example, if you want to view only the **Unknown** wells on the plate, depress the **Unknown** button and release all other well type buttons (such as the **NTC** button in the example below). **Note that using this feature does not affect data collection.**

- Well types shown	
Unknown	NTC

Setting the Range of the Y-axis

The minimum and maximum Y-axis values for the plots can be set using the **Y-axis display range** slider controls on the command panel. By adjusting the Y-axis range, the scale can be expanded or contracted to a scale more appropriate to the sample/dye of interest. The minimum value is 0 and the maximum value is 65535.

⊢Y-axis disp	lay range
Minimum:	
0	
Maximum:	
65535] [

Viewing Expanded Raw Data Plots for Plate-Read Experiments

When viewing **Raw Data Plots** for a plate read experiment, an individual well's plot can be expanded for a clearer picture of fluorescence readings in that well. To expand a well's plot, double-click on the well. The plot will appear as shown:

Display Options for Expanded Plots

Multiple wells can be shown (up to a maximum of 9 wells) by selecting a group of wells and then clicking on the **Show Plots** button on the command panel.

Plot controls Consolidate Plots]
Show Plots	
Hide Plots	
Clear Selection	

When **Consolidate Plots** is selected, the selected plots appear together in a single window.

1	Fluorescence for A4, A5 and A6	×
	60000 40000 20000 0 Pre-read	

When **Consolidate Plots** is cleared, the selected plots appear in individual windows, in a tiled format by default. To change the arrangement of plots to a cascade format, select **Cascade Plots** from the **Window** menu.

A plot can be resized by dragging any side or corner with the cursor.

A plot can be moved by pressing and holding the left mouse button down in the title bar of the plot box and dragging the plot to a different location.

Using the panel of colored buttons below the plot, an individual dye can be shown in the plot (by depressing the corresponding color button) or hidden (by releasing the corresponding color button).

The Y-axis range displayed for the expanded plots can be adjusted using the **Y-axis display range** slider controls on the command panel. The minimum value is 0 and the maximum value is 65535.

To hide a single displayed plot, click the plot's **Close** button **I**. To hide all plots, click **Hide Plots** on the command panel. Clicking **Clear Selection** will clear (deselect) any highlighted wells.

How to Analyze the Data

Analyzing the Data

To begin data analysis for an open experiment, click the **Analysis** tab or select **Analysis** from the **Section** menu.

The Analysis section includes the Analysis Selection/Setup screen, and a series of different Results screens that are appropriate to the type of experiment.

For general information on how to use the **Analysis** section of the Mx3000P software, see the following topics:

Analysis Selection and Setup

Treatment of Replicates

Positive and Negative Calling

Graphs and Graph Properties

Adjusting the Threshold Fluorescence Manually

More detailed information about the specialized aspects of **Analysis** for each of the experiment types is available in the experiment-specific sections:

Quantitative PCR

Comparative Quantitation

SYBR Green

Allele Discrimination/SNP's Real-Time

Molecular Beacon Melting Curve

Quantitative Plate Read

Plate Read/Allele Discrimination

Analysis Selection/Setup

The first step in data analysis is to use the **Analysis Selection/Setup** screen to make selections and provide settings that will be used for data analysis. These include:

- Selecting the wells for which collected data should be analyzed
- Choosing the ramp or plateau for which the collected data will be analyzed
- Specifying the settings that determine how data are analyzed

Note that if you wish to use the default analysis settings, you need only select the wells to analyze, choose the data collection ramp or plateau, and click on the **Results** tab. The specific default settings that are in place when the **Analysis Selection/Setup** screen is opened are determined by the contents of the active default set.

Selecting the Wells to Analyze

Note Only those dyes and wells selected in the Analysis Selection/Setup screen are used by the analysis algorithms.

To select an individual well, single click in that well.

An entire row or column of wells can be selected by clicking on the corresponding **row header** (A-H) or **column header** (1-12). All the wells in the plate can be selected by clicking on the **All** button in the upper left-hand corner of the plate.

To select a range of adjacent wells, click and hold the left mouse button down and drag the cursor across the wells to be selected. A visible marking rectangle will appear. When all of the required wells are included in the rectangle, release the left mouse button and the range of wells will be selected.

To select a group of non-contiguous wells, hold down the **Control** key and click on each of the wells.

To deselect a well, hold down the **Control** key and click on the well to be deselected. To deselect a selected row or column, click on that row or column's header. To rapidly deselect all wells, click the **All** button twice. This will select and then deselect all wells.

Choosing the Data Collection Ramp or Plateau

Data may be viewed for any ramp or plateau that data was collected on. On the command panel, the **Select data collection ramp/plateau** box shows a summary of the thermal profile, with the

data collection points indicated with the collection marker Q icon. (A gray dash — indicates that the ramp or plateau was not selected for collection, so there is no data to display.) To choose a ramp or plateau for data analysis select it in the Select data collection ramp/plateau box.

Select data collection ramp/plateau:
🚊 – Segment 2
Ramp 1
- Plateau 1
Bamp 2
Q Plateau 2
Bamp 3
Plateau 3
🗄 — Segment 3

For **SYBR Green** and **Comparative Quantitation** data analysis, it is necessary to select data collection points to be used in two parts of the profile: one data set for the **Dissociation curve** (set by clicking the **Dissociation** button) and another data set for the rest of the data analysis options (set by clicking the **Amplification** button).

Select Data Collection Ramp/Plateau-	_
Amplification	
Dissociation	

Excluding Individual Dyes from Analysis (Optional)

Exclude Dyes allows you to exclude individual dyes in specific wells from analysis.

Clicking the **Exclude Dyes** button will change the display of the wells to include independent buttons for each dye in each well, as shown below.

A dye button which is depressed (with colored lettering) signifies that data collected for that dye in that well will be used in analysis algorithms. A raised button (with grayed lettering) signifies that the well/dye data will not be included in the analysis. When the **Exclude Dyes** view is first accessed in an experiment, all buttons are depressed. To exclude a specific dye in a specific well from analysis, release the corresponding dye button in the appropriate well.

When all dye exclusions have been specified, click the **Exclude Dyes** button again to return to the normal **Analysis Selection/Setup** view.

Mx3000P[™] Real-Time PCR System

Specifying Data Analysis Settings

Replicates

Wells identified as replicates in **Plate Setup** may be treated either individually or collectively during **Analysis**. Selecting **Treat Individually** under **Replicates** will cause the software to analyze each well independently and display or report results for each well separately. Selecting **Treat Collectively** will cause the software to average the data from all wells that make up a replicate set and to report a single result for the replicate set, effectively treating the measurements as if they came from the same well. See *Treatment of Replicates* in the *How-To (Detailed Protocols)* section for more details on how this selection affects the reporting of results.

- Replicates	
C Treat individually	
Treat collectively	

Algorithm Enhancements

The **Algorithm enhancements** settings are used to specify whether or not the listed algorithm enhancements should be applied in the current round of analysis. **Algorithm enhancements** are not used in plate read or molecular beacon melting curve experiments.

Amplification-Based Threshold

The **Amplification-based threshold** enhancement automatically calculates the threshold fluorescence for each dye, based on the amplification properties of the reactions in the specific experiment. See *Analysis Term Settings-Real Time-Threshold Fluorescence* for more information. To use this enhancement, select the **Amplification-based threshold** check box in the **Algorithm enhancements** section. The settings that affect this calculation may be viewed or modified in the **Analysis Term Settings-Threshold Fluorescence** dialog box.

Baseline-based threshold fluorescence is used for analysis when the **Amplification-based threshold** check box is cleared. This threshold calculation algorithm uses user-defined settings to determine the threshold fluorescence based on the background fluorescence in the experiment. The settings that affect this calculation may be viewed or modified in the **Analysis Term Settings-Threshold Fluorescence** dialog box.

The threshold fluorescence value may also be manually set or adjusted.

Adaptive Baseline

The Adaptive baseline enhancement automatically calculates the best baseline for each plot individually, thereby providing the most accurate Ct. Adaptive baseline is activated by checking the Adaptive baseline check box in the Algorithm enhancements section.

When uniform range baseline calculations are used for analysis (by clearing the **Adaptive baseline** check box), the range of cycles delimited for background correction is, by default, identical for all amplification plots. The starting and ending cycles for calculating the baseline function are specified in the **Active Settings** section of the **Analysis Term Settings-Baseline Correction** dialog box.

After using either baseline correction algorithm, the start and end cycle values can be adjusted manually for one or more amplification plots by using the **Resulting Cycle Range** section of the **Analysis Term Settings-Baseline Correction** dialog box.

Moving Average

- Adaptive <u>b</u>aseline
- Moving average

Moving average applies curve-smoothing to help reduce **Ct** variation by decreasing the effect of signal noise. When this enhancement is selected, the fluorescence value for each data point in the amplification curve represents the average of the values for a specified range of cycles (original software settings=3 cycles) surrounding a given point.

To perform data analysis employing a moving average calculation, select the **Moving average** check box. The number of points averaged during **Moving average** curve-smoothing can be modified in the **Analysis Term Settings-Moving Average** dialog box.

Applying a **Moving average** calculation reduces the resolution of the reported results. Using **Moving average** curve-smoothing also increases the Ct values for a given threshold fluorescence.

Analysis Term Settings

The Analysis Term Settings button opens the Analysis Term Settings dialog box, allowing adjustment of a variety of settings that influence the way data are analyzed. Most of the basic settings controlled by the Analysis Term Settings dialog box may be selected or deselected in the Replicates and Algorithm Enhancements sections of the Analysis Selection/Setup control panel. However, the Analysis Term Settings button provides convenient access to the dialog box in order to view or modify the parameters used in the calculations for a given setting selection.

Advanced Algorithm Settings

Adv. Algorithm Settings

The Adv. Algorithm Settings button opens a dialog box that displays the Read statistic radio button selection box.

Advanced Algorithm	Settings 🔀
Read statistic Minimum Average	
C Last endpoint	Defaults 🔻
ОК	Cancel

The Mx3000P instrument may be set up to take more than one fluorescence reading for each reported measurement at each cycle in a real-time experiment or at each plate read. The number of readings per collection point is specified during **Thermal Profile Setup** for real-time experiments and using the **Set Read Properties** dialog box for plate read experiments. The **Read statistic** setting allows specification of how the multiple data readings should be analyzed.

Selecting **Minimum** will cause the software to use the lowest value collected for each well and dye combination in each cycle or each plate read. Selecting **Average** will cause the software to use the average (mean) of the values collected for each well and dye combination in each cycle or each plate read. Selecting **Maximum** will cause the software to use the highest value collected for each well and dye combination in each cycle or each plate read. Selecting **Last endpoint** will cause the software to use the last data point collected each well and dye combination in each cycle or each plate read.

See *Preferences-Defaults* for information about the use of the **Defaults** menu and the application of defaults sets to the settings specified in this dialog box.

Adding Analysis Comments

The Analysis comments box allows you to enter comments to be saved with the experiment. When printing the Analysis Selection/Setup section, these comments will appear on the printout.

Analysis <u>c</u> ommen	its:		

Treatment of Replicates

Replicate wells can be identified by assigning the same replicate symbol to a group of wells during **Plate Setup**. Wells that are identified as replicates can then be treated collectively during **Analysis**. When **Treat** (replicates) **collectively** is selected in the **Analysis Selection/Setup** screen, fluorescence values for all wells that are identified with the same replicate symbol are averaged, so that the results for all wells with the same replicate number will be identical. When **Treat** (replicates) **individually** is selected, fluorescence values for all wells are analyzed and reported independently, regardless of any replicate set assignments that had been made in **Plate Setup**.

- Replicates	
C Treat individually	
Treat collectively	

Collective Treatment of Replicates in Real-Time Experiments

When the **Treat Collectively** option is selected in real-time experiments, fluorescence data from all wells with the same replicate number is averaged cycle-by-cycle. Hence, a single amplification plot or dissociation curve is produced for each replicate set. In addition, a single **Ct** value (and any other value derived from the fluorescence data) is reported for the replicate set on all of the analysis screens. These values are calculated from the averaged amplification plot.

Collective Treatment of Replicates in Plate Read Experiments

When the **Treat Collectively** option is selected in plate read experiments, the fluorescence data reading from all wells with the same replicate number is averaged for each dye. Hence, all members of the set will have the same value (the average value of all set members) reported on the **Plate Sample Values** screen and will have a single value reported in a **Text Report**.

On the **Final Call Results** screen, the averaged value for each **Unknown** replicate set is compared to the averaged value for the **Control** replicate set. If the average for an unknown set is statistically higher (based on p-values) than the average of the control wells, all members of the replicate set are called '+'. The user-specified confidence level in the **Analysis Term Settings** dialog box determines how high the **p-value** must be to yield a "+" final call.

Positive and Negative Calling

Real-Time Experiments

In real-time experiments, calling in **Final Call Results** is based on **Ct** values that are derived from either baseline-corrected raw fluorescence or baseline-corrected, normalized raw fluorescence. If the derived **Ct** is less than the last cycle for which data was collected, a positive call is returned. If the **Ct** is greater than or equal to the last cycle for which data was collected, a negative call is returned. A plus sign (+) signifies that product accumulation was detected, while a minus sign (-) signifies a failure to detect product accumulation.

Plate Read Experiments

In plate read experiments, calling in Final Call Results is based on comparing the experimentally determined **p-value** (probability value) for each dye in each well to the user-defined Confidence level for calls. The Confidence level for calls stipulates the minimum **p-value** required (the minimum confidence that amplification did occur in the well) for a positive call to be issued.

The **p-value** of a dye in a well is the probability that the amount of sample in that well differs from the amount of sample in the controls. For example, a **p-value** for an **Unknown** well of 99% means that 1% of the time, a measurement of a sample identical to the control wells will produce a value at least as great as the actual measurement collected for the **Unknown** well. In other words, the chance of a false positive is 1%. Thus, assuming that the only cause of false positives is measurement error, the confidence that amplification did occur is 99%.

Presuming the user-defined **Confidence level for calls** setting is 99%, a positive call (+) for an **Unknown** well means that at most 1% of the time a measurement of sample identical to the control wells will produce a value as great as the actual measurement collected for the **Unknown** well.

Conversely, a negative call (–) in an **Unknown** well (with a **Confidence level for calls** setting of 99%) means the chance that measurement of a sample identical to the control wells would produce a value at least as great as the actual measurement in the **Unknown** well is greater than 1%. Hence, there is less than 99% confidence that amplification occurred, assuming no other sources of experimental error.

Set the confidence level for making final calls in the **Analysis Term Settings-Plate Read** dialog box.

The **Text Report** screen for plate-read experiments reports the **p-value** for each dye in each well, which is the probability that the actual measurement of the dye in the well differs from the measurements of the dye in the control wells. Other **Results** screens report only the **Final Call** (+ or -).

Note In order for the Mx3000P software to calculate p-values for positive or negative calling in Unknown wells, the plate read experiment must include at least three NTC or dyespecific negative control wells for each dye.

Graphs and Graph Properties

The **Graph Properties** dialog box allows you to customize several of the features of graphs displayed on **Results** screens. To access this dialog box, double-click anywhere in the graph.

Graph Properties			×					
Graph title: Am	olification Plots							
X axis Min 1	Set to Default	Orientation • Lo -> Hi	Scale					
Max 45	Set to Default	⊂ Hi -> Lo	C Log					
🔽 Use Auto	omatic Limits							
Y axis Min 0.09	Set to Default	Orientation ● Lo -> Hi ○ Hi -> Lo	Scale C Linear C Log					
Use Auto	Vise Automatic Limits							
Legend Leg Off C On C	end position Top C Bottom Left C Right	Bkgd color Edit	Style Plot C Bar					
Plot markers ⓒ Show ◯ Hide								
[OK	Cancel						

Graph Title

The **Graph Title** box shows the title displayed above the graph on the **Results** screen. To change the title displayed, type the desired title text in the box.

X-Axis and Y-Axis Controls

The X-Axis and Y-Axis sections of the dialog box allow you to customize the X- (horizontal) and Y- (vertical) axes of the graph. By default, the limits of both axes are determined automatically. To change the limits, clear the Use Automatic Limits check box, and then enter the desired Min and Max values for the axis. The Orientation and Scale of either axis may also be changed by using the radio buttons provided.

Background Color

To modify the background color for the graph, click **Edit** in the **Bkgd color** box. For Help with selecting or defining colors, see *Preferences-Color* in the *Options Menu* section.

Style

The Style radio buttons are available only from the **Relative Quantity Chart** screen of **Comparative Quantitation** experiments. When available, you can select a display graphic of either a **Bar** chart or a line **Plot** using the corresponding radio buttons.

Plot Markers

To view curves as solid lines without plot markers, select the **Hide** radio button under **Plot markers**. To restore the markers, select the **Show** radio button.

Legend

To show the legend for the graph, select the **On** radio button under **Legend**. Select the desired position of the legend, relative to the graph, by using the radio buttons under **Legend Position**. (If the legend is **Off**, **Legend Position** choices will not be available.)

To hide the legend for the graph, select the **Off** radio button under **Legend**. This setting allows a full-sized display of the graph.

In the image below, the legend is turned **On** and positioned at **Right**. For information on changing the properties of elements listed in the legend, see *Legend Properties*, below.

Legend Properties

To modify the appearance of the elements listed in the graph legend, open the **Legend Properties** dialog box by double-clicking on an entry in the legend.

To change the basis used for assigning plot colors, use the **Plot colors based on** radio buttons. For example, if you want to distinguish between plots for different well types by color, select the **Well type** radio button. This will cause the curves for all wells with the same well type to be shown in the same color. In addition, making this selection will cause the **Well type** for each plot to be listed first in the identifying text in the legend.

To change the text used to identify the plot, enter the desired text in the Legend text box.

To change the curve color, click **Edit Curve Color**. The **Color** dialog box opens to allow specification of a new color.

To change the plot markers for the curve, select the desired marker shape under Point style.

To reset all curves to their original colors after color editing, select **Reset all manual colors** and then click **OK**.

Adjusting the Threshold Fluorescence Manually

The threshold fluorescence level, used to derive Ct values, is automatically determined by the Mx3000P software using one of several algorithms based on selections made during **Analysis Selection/Setup**.

The Mx3000P software also allows you to manually select a threshold fluorescence value during **Analysis**. On an **Amplification Plot** screen, the **Threshold Fluorescence** value for each dye is listed on the command panel and is marked on the graph by a horizontal line. (Note that if a dye is hidden using the **Dyes shown** controls or if the check box next to the dye is cleared, the line corresponding to threshold fluorescence for that dye will not be shown on the graph.)

Either of the procedures listed below may be used to manually change the threshold fluorescence value used for Ct calculation:

- Position the mouse over the appropriate threshold fluorescence indicator line on the graph. The cursor becomes a vertical arrow. Click on the line, and holding down the left mouse button, drag the line to the desired position. The corresponding numerical value on the command panel will also change.
- Enter a new threshold fluorescence value in the box adjacent to the dye of interest in the command panel by typing the desired value or by using the spin controls to make incremental changes. The position of the corresponding horizontal line will change on the graph.

To reset the threshold fluorescence value for a dye to the value calculated automatically by the Mx3000P software, click the **Reset** button adjacent to the dye of interest. Threshold fluorescence for each dye is managed independently; to reset all dyes, click the **Reset** button for each dye.

Mx3000P System Experiments: Quantitative PCR

The Quantitative PCR Experiment Type

Note The Mx3000P software includes the experiment type **Quantitative PCR**, which refers to a specific assay type in which fluorogenic oligonucleotide probes are used to quantitate target levels by way of a standard curve. Other specific experiments which fall under the general usage of the term quantitative PCR, using different detection chemistries or analysis methods, are featured in other experiment types.

The **Quantitative PCR** experiment type uses a standard curve to accurately quantitate the amount of target present in **Unknown** samples using a fluorescence-labeled probe for detection. This method is sometimes referred to as absolute quantitation or as standard-curve quantitation in the literature.

In **Quantitative PCR** experiments, the Mx3000P instrument detects the fluorescence of one or more fluorophores during each cycle of the thermal cycling process and a **Fluorescence** value is reported for each fluorophore at each cycle. Fluorescence readings are generally acquired in the annealing stage of thermal cycling. Results are typically displayed in an **Amplification plot**, which reflects the change in fluorescence during cycling.

The initial copy numbers of RNA or DNA targets can be quantified using real-time PCR analysis based on threshold cycle (Ct) determinations. The Ct is defined as the cycle at which a statistically-significant increase in fluorescence (above background signal contributed by the fluorescence-labeled oligonucleotides within the PCR reaction) is detected. The threshold cycle is inversely proportional to the log of the initial copy number. In other words, the more template that is present initially, the fewer the number of cycles required for the fluorescence signal to be detectable above background. The Mx3000P offers both automatic and manual methods for determination of the **Threshold fluorescence** level that is used to determine **Ct** values.

Typical Quantitative PCR experiments use a Standard curve to quantitate the amount of target present in an Unknown sample. In this method, a series of Standards, containing a dilution series of a known amount of target, are amplified to generate a curve that relates the initial quantity of the specific target in the Standard sample to the Ct. The standard curve is then used to derive the Initial template quantity in Unknown wells based on their Ct values.

It is also possible to perform some forms of relative quantitation using **Quantitative PCR** experiments. In one common form, a relative standard curve is generated using a dilution series of a reference sample without knowledge of the absolute amount of the specific target in the **Standard** wells.

Multiplexing Quantitative PCR Experiments

Fluorescence readings may be taken for each sample using up to four different detection paths that are assigned to detect four specific dyes (in the **Optics Configuration** dialog box of the Mx3000P software). In this way, samples may be multiplexed for quantitation of multiple targets in the same well, by using spectrally-distinct dyes to detect each target. Each well/dye combination is reported separately on amplification plots and other results displays.

Quantitative PCR Plate Setup

In the Setup section of the software, open the Plate Setup tab. Shown below is a typical plate setup for Quantitative PCR.

🌋 Ma	3000P (Sta	andalone) -	Quantitati	ive PCR - [N	ew Experi	ment.mxp*	1						8 ×
File I	Edit Instrur	nent Tools	Options	Section View	w Window	Help							
	28	80	KO O		C 2	∠ ₩	1 2 1	2 8			<u></u>	etup	<u>R</u> un <u>A</u> nalysis
	Plate Setup Thermal Profile Setup												
All	1	2	3	4	5	6	7	8	9	10	11	12	Import Defauits 🔻
	Standard	Standard	Standard	Standard			Unknown	Unknown	Unknown	Unknown			Quick Setup
A	1.004+008	1.00+008	1.006+008	1.00+008			cvs 9	os 9	evs 9	cvs 9			Well type: Unknown
	Standard	Standard	Standard	Standard			Unknown	Unknown	Unknown	Unknown			Collect fluorescence data
в	REF	REF	REF	REF			REF 1 ()	^{REF} 10	^{REF} 10	REF			ROX CV5
	1.004 1007	Titlentor	1.0044007	1.004 4087			CID T U	th T U		CI I U			I FAM I HEX
6	REF	REF	REF	REF			REF	REP	REF	REF			Reference gye: R0X 💌 All wells
Ľ	1.05++005.)	1.00e+006	1.00e+005.)	1.00+100			CVS	Cris	cvs 👘	cvs 👘			Standard quantity: CYS 💌 1.00e+002
	Standard REF	Standard REF	Standard REF	Standard REF			Unknown	Unknown	Unknown REF	Uninovn			Asto-Increment: -10x 💌
D	1.00+015	1.00+005	1.0064005	1.00+965			ew1 2	os1 2	cs12	cvs1 2			Standard units: copies 💌
	Standard	Standard	Standard	Standard									Identity replicates
E	1.01++014	1.00+004	1.004+004	1.00+986									Replicate symbol 12 💌
	Standard	Standard	Standard	Standard									Auto-Inciement
F	HEF	REF 1.00wi001	REF 5 (Dec)(011)	REF 1 ODA HOLE									Clear Selected Wells
	(tapted	Streated	Otanutand	Disaction of									
G	REF	REF	REF	REF									Plate setue comments:
	1.00++002	1.00e+002	1.00e+002	1.05e+002									
	REF	REF	NTC	REF									
"	cvs 👸	c15 👸	ens Ö	cns 👸									
				_									
													Full-Screen Plate Negt >
Dyes	shown						Well type	s shown —					
	ROX	CYS					Stand	and Uni	known	NTC			
Assign	zzign Well Type and Dyez to zelected wells. The Ctrl key selects multiple wells. Door Closed Lang Off												

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) by using the **Well type** menu on the command panel. The well types available in a Quantitative PCR experiment are described in the table below.

Well Type	Description
Unknown	Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target.
Buffer	Contains only buffer, used to monitor the background fluorescence attributable to the buffer.
NAC	No amplification control; contains all reaction components except DNA polymerase.
NPC	No probe control; contains all reaction components except the fluorescence-labeled probe.
NTC	No template control; contains all reaction components except the template nucleic acid.
Standard	Contains a complete reaction mixture including a known concentration of target nucleic acid. Used to generate a standard curve, which is then used to relate the threshold cycle (Ct) to initial template quantity in Unknown wells.
No RT	No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.
Dye-specific Negative Control	Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in Optics Configuration . This well type assignment is rarely used in Quantitative PCR experiments. (Most QPCR experiments will use the NTC well type assignment for reactions lacking template.)
Dye-specific Positive Control	Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in Optics Configuration . This well type assignment, which qualitatively designates a positive signal for the target without specifying the absolute amount, is rarely used in QPCR experiments. (Most QPCR experiments will include Standard wells with known amounts of target.)

After assigning the **Well type** to the selected well(s), select the dyes for which data should be collected in the wells using the **Collect fluorescence data** check boxes.

If you are using a passive reference dye in the selected well(s) select the dye from the **Reference** dye menu. If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.
If the selected well(s) is a **Standard**, for each dye for which standard curve data will be collected, enter the amount of template. To do this, first select the dye from the pulldown menu following **Standard quantity**. Next, enter the quantity of template added to the selected well(s) as a decimal number (for example, 400 or 1.234). Specify the units for the quantity in the **Standard units** menu. Instead of assigning quantities to wells on an individual basis, it is also possible to assign standard quantities to **Standard** wells sequentially using the **Auto-Increment** feature.

Assign the replicate set number to the selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

Once plate setup is complete, click Next to proceed to the Thermal Profile Setup screen.

Quantitative PCR Thermal Profile Setup

When the **Thermal Profile Setup** tab is selected in a new Quantitative PCR experiment, a default thermal profile opens. The default thermal profile should be modified to the specific requirements of the new experiment, as discussed below. It is also possible to **Import** the thermal profile from an existing experiment into the new experiment.

Shown in the figure below is the default thermal profile for a Quantitative PCR when using the software's **Original Settings**. (If you are using a user-defined default set, the default thermal profile stored in that default set will appear when the **Thermal Profile Setup** screen is opened. See *Preferences-Defaults* for more information about the use and management of **Defaults**.)

In the profile below, segment 1 is an activation step of 95°C for 10 minutes that is compatible with most hot start reactions. Segment 2 consists of 40 cycles of amplification using a plateau of 95°C/30 seconds for denaturation, followed by a plateau of 55°C/1 minute for annealing, and a plateau of 72°C/30 seconds for extension.

Some applications use a two-step amplification protocol instead of the three-step protocol in the default thermal profile. A typical two-step amplification segment consists of 40 cycles of amplification using a plateau of 95°C/30 seconds for denaturation, followed by a plateau of 60°C/1 minute for annealing and extension.

Data are collected at the end of each annealing plateau in the default thermal profile. These collection settings are suitable for a typical Quantitative PCR experiment. See *Data Collection* for more information on data collection options.

Modify the default thermal profile as necessary. At minimum, ensure that the temperature setting for the annealing plateau in Segment 2 is appropriate for the PCR primer pair used in the current experiment. The properties of all other plateaus, ramps, and segments may also be adjusted. See *Thermal Profile Setup* in the *How-To (Detailed Protocols)* section for more information about changing the default thermal profile.

Quantitative PCR Data Analysis

Analysis Setup

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Select the data collection ramp/plateau from which data should be analyzed.
- 3. Specify the desired analysis settings on the command panel.

<mark>ја</mark> Ми	3000P (Sta	andalone)	Quantitat	ive PCR - [(Quantitativ	e PCR 10 P	old Exampl	елтир*]					@_×
		A 4	l Lo c	x 0	··· ••••••••••			9			5	Setup	Run Analysis
	Analysis Selection/Setup Results												
All	1	2	3	4	5	6	7	8	9	10	11	12	Select data collection ramp/plateau:
A	Standard REF 5.00e+007	Standard REF 5.00e=007	Standard REF 5.00x+907	Standard REF 5.00x+007	Standard REF 5.00e+007	Standard REF 5.00e+007	Standard REF 5.00e+007	Standard REF 5 Mar4007	Standard REF 5 00e+007	REF 25	REF 25	REF Fam 25	
в	Standard REF 5.00a+006	Standard REF 5.50x4000	Standard REF 5.00x+035	Standard REF 5.00x+108	Standard REF 5.00e+006	Standard REF 5.00e+006	Standard REF 5.00e+006	Standard REF 5 IOe+006	Standard REF 5 Die+006	REF 26	REF 26	REF 26	Q, Plateau 2 Ramp 3 Plateau 3
с	Standard REF 5.03e+005	Standard REF 5 Die 4005	Standard REF 5.00x+005	Standard REF	Standard REF	Standard REF	Standard REF 5.00e+005	Standard REF 5.00e-005	Standard REF 5.00e+005	REF 0.5 <u>27</u>	REF CVS27	REF CVS27	
D	Standard REP 5.03e+004	Standard REP 5 Ble=004	Standard REF 5.00e+004	Standard REF 5.00+HIL	Standard REF	Standard REF 5.00e+004	Standard REF 5.00e+004	Standard REF 5.00x+004	Standard REP 5.00x+004				Eaclude Dyes Replicates
E	Standard REF 5.00e+003	Standard RLF 5 Me =003	Standard REF 5.00e+003	Standard REF	Standard REF	Standard REF	Standard REF 5.03e+003	Standard REF 5.80e=003	Standard REF 5 004 4003				Treat individually
F	Standard REF 5.00e+002	Standard REF 5.00e=002	Standard REF 5.00e+902	Standard REF 5.00e+HI2	Standard REF	Standard REF 5.00e+002	Standard REF 5.00e+002	Standard REF 5.00a+002	Standard REF 5 D0x 4032				Amplification-based threshold Adaptive baseline Moving average
G	Standard REF 5.00e=001	Standard REF 5.00e=001	Standard REF 5.00x+901	Standard REF	Standard REF	Standard REF	Standard REF 5.00e+001	Standard REF 5 894-001	Standard REF 5 D0e+001				Analysis Term Settings Adv. Algorithm Settings
н	Standard REF 5.93e+000	Standard REF 5.00x4000	Standard REF 5.00x+000	Standard REF 5.00x+108	Standard REF 5.00e+000	Standard REF 5.00e+000	Standard REF 5.00e+000	Standard REF 5 80e+000	Standard REF 5 01e+000				Analysis gomments:
Dyes	RDX	FAM	HEX	c	Y5		Stand	and	NTC				
haly:	is Selectio	on/Setup											Door Closed Lamp Off

See <u>Analysis Selection and Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. One of several available results screens will appear. Use the radio buttons under **Area to analyze** to navigate to different analysis screens. The following screens are available for Quantitative PCR analysis:

Amplification Plots Plate Sample Values Standard Curve Initial Template Quantity Dual Color Scatter Plot Text Report

Quantitative PCR Amplification Plots

The Amplification plots screen, accessed through the Results tab, shows a plot of cycles versus fluorescence for a ramp or plateau on which data are gathered. Select the ramp or plateau for which data should be analyzed using the Analysis Selection/Setup screen.

Analysis Options

Fluorescence Data Type Plotted

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are: **R** (raw fluorescence), **dR** (baseline-corrected raw fluorescence), **Rn** (normalized fluorescence), and **dRn** (baseline-corrected normalized fluorescence).

Threshold Fluorescence

When basing plots on normalized fluorescence (**dR** or on **dRn**), the **Threshold fluorescence** value for each dye is listed on the command panel and is marked on the graph by a horizontal line. (Note that if a dye is hidden using the **Dyes shown** controls or if the check box next to the dye is cleared, the line corresponding to threshold fluorescence for that dye will not be shown on the graph.)

Threshold fluorescence is calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**. If desired, the threshold fluorescence may be adjusted manually. (To restore the software-calculated values, click **Reset**).

Baseline correction is required to establish a threshold fluorescence. Thus selections related to threshold fluorescence are unavailable for \mathbf{R} or \mathbf{Rn} data plots.

Last Cycle Setting

The Last cycle setting specifies the cycle from which the final (last) fluorescence values will be reported in the Text Report and Plate Sample Values screens. The position of the last cycle is marked on the graph with a solid vertical line.

This setting also affects the way Ct values are reported on other **Results** screens. While the **Last** cycle is not directly used to determine Ct, any wells with Ct values greater than the **Last cycle** value will be designated as **No Ct** in screens that display Ct.

Excluding Well/Dye Data from Analysis

To exclude the curve for one or more specific well/dye combinations from analysis, use either of the following two methods. (Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen.)

- From the list under Select amplification plots to display, select the curve(s) to be excluded and then click Disable Dyes.
- Double-click on any data point on the plot to be excluded. This action will exclude the entire data set for the well/dye corresponding to the plot.

To restore a plot that was disabled using either of these methods, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To restrict the plots shown to a subset of the well/dye combinations, use the **Select amplification plots to display** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a non-contiguous group.)

To display information about a specific data point on the plots, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** and **Plot Markers** are displayed or hidden. See *Graphs and Graph Properties* for more information.

Quantitative PCR Plate Sample Values

The **Plate Sample Values** screen displays fluorescence values or Ct values for the sampled wells in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Either the fluorescence or the Ct value for each dye for which data was collected
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

🔏 Mo	3000P (Sta Edit Instru	andalone) · ment Tools	Quantitat	ive PCR - [i Section Vie	Quantitativ w Window	e PCR 10 Fe Help	old Exampl	le.mxp*]				_ 6 ×
	Ana)	A 🛃] ທີດ tion/Setup	× 🌻		Σ _Δ	l 🗩 🖇	9 ?		ko	etup	<u>Bun</u> <u>Analysis</u>
All A B C D E F G H	Anol 1 Standard 0.000 1.926 Standard 0.000 1.926 Standard 0.000 0.441 Standard 0.000 0.441 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.000 0.703 Standard 0.000 0.703 Standard 0.000 0.506 Standard 0.000 0.703 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.506 Standard 0.000 0.000 Standard 0.000 0.000 Standard 0.000 0.000 0.000 0.000 0.000 Standard 0.000 0.000 0.000 Standard 0.000 0.000 Standard 0.000 0.000 Standard 0.000 0.000 Standard 0.000 0.000 0.000 0.000 Standard 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000 0.0000000 0.00000000	2 Standard 0.000 Standard Standard 0.000 Standard Standard 0.000 Standard Sta	Standard 3 Standard 0.000 0.524 Standard 0.000 1.040 Standard 0.000 0.000 Standard 0.000 0.000 Standard 0.000 0.700 Standard 0.000 0.886 Standard 0.000 0.490 0.400 0.400 0.400	4 Standard 0.000 0.697 Standard 0.000 0.894 Standard 0.000 0.697 Standard 0.000 0.695 Standard 0.000 0.695 Standard 0.000 0.595 Standard 0.000 0.595 Standard 0.000 0.597 Standard 0.000 0.597 Standard 0.000 0.597 Standard 0.000 0.597 Standard 0.000 0.597 Standard 0.000 0.597 Standard 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.000000 0.0000 0.00000 0.00000 0.00000000	5 Standard 0.600 0.687 Standard 0.600 0.684 Standard 0.600 0.685 Standard 0.600 0.566 Standard 0.600 0.566 Standard 0.600	Bandard 0.587 Standard 0.587 Standard 0.000 85andard 0.000 85andard 0.000 9.884 9.894 9.894 9.894 9.895 9.395 9.396 9.585 9.398 9.398 9.398 9.399 9.397 9.397 9.397	Standard 0.000 0.571 Standard 0.704 Standard 0.703 Standard 0.909 0.71 Standard 0.909 0.713 Standard 0.909 0.713 Standard 0.909 0.577 Standard 0.909 0.577 Standard 0.909 0.407 Standard 0.300 0.326	8 Standard 0.000 0.571 Standard 0.000 0.758 Standard 0.000 0.585 Standard 0.000 0.557 Standard 0.000 0.557 Standard 0.000 0.557 Standard 0.000 0.557 Standard 0.000 0.557 Standard 0.000 0.558 Standard 0.000 0.557 Standard 0.000 0.558 Standard 0.000 0.557 Standard 0.000 0.558 Standard 0.000 0.557 Standard 0.000 0.558 Standard 0.000 0.557 Standard 0.000 0.558 Standard 0.000 0.557 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.558 Standard 0.000 0.557 Standard 0.000 0.557 Standard 0.000 0.557 Standard 0.000 0.000 0.557 Standard 0.000 0.000 0.557 Standard 0.0000 0.0000 0.0000 0.0000 0.000000	9 58m/dard 0.000 0.571 58m/dard 0.000 0.773 58m/dard 0.000 0.577 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 58m/dard 0.000 0.524 0.525 0.55			Atea to analyze Atea to analyze Plate sample valued Stanglad curve Child template quantity Dual color scatter plot Tegt report Last cycle: 45 = = Display the values for Fluorescence din Last = = Display the values for Churing Bin =
Dyer	shown ROX	FAM	нех		75	0210	Well type Stand	s shown	NTC			
Resul	ts.											Door Closed Lamp Off

Analysis Options

Display the Values for Fluorescence or Ct

Under **Display the values for**, specify the form of the data to be displayed by selecting either the **Fluorescence** or the **Ct using** radio button. You will also need to specify the type of fluorescence data to be either displayed or used in calculations by selecting a data type from the menu below the selected radio button. Refer to the tables below for descriptions of the fluorescence data type abbreviations in the menus.

Data Type	How Calculated
R Last	final fluorescence
dR Last	final fluorescence minus the initial fluorescence
Rn Last	normalized final fluorescence
dRn Last	normalized final fluorescence minus the normalized initial fluorescence
R Last/R First	final fluorescence divided by the initial fluorescence

When displaying Fluorescence values, the following fluorescence data types are available:

When displaying **Ct** values, Ct calculations may be based on the following fluorescence data types:

Data Type	How Calculated
dR	baseline-corrected fluorescence
dRn	baseline-corrected normalized fluorescence

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last cycle setting also affects the reporting of Ct. Any wells having Ct values greater than the Last cycle value will be reported as **No Ct**.

Quantitative PCR Standard Curve

The **Standard Curve** is a plot of the initial template quantity in the **Standard** wells (X-axis), versus the **Ct** (threshold cycle). A least mean squares curve fitting algorithm is used to generate the standard curves displayed. Curves are displayed for each dye for which data was collected in **Standard** wells. **Unknown** wells selected during **Analysis Selection/Setup** are also plotted on the standard curve (using a different data point marker) based on their measured **Ct** values.

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, no data will be plotted on this chart.

Analysis Options

Fluorescence Data Type for Ct Determinations

Select the type of fluorescence data to be used for Ct determinations from the **Ct based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected raw fluorescence), and **dRn** (baseline-corrected normalized fluorescence).

Ct based on:
dRn 💌
dR
dRn

Confidence Interval

The confidence interval for each standard curve may be displayed by selecting the **Show confidence interval** checkbox. The resulting graph shows the confidence limits as hashed lines. The lines show the range of Initial Quantity values at a particular Ct that cannot be statistically distinguished from the fit line with more certainty than the confidence level (**Level** %) selected. The width of the confidence interval is an indicator of the quality of the fit of the data to the standard curve. Confidence interval calculations require a **Replicates** setting of **Treat individually**. Confidence level values may be exported to an Excel file, a text file or an XML file by using the **Export Chart Data** commands on the **File** menu.

Threshold Fluorescence

The **Threshold fluorescence** value for each dye, as calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**, is listed on the command panel. If desired, the threshold fluorescence for a given dye may be adjusted manually by entering a new value in the spin control box for the dye. (To restore the software-calculated values, click **Reset**).

_ Thresho	old fluoresce	nce	
FAM	0.031	÷.	Reset
CY5	0.032	÷	Reset
HEX	0.027	÷	Reset
N/A		* *	Reset

Excluding Well/Dye Data from Analysis

To exclude a specific well/dye data point from analysis, double click on the data point on the chart. Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen. To restore an excluded data point, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To display information about a specific data point on the plots, place the cursor over the point of interest to display the following information: well location or replicate number, dye name, well type, the initial template quantity and the Ct.

If the well is a **Standard**, the initial template quantity is the amount assigned to the well during plate setup. If the well is an **Unknown**, the initial template quantity is the interpolated amount based on the standard curve.

Note If **Display tooltips** is cleared (deselected) on the **Display** tab of the **Preferences** dialog box, this well information will not be displayed.

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** is displayed or hidden. See *Graphs and Graph Properties* for more information.

Interpretation and Use of Curve Attributes

RSq Value, Slope, and Amplification Efficiency

The graph legend displays information about each curve plotted. (If no legend is displayed on the screen, open the **Graph Properties** dialog box by double-clicking on the graph, and then select the **On** radio button under **Legend**.) Besides correlating plot markers with dyes and well types, the legend displays the R Squared (**RSq**) value and the equation for the line [y = m*log(x) + b, where m is the slope of the line]. The amplification efficiency (**Eff.**), calculated from the slope, is also displayed.

The **RSq** value is an indicator of the quality of the fit of the standard curve to the **Standard** data points plotted. The value will always be between 0 and 1. The closer the value is to 1, the better the fit of the line.

The slope of the curve is directly related to the average amplification efficiency throughout the cycling reaction. The equation that relates the slope to amplification efficiency is:

PCR Efficiency = $10^{(-1/\text{slope})} - 1$

where PCR Efficiency corresponds to the proportion of template molecules that are doubled every cycle. From this equation it follows that a reaction with 100% efficiency will result in a slope of -3.322.

Initial Template Quantity Calculator

To use the displayed standard curve to calculate an interpolated quantity of template in another sample from the run based on the Ct determined for the sample, choose the dye from the **Select dye** menu, then enter a **Ct** value. The software will calculate and display the interpolated initial template quantity (**Interpolated qty**). Note that initial template quantities are automatically determined, based on the standard curves, for all **Unknowns** in the same experiment, and these results may be viewed on the Initial Template Quantity screen.

Enitial template q	uantity calculator
Select dye:	FAM
Enter Ct:	
Interpolated qty:	

Amplification Efficiency Calculator

Enter either a Slope value or an amplification Efficiency value into the Amplification efficiency calculator to convert between values, based on the following equation:

PCR Efficiency = $10^{(-1/\text{slope})} - 1$

Amplification effi	ciency calculator
Slope:	
Efficiency (%):	

Quantitative PCR Initial Template Quantity

The Initial Template Quantity screen displays interpolated quantities of template added to Unknown wells before thermal cycling in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Initial template quantity (for Unknowns, the value interpolated from the standard curve based on the Ct calculated for the Unknown; for Standards, the amounts entered during plate setup)
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, a standard curve cannot be plotted and an error message will appear in place of results in the **Unknown** wells.

JI MI	x3000P (Sta	andalone) -	Quantitat	ive PCR - [{	assay deve	lopment 5.	morb_]								_ 6	×
File	Edit Instru	nent Tools	Options	Section Vie	w Window	Help										
	🖻 🗖	80	0.0	× 👰	🕄 💽	ΣΔ	1 @ 6	9			5	Setup	<u>R</u> un		Analysis)
	Analy	ysis Selec	tion/Setup)		P	tesults									
All	1	2	3	4	5	6	7	8	9	10	11	12	Area to analyz	e on plots		1
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Unknown	Unknovn	C Pjate camp	le values		
A	1	2	3	4	5	6	7	8	F 9	10	11	11	C Stangard o	urve late quantitu		
-	1.00e+002	7.70e+001	5.90e+001 Standard	4.60e+001 Standard	8.50e=001 Standard	2.70e+001 Standard	2.10e+001 Standard	1.90e+001 Standard	1.20e+001 Standard	S.43e+900 Standard	4.729++101	4.7236+001	C Dual color	scatter plot		
в	Ref	Ref	Ref	Rel	Ref	Ref	Ref	Ref	Ref	Rel	Rul	Ref	C Tegt report			
	1.0064002	7.70e+001	5.90e+001	4.60±+001	8.504=001	2.70e=001	2.10e+001	1.60e+001	1.234+001	9.43e+990	4.723++101	4.723++001	Interpolated tem	plate quantit	based on:	
с	Standard Rid	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Unknown Ref	Unknown Ref	[dHn			1
	1.00e+002	7.70e+001	5.904+001	4.60e=001	3.50e=001	2.70e+001	2.104+001	1.60e+001	1.23++001	5.43e+990	4.723++001	4.723++001				
D	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Unknown Ref	Unknown Ref				
	1.00+002	7.70e+001	5.90e+001	4.604+001	3.50e=001	2.70e=001	2.10++001	1.60++001	1.20++001	5.43e+990	2.075++001	2.070++01				
E	Standard Ruf	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Unknown Ref	Unknown Ref				
	1.00++002	7.70e+001	5.904-001	4.60a=001	3.504=001	2.704=001	2.104+001	1.80++001	1.20++001	9.40x+000	2.075++001	2.070++001				
F	Standard	Standard Ref	Standard Ref	Standard	Standard Ref	Standard	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Unknown	Unknown. Ref				
	1.00e+002	7.70++001	5.904-001	4.60++001	3.50e+001	2.70++001	2.10++001	1.60++001	1.25++001	5.40x+000	2.075++001	2.070+101				
G	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	NTC Ref	NTC Ref				
	1.00++002	7.70++001	5.90++001	4.60e+001	3.50e+001	2.70++001	2.10++001	1.60++001	1.25++001	5.43++000	No Ct	No Ct				
н	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	NTC	NTC Ref				
	1.00++002	7.70++001	5.90e+001	4.60++001	3.50++001	2.70++001	2.10++001	1.60++001	1.20++001	9.40++000	No Ct	No Ct				
Dye	s shown						Well types	s shown								
	ROX	HEX					Stand	ard Un	known	NTC						
Resu	ltz												Door Closed	Lanp Off		

Analysis Options

Fluorescence Data Type for Ct Determinations

Select the type of fluorescence data to be used to calculate the Ct values to be used for interpolation from the Interpolated template quantity based on menu on the command panel. Available fluorescence data types are: dR (baseline-corrected raw fluorescence), and dRn (baseline-corrected normalized fluorescence).

Quantitative PCR Dual Color Scatter Plot

The **Dual Color Scatter Plot** screen is useful to compare the amplification properties of two different targets (represented by two different dyes) in the same well. In **Quantitative PCR** experiments, this plot is typically used to assess the suitability of a specific control target by displaying any correlation between the amplification of a gene of interest and the amplification of the control target.

Each plotted point represents the coordinates of either the fluorescence values or threshold cycle (Ct) values for two dyes in a single well. For example, the X-axis may correspond to HEX Ct while the Y-axis corresponds to FAM Ct and the plotted point (x,y) corresponds to the coordinates describing the two Ct values determined for a given well. The positions of the plotted points provide a convenient indicator of whether the control target quantity is uniform or variable across samples.

Analysis Options

Dye Selection

Specify the dye for which data should be plotted on each axis by selecting the dyes of interest from the X axis and Y axis menus on the command panel. Any two dyes assigned during **Plate Setup** may be specified.

Last cycle:	40	*
X axis:	FAM	•
Y axis:	TET	•

Mx3000P[™] Real-Time PCR System

A well will not be included in the scatter plot if the two dyes selected for the plot are not assigned to that well. An error message similar to the example shown below will appear if wells selected during **Analysis Selection/Setup** cannot be displayed.

Some of the selected wells have not been displayed. 8 of 18 did not have both dyes selected for analysis

Plot the Values for Fluorescence or Ct

Under **Display the values for**, specify the form of the data to be plotted by selecting either the **Fluorescence** or the **Ct using** radio button. For either of these options, you will need to specify the type of fluorescence data to be used in the analysis by selecting a data type from the menu below the selected radio button. Refer to the tables below for descriptions of the fluorescence data type abbreviations in the menus.

Data Type	How Calculated
R Last	final fluorescence
dR Last	final fluorescence minus the initial fluorescence
Rn Last	normalized final fluorescence
dRn Last	normalized final fluorescence minus the normalized initial fluorescence
R Last/R First	final fluorescence divided by the initial fluorescence

When plotting **Fluorescence** values, the following fluorescence data types are available:

When plotting **Ct** values, Ct calculations may be based on the following fluorescence data types:

Data Type	How Calculated
dR	baseline-corrected fluorescence
dRn	baseline-corrected normalized fluorescence

Note that if no reference dye has been assigned to the wells and dRn, Rn Last or dRn Last is selected, a message like the following will appear below the graph:

Some of the selected wells have not been displayed. 4 of 18 did not have both dyes selected for analysis 4 of 18 did not have a reference dye specified

Last Cycle Setting

The **Last cycle** setting specifies the cycle from which the fluorescence values will be plotted if **Fluorescence** is selected under **Display the values for**. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

This setting also affects the way Ct values are reported on this and other **Results** screens. While the **Last cycle** is not directly used to determine Ct, any wells with Ct values greater than the **Last cycle** value will be plotted with a Ct value corresponding to the last cycle for which data was collected. The same wells will be designated as **No Ct** in screens that display Ct values.

Display Options

To display information about a specific data point on the scatter plot, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including the attributes of the axes. See *Graphs and Graph Properties* for more information.

Quantitative PCR Text Report

20	i 🔒 🖉) 🗿 🗠	<u> </u>	Ξ ΣΔ	ر 🔍 🛄	22		<u>S</u> etup	Bun Analys
	Analysis	Selection/Set	up 🗌		Results				
yə	Well Type	Replicate	Threshold (dRn)	Ct (dRn)	Quantity (copies)	RSq (dRn)	Slope (dRn)	<u>*</u>	Area to analyze
0%	Standard	1	Reference	Refer	Reference	Reference	Reference		C Amplification plots
м	Standard	1	0.0314	15.59	5.00e+007	0.996	-3.162		C Plate sample values
26	Standard	2	Reference	Refer	Reference	Reference	Reference		C. Chandrad as and
м	Standard	2	0.0314	17.41	5.00e+006	0.996	-3.162		 Scangard curve
200	Standard	3	Reference	Refer	Reference	Reference	Reference		C Initial template quantity
м	Standard	3	0.0314	20.57	5.00e+005	0.996	-3.162		C Dyal color scatter plot
200	Standard	4	Reference	Refer	Reference	Reference	Reference		(Test report
м	Standard	4	0.0314	23.88	5.00e+004	0.996	-3.162		- regreport
100	Standard	5	Reference	Refer	Reference	Reference	Reference		Last surface 45
м	Standard	5	0.0314	27.32	5.00e+003	0.996	-3.162		Last cycle. +> I
8	Standard	6	Reference	Refer	Reference	Reference	Reference		D and final call based on
м	Standard	6	0.0314	30.31	5.00e+002	0.996	-3.162		
×	Standard	7	Reference	Refer	Reference	Reference	Reference		Jarin
М	Standard	7	0.0314	33.60	5.00e+001	0.996	-3.162		
X	Standard	8	Reference	Refer	Reference	Reference	Reference		Column
1	Standard	8	0.0314	37.30	5.00e+000	0.996	-3.162		D Well
٢	Standard	9	Reference	Refer	Reference	Reference	Reference		Burket Manage
	Standard	9	0.0269	15.74	5.00e+007	0.995	-3.130		- Wei Name
٢	Standard	10	Reference	Refer	Reference	Reference	Reference		🗹 Dye
	Standard	10	0.0269	17.29	5.00e+006	0.995	-3.130		🗹 Well Type
٢	Standard	11	Reference	Refer	Reference	Reference	Reference		Replicate Symbol
	Standard	11	0.0269	20.38	5.00e+005	0.995	-3.130		D B Latt
(Standard	12	Reference	Refer	Reference	Reference	Reference		
	Standard	12	0.0269	23.75	5.00e+004	0.995	-3.130		CHI Last
(Standard	13	Reference	Refer	Reference	Reference	Reference		An Last
	Standard	13	0.0269	27.02	5.00e+003	0.995	-3.130		dBn Last
(Standard	14	Reference	Refer	Reference	Reference	Reference		BLast/BEist
	Standard	14	0.0269	30.19	5.00e+002	0.995	-3.130		I Thrashald
	Standard	15	Reference	Refer	Reference	Reference	Reference		E mesnou
	Standard	15	0.0269	33.85	5.00e+001	0.995	-3.130		Baseline Start Cycle
	Standard	16	Reference	Refer	Reference	Reference	Reference		Baseline End Cycle
(Standard	16	0.0269	36.80	5.00e+000	0.995	-3.130		
X	Standard	17	Reference	Refer	Reference	Reference	Reference		
5	Standard	17	0.0319	15.89	5.00e+007	0.996	-3.103		Select All Defaults
X	Standard	18	Reference	Refer	Reference	Reference	Reference		- Autorine columns
	Standard	18	0.0319	17.74	5.00e+006	0.996	-3.103		HAUSEE COMIEN
¢	Standard	19	Reference	Refer	Reference	Reference	Reference		Hdr & Contents Contents Or
	Standard	19	0.0319	20.64	5.00e+005	0.996	-3.103		
X	Standard	20	Reference	Refer	Reference	Reference	Reference		
•	standard	20	0.0319	23.84	5.0064004	0.996	-3 103		1

The Text Report screen shows the data from a run in text format.

Analysis Options

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported when fluorescence value columns (such as **dRn Last**) are selected for display. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last cycle setting also affects the reporting of Ct and the Final Call. Any wells having Ct values greater than the Last cycle value will be reported as No Ct and will be called as negative (-).

Ct and Final Call Based On

Select the type of fluorescence data that the reported **Ct** and **Final Call** should be based on from the **Ct and final call based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected fluorescence) and **dRn** (baseline-corrected normalized fluorescence).

Ct and final call based on	
dR	•

Display Options

Columns Included in the Report

Select the **Columns** to be included in the text report by checking the boxes next to the column names. To exclude columns that are selected by default, click on the check box to deselect the column name. To select all columns for display, click **Select All**. The default settings for column selection can be restored by expanding the **Defaults** menu and then clicking **Get**.

If the included columns will not fit in the screen, a horizontal scroll bar appears at the bottom of the window to allow horizontal scrolling.

Column	
I Well	
🗖 Well Name	
🗹 Dye	
🗹 Well Type	
Replicate Symbol	
R Last	
dR Last	
Rn Last	
dRn Last	
RLast/RFirst	
Baseline Start Cycle	
Baseline End Cycle	
™ Ct	
Select All	Defaults 🔻
Autosize columns	
Hdr & Contents	Contents Only

Column Width

To facilitate viewing data, columns can be automatically sized. Clicking the **Contents Only** button will cause each column to be automatically resized to the width of the widest data cell in that column (some column headers may be only partially displayed using this setting). Clicking the **Hdr & Contents** button will cause each column to be resized to the widest cell in that column, including the header cell.

Columns can also be resized manually by dragging the column dividers with the mouse.

Exporting Text Report Data

Text report data can be exported from the application in text, Microsoft Excel spreadsheet or XML format for analysis. Text report exporting options are available from the **File** menu. See *Exporting Data to Other Applications* in the *File Menu* section for more information.

File	Edit	Instrument	Tools	Options	Section	View	Win
N	ew					Ctrl+N	
0	pen					Ctrl+O	
C	lose						
S	ave					Ctrl+S	
S	ave As					Ctrl+A	
Ir	nport \	Vell Names					•
E	xport I	nstrument Da	ata				•
E	xport (Ihart Data					•
E	xport 1	'ext Report					•
E	xport t	o PowerPoint	R			Ctrl+W	
E	xport t	o Image File				Ctrl+I	

Mx3000P System Experiments: Comparative Quantitation

The Comparative Quantitation Experiment Type

The **Comparative Quantitation** experiment provides an efficient method for comparing levels of RNA or DNA across samples when information about the absolute amounts of target in any sample is not required. Most common is the comparison of amounts of mRNA in treated versus untreated, or normal versus diseased cells or tissues.

For many gene expression studies it is not necessary to determine the absolute amount of a target in a particular sample; evidence of a relative increase or decrease in expression, compared to a sample of reference, is sufficient. The sample of reference is referred to as the **Calibrator**. For example, in a study in which a large number of compounds are screened for the ability to induce the expression of a certain set of genes in HeLa cells, the **Calibrator** might be a nucleic acid sample isolated from an untreated HeLa cell culture. In a study involving the expression of a cancer marker gene, the **Calibrator** might be a nucleic acid sample isolated from the normal, nondiseased part of the organ, whereas the test samples (referred to in the Mx3000P software as **Unknowns**) are nucleic acids isolated from the diseased tissue of the same patient. The expression level of the gene of interest (GOI) in the **Calibrator** is defined as $1 \times (\text{ or } 1.0)$. Expression levels for the GOI in all **Unknowns** are reported relative to this **Calibrator** benchmark.

The amount of the GOI present in any sample is subject to many variables such as sample-tosample differences in total amount of input nucleic acid and differences in the efficiency of RNA extraction or reverse transcription. A **Normalizer** target is included in the assay to reduce the effect of these spurious variations. Any gene with little to no variance in expression due to the treatment can serve as a **Normalizer**. (Commonly-used examples include GAPDH, cyclophilin, GUS, TFIID, or 18S, or 28S ribosomal RNA.) The abundance of the **Normalizer** and the GOI should be similar.

The **Normalizer** is necessary to correct for differences in total cDNA input between samples, whether the differences be due to efficiency of RNA purification, reverse transcription, or pipetting error. In order to use **Normalizer** levels to correct for spurious differences in GOI across samples, the relative amplification efficiencies of the **Normalizer** and the GOI must be taken into account. After either establishing that the **Normalizer** and GOI have equal amplification efficiencies or compensating for any differences in the amplification efficiencies, **Normalizer** target levels may be used to correct the relative quantities of the GOI target, allowing for a direct comparison of the GOI levels in **Unknowns** versus **Calibrator** wells.

Another level of correction can be introduced by the use of a passive reference dye such as ROX. The **Reference** dye is not reactive during QPCR and therefore it can be used to normalize slight differences in the volume of the QPCR reaction, transparency of the plastic caps and other sources of well-to-well differences. Note that references to normalized fluorescence values (abbreviated as **Rn** or **dRn** in the analysis screens) are normalized using **Reference** dye fluorescence values, not using any measurements of the **Normalizer** target.

For **Comparative Quantitation** analysis, it is assumed that the amplification efficiency for a given target is uniform between **Unknown** and **Calibrator** samples. If the experimental treatment affects PCR efficiency, **Comparative Quantitation** is not a valid experiment type. In this situation, **Quantitative PCR** experiments that include relative standard curves for each sample in each experiment may be used to compare initial quantities in different samples.

Comparative Quantitation Analysis using the Mx3000P Software

In a typical validated **Comparative Quantitation** assay, a replicate set of **Calibrator** wells containing the reference sample are run alongside a variety of **Unknown** replicate sets to test the effect of some variable on the expression level of one or more genes. The **Normalizer** target may either be measured in the same well as the gene of interest (using multiplexing) or be measured in different wells by **Identifying associations** of wells with the same sample source during plate setup.

During analysis, the Mx3000P software automatically adjusts the levels of the gene of interest in both **Unknown** and **Calibrator** wells to compensate for differences in the levels of the **Normalizer**. The normalized value for each **Unknown** sample is then compared to the normalized **Calibrator** value, and the **Relative Quantity** is reported for each **Unknown**. (The expression level of the gene of interest in the **Calibrator** is set to 1.0.)

The validity of using a **Normalizer** target to compensate for spurious differences in amounts of the gene of interest across samples is dependent on first establishing the efficiency of amplification for the gene of interest and **Normalizer** by generating standard curves for both targets.

Use of Standard Curves in Comparative Quantitation Experiments

In developing a comparative quantitation assay, it is important to show that the amplification/detection efficiencies of the GOI and of the **Normalizer** are reproducible and, ideally, very similar. The **Amplification efficiency** for each target is usually measured by generating a standard curve. The Mx3000P software analyzes the standard curve data and calculates the **Amplification efficiency** from the standard curve **Slope**.

In **Comparative Quantitation**, a **Standard Curve** is based on relative amounts of template, not on copy numbers or absolute amounts. The relative amounts are entered in the Mx3000P software using arbitrary units. A typical **Standard Curve** used for validation employs $2 \times$ dilutions of a reference sample.

In general, for the **Comparative Quantitation** experiment type, standard curves for the GOI and the **Normalizer** are prepared only during the initial development and validation of the assay. Once the amplification/detection efficiencies of both targets are established, there is no need to generate standard curves in subsequent assays, unless assay components or conditions are changed.

Correcting for Differences in Amplification Efficiencies for the GOI and Normalizer

In an idealized **Comparative Quantitation** experiment, the amplification efficiencies for the GOI and **Normalizer** targets must be identical in order to allow a direct correction of GOI levels across samples. The Mx3000P software allows you to compensate for differences in the amplification efficiencies for the GOI and **Normalizer** when reporting relative quantities by using the **Analysis Term Settings - Efficiency Settings** dialog box. Entering either the standard curve **Slopes** or the **Amplification efficiencies** for both the GOI and the **Normalizer** in this dialog box causes the software to compensate for the difference in efficiencies when correcting for **Normalizer** levels.

Using a Single Dye for Detection of Gene of Interest and Normalizer

The following considerations and procedures facilitate **Comparative Quantitation** experiments using a single dye (e.g. SYBR Green I dye) to detect both gene of interest and **Normalizer** targets.

Plate Setup

When setting up a single-dye experiment, for each template, assign separate wells for detection of the gene of interest and the **Normalizer**. Indicate the association between the two wells containing the same template by assigning the same **Association symbol** to both wells. Associations between gene of interest and **Normalizer** targets in separate wells are designated during **Plate Setup** by using the **Identify associations** menu.

Standard Curves

It is possible to analyze standard curves for two targets, such as the gene of interest and **Normalizer**, using a single dye on a single plate. In this situation, it is beneficial to distinguish the two sets of **Standard** wells corresponding to the two targets during **Plate Setup** using particular replicate symbol assignments or plate configurations. During analysis, either perform separate rounds of analysis by selecting the wells corresponding to only one target for each round, or reassign the dye detecting the **Normalizer** target with a unique name, as illustrated in the example below.

Efficiency Settings

In order to use the **Analysis Term Settings - Efficiency Settings** dialog box to record amplification efficiencies for the two targets detected using the same dye, it is necessary to first reassign the wells detecting the **Normalizer** to a uniquely-named dye. For example, the steps outlined below may be used in an experiment using SYBR Green dye for detection of both targets.

Example: Distinguishing the Normalizer from the Gene of Interest when using SYBR Green Detection

- 1. Complete Plate Setup with SYBR Green data collection in all sample wells.
- 2. After running the experiment, on the **Plate Setup** screen, select the wells corresponding to the **Normalizer**.
- 3. In the **Optics Configuration Dyes & Filters** dialog box, define a mock custom dye with a descriptive name, such as NRML, and associate this dye with the FAM filter set.
- 4. In the **Optics Configuration Dye Assignment** dialog box, assign the NRML dye to the FAM filter set.
- On the Plate Setup screen, double click on the SYBR checkbox under Collect fluorescence data. This will change the dye assignment for the selected wells, detecting the Normalizer, to NRML. Unselected wells, detecting the gene of interest, will retain the SYBR assignment.
- 6. With the wells corresponding to the **Normalizer** still selected, expand the **Normalizing dye** menu and then select NRML.
- If the experiment is being used to generate standard curves for both targets, navigate to the Analysis Setup/Selection screen and select the Standard wells for both targets. On the Standard Curve screen, separate curves for each target will be displayed with distinctive plot markers for SYBR and NRML data.
- 8. If the experiment is being used to analyze relative quantities, open the Analysis Term Settings Efficiency Settings dialog box and enter the Efficiency value for the gene of interest in the SYBR field and for the Normalizer in the NRML field.

Comparative Quantitation Plate Setup

In the **Setup** section of the software, open the **Plate Setup** tab. Shown below is a typical plate setup for **Comparative Quantitation** using a **Normalizer** multiplexed with the gene of interest (both targets measured in the same wells). Click <u>here</u> to see a plate setup in which data are collected for the gene of interest and the **Normalizer** in separate wells.

🗶 Mb	3000P (Sta	ndalone) -	Comparat	ive Quantik	ation - (Co	mparative	Quantitati	on Multiple	ж Example.	mup]			_8×
File I	dit Instrum	vent: Tools	Options :	Section Vie	w Window	Help	100				_		
	- 1	80	000	- 9	🕄 🔳	²∆ 🕎	12 %	2 8			<u></u>	etup	<u>R</u> un <u>A</u> nalysis
	Plate	Setup		Thermal	Profile Set	up							
				_ <u> </u>									Incost Defuite I
All	1	Z	3	4		6	/	8	9	10	11	12	Delouis +
	Unknown	Unknown	Unknown	Unknown								Calibrator	Quick Salup
^	PAM -	758	FAM	PAM .								PAN -	Well type:
-	NORM	NORM	NORM .	NORM								Calibrator	Collect fluorescence data
	2	E 4 10	East 2	2.00								COM	ROX E C/5
°	NORM	NORM	NOON	NORM								NOON	FAM FAN
	Unknown	Unknown	Unknown	Unknown								Calibrator	
с	FAM 3	fam 3	FAN 3	fam 3								FAN 8	Reference dve: R0X • All wells
	NORM	NORM	NORM	NORM								NORN	Normalizing dye: HEX •
	Unknown	Unknown	Unknown	Unknown								Calibrator	Standard quantity
D	FAM 🔷	FAM 4	FAN 👋	FAM 🚽 😚								FAN S	
	NORM	NORM	NORM	NORM								NORM	Auto-Increment: 1 Dr 🔻
	Unknown	Unknown	Unknown	Unknown								NTC	Identity replicates
E	FAM C	FAM O	FAN C	FAM C								FRM 1	Hepicate sympot
	NORM	NORM	NORM	NORM								NORM	Auto-Increment
	Unknown	Unknown	Unknown	Unknown								NTC	 Identify associations
F	FAM	FAM	FAM	FAM								FAN	Assoc sumbol
	NORM	NORM	NORM	NORM								NORM	Charles -
	Can	Came	E AM	C 11									Auto-Increment
G	NORM	NORM	HORN	NO. R.M.								NORM	nomalizers from different wells.
	Unknown	Unknown	Unknown	Unknown								NTC	
н	RAM 8	ган 8	FAN C	_{ган} 8								FAN 10	Lijear Selecied Wela
	NORM	NORM	NORM	NORM								NORN	B different sample lankcates 1-81 organized
													by row (e.g. row A is sample 1, etc.)
													Ed-Screen Dista
													Purscreen Place Negro
Dyes	shown			_			Well types	shown					
	100.0	FAM	J HEX				Unkno	ven J Cal	iorator	NTC			
Assign	Well Type	and Dyes	to selecte	d wells. Th	he Chil key	selects mul	tiple wells						Door Closed Lamp Off

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) using the **Well type** menu on the command panel. The well types available in a Comparative Quantitation experiment are described in the table below.

Well Type	Description
Unknown	Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target. Quantities of a gene of interest in the Unknown wells is reported relative to the quantity of the same gene in the Calibrator wells, after correction for the relative quantities of a Normalizer target in the Unknown and Calibrator wells.
Buffer	Contains only buffer, used to monitor the background fluorescence attributable to the buffer.
NAC	No amplification control; contains all reaction components except DNA polymerase.
NPC	No probe control; contains all reaction components except the fluorescence- labeled probe.
NTC	No template control; contains all reaction components except the template nucleic acid. If the gene of interest and the Normalizer are detected in separate wells, a NTC well is required for each primer/probe set.
Standard	Contains a complete reaction mixture including a known relative amount of target nucleic acid. Typically a series of serial dilutions of a reference template are included in Standards for the purpose of initial validation of a Comparative Quantitation assay.
Calibrator	Contains a complete reaction mixture including a characterized target. The level of a gene of interest in the Calibrator wells is set to 1.0 for comparison to the relative quantities in Unknown samples.
No RT	No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.
Dye-specific Negative Control	Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in Optics Configuration . This well type assignment is rarely used in Comparative Quantitation experiments (most will use the NTC well type assignment for reactions lacking template).
Dye-specific Positive Control	Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in Optics Configuration . This well type assignment is rarely used in Comparative Quantitation experiments.

After assigning the **Well type** to the selected well(s), select the dyes for which data should be collected in these wells using the **Collect fluorescence data** check boxes.

If you are using a passive reference dye in the selected well(s) select the dye from the **Reference** dye menu. If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.

If Normalizer data will be collected in the selected well, identify the dye corresponding to the Normalizer target from the Normalizing dye menu.

If the selected well(s) is a **Standard**, for each dye for which standard curve data will be collected, enter the amount of template. To do this, first select the dye name from the pull-down menu following **Standard quantity**. Next, enter the relative amount of template added to the selected well(s) as a decimal number with arbitrary units. For example, the sample containing the lowest amount in the dilution series may be assigned a value of 1, with the quantity assigned to each increasingly-concentrated **Standard** well in the dilution series multiplied by the dilution factor of 2. Instead of assigning quantities to wells on an individual basis, it is also possible to assign quantities to **Standard** wells sequentially using the **Auto-Increment** feature.

More than one **Standard Curve** may be generated on a single plate using a single dye. See <u>Using</u> a <u>Single Dye for Detection of Gene of Interest and Normalizer</u>.

Assign the replicate set number to the selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

If the levels of the gene of interest and the **Normalizer** present in a given sample are to be measured in two separate wells, it is necessary to **Identify associations** between wells containing the same template. Select the wells to be associated on the plate, then select the appropriate symbol from the **Assoc. symbol** menu. If the gene of interest and **Normalizer** are multiplexed in all wells, it is not necessary to make any selections in the **Identify associations** section.

Once plate setup is complete, click Next to proceed to the Thermal Profile Setup screen.

Sample Plate Setup for a Non-multiplexed Comparative Quantitation Experiment

Shown below is a typical plate setup for **Comparative Quantitation** in which data are collected for a **Normalizer** and a gene of interest in separate wells. In this example, the gene of interest and the **Normalizer** are detected using different dyes. A similar plate setup would be appropriate for experiments using a single dye for detection, with the single dye (only) marked for data collection.

The association between wells set up to detect gene of interest or Normalizer levels from the same template are indicated by a capital letter **Association symbol** in the wells.

Comparative Quantitation Thermal Profile Setup

When the **Thermal Profile Setup** tab is selected in a new Comparative Quantitation experiment, a default thermal profile opens. The default thermal profile should be modified to the specific requirements of the new experiment, as discussed below. It is also possible to **Import** the thermal profile from an existing experiment into the new experiment.

Shown in the figure below is the default thermal profile for a Comparative Quantitation experiment when using the software's **Original Settings**. (If you are using a user-defined default set, the default thermal profile stored in that default set will appear when the **Thermal Profile Setup** screen is opened. See *Preferences-Defaults* for more information about the use and management of **Defaults**.)

In the profile below, segment 1 is an activation step of 95°C for 10 minutes that is compatible with a hot start reaction. Segment 2 consists of 40 cycles of amplification using a plateau of 95°C/30 seconds for denaturation, followed by a plateau of 55°C/1 minute for annealing, and a plateau of 72°C/30 seconds for extension.

Some applications use a two-step amplification protocol instead of the three-step protocol in the default thermal profile. A typical two-step amplification segment consists of 40 cycles of amplification using a plateau of 95°C/30 seconds for denaturation, followed by a plateau of 60°C/1 minute for annealing and extension.

Data are collected at the end of each annealing plateau in the default thermal profile. These collection settings are suitable for a typical Comparative Quantitation experiment.

Modify the default thermal profile as necessary. At minimum, ensure that the temperature setting for the annealing plateau in Segment 2 is appropriate for the PCR primer pair used in the current experiment. The properties of all other plateaus, ramps, and segments may also be adjusted. See *Thermal Profile Setup* in the *How-To (Detailed Protocols)* section for more information about changing the default thermal profile and data collection options.

Comparative Quantitation Data Analysis

Analysis Setup

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Select the segment (Amplification or Dissociation), and then the position (either the ramp or the plateau) from which data should be analyzed. The Dissociation segment should be selected only for viewing the Dissociation Curve. All other Results screens require selection of a data set collected during Amplification.

🐹 Ma	3000P (Sta	andalone) -	Comparati	ve Quantil	tation - [Co	mparative	Quantitati	on Multiple	x Standard	Curve Exa	mple.mxp*	1	X
File I	dit Instru	nent Tools	Options S	Section Vie	w Window	Help							
U	5 L	# 🖻	0 00		🕄 🖸	24 🖷	125	2 7				etup	<u>Run</u> <u>Analysis</u>
	Analysis Selection/Setup Results												
All	1	2	3	4	5	6	7	8	9	10	11	12	Select Data Collection Ramp/Plateau
	Standard REF	Standard REF	Standard REF 2.20e+001										Dissociation
Ĺ	3.20e+001 Standard	3.20e+001 Standard	3.20e+001 Standard										Exclude Dyes
в	REF 1 60e+001	REF 1 60e+001	REF 1 60+401										Replicates
	Standard REF	Standard REF	1.80e#001 Standard REF										Treat collectively Treat collectively
C	8.00e+000 8.00e+000	8.00e+000 8.00e+000	8.00e+000 8.00e+000										Algorithm enhancements
D	Standard REF 4.00e+000	Standard REF 4.00e+000	Standard REF 4.00e=000										Adaptive baseline Moving average
Е	Standard REF 2.00e+000	Standard REF 2.00e+000	Standard REF 2.00e=000										Analysis Term Settings (including amplification efficiencies)
L-	2.00e+000 Standard	2.00e+000 Standard	2.00e+000 Standard										Adv. Algorithm Settings
F	REP 1.00e+000	REF 1.00e+000	REF 1.00e-000										
G													
н	NTC FAN 7	NTC REP FAN	NTC REF FAN										Analysis gomments:
Oyes	shown	HEX	HEX				-Well types	shown					
Anale	ROX	FAM	нех				liberda	rd	NTC				Door Closed Lamp Off

3. Specify the desired analysis settings on the command panel.

See <u>Analysis Selection and Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. One of several available results screens will appear. Use the radio buttons under **Area to analyze** to navigate to different analysis screens. The following screens are available for Comparative Quantitation analysis:

Amplification Plots

Dissociation Curve

Plate Sample Values

Standard Curve (for validation)

Relative Quantity Chart

Relative Quantity Plate

Text Report

Comparative Quantitation Amplification Plots

The Amplification Plots screen, accessed through the Results tab, shows a plot of cycles versus fluorescence for a ramp or plateau on which data are gathered. Select the ramp or plateau for which data should be analyzed using the Analysis Selection/Setup screen.

Analysis Options

Fluorescence Data Type Plotted

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are: **R** (raw fluorescence), **dR** (baseline-corrected raw fluorescence), **Rn** (normalized fluorescence), and **dRn** (baseline-corrected, normalized fluorescence).

Note that the fluorescence data designated as **Rn** and **dRn** refers to data normalized according to the passive reference dye (if used). Measurements from the dye defined as the **Normalizer** do not enter into normalization at the level of fluorescence reporting.

Threshold Fluorescence

When basing plots on normalized fluorescence (**dR** or on **dRn**), the **Threshold fluorescence** value for each dye is listed on the command panel and is marked on the graph by a horizontal line. (Note that if a dye is hidden using the **Dyes shown** controls or if the check box next to the dye is cleared, the line corresponding to threshold fluorescence for that dye will not be shown on the graph.)

Threshold fluorescence is calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**. If desired, the threshold fluorescence may be adjusted manually. (To restore the software-calculated values, click **Reset**).

Baseline correction is required to establish a threshold fluorescence. Thus selections related to threshold fluorescence are unavailable for \mathbf{R} or \mathbf{Rn} data plots.

Last Cycle Setting

The Last cycle setting specifies the cycle from which the final (last) fluorescence values will be reported in the Text Report and Plate Sample Values screens. The position of the last cycle is marked on the graph with a solid vertical line.

This setting also affects the way Ct values are reported on other **Results** screens. While the **Last** cycle is not directly used to determine Ct, any wells with Ct values greater than the **Last cycle** value will be designated as **No Ct** in screens that display Ct.

Excluding Well/Dye Data from Analysis

To exclude the curve for one or more specific well/dye combinations from analysis, use either of the following two methods. (Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen.)

- From the list under Select amplification plots to display, select the curve(s) to be excluded and then click Disable Dyes.
- Double-click on any data point on the plot to be excluded. This action will exclude the entire data set for the well/dye corresponding to the plot.

To restore a plot that was disabled using either of these methods, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To restrict the plots shown to a subset of the selected well/dye combinations, use the **Select amplification plots to display** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a non-contiguous group.)

To display information about a specific data point on the plots, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** and **Plot Markers** are displayed or hidden. See *Graphs and Graph Properties* for more information.

Comparative Quantitation Dissociation Curve

For experiments that use SYBR Green detection and that include a **Dissociation** segment, use the **Dissociation Curve** screen, accessed through the **Results** tab, to view the dissociation profile. This screen shows a plot of the fluorescence (or its first derivative) as a function of temperature. Ensure that the data set collected during the **Dissociation** segment of the experiment is selected for analysis using the **Analysis Selection/Setup** screen.

The plot shown below is based on the first derivative of the fluorescence reading multiplied by -1 [designated -R'(T)]. Plotting results in this way is generally appropriate for complex nucleic acid mixtures such as those generated during PCR amplification. In samples with amplicon, this type of plot will typically display at least two populations with different transition temperatures. Populations with a Tm of 80°C or higher correspond to the larger PCR products, and can usually be assigned as specific DNA product. DNA products displaying melting temperatures of < 75°C correspond to non-specific DNA products. It is important to note that these populations are not necessarily homogeneous, and may contain multiple PCR product species.

Analysis Options

Fluorescence Data Type Plotted

Dissociation curves may be based on four different types of fluorescence: **R** (raw fluorescence), **Rn** (reference dye-normalized fluorescence), $-\mathbf{R'(T)}$, (the first derivative of the raw fluorescence reading multiplied by -1), and $-\mathbf{Rn'(T)}$ (the first derivative of the reference dye-normalized fluorescence reading multiplied by -1). Select the desired type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel.

Product Melting Temperature Listings Settings

The Mx3000P software will identify and report **Product melting temperatures** for up to six product populations from each dissociation curve. Set the maximum number of products for which a melting temperature should be calculated using the **Max number** spin controls. This setting controls only the maximum number; the software may detect and report a smaller number of product populations for a given curve.

When basing plots on the negative derivative of fluorescence [-R'(T) or -Rn'(T)], you may specify the minimum peak height to be used for designating product populations. This peak height minimum may be entered in the **Min peak height** box as a decimal number or may be set manually by dragging the horizontal line indicator on the graph to the desired position.

Display Options

To restrict the plots shown to a subset of the well/dye combinations, use the **Select dissociation plots to display** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a non-contiguous group.)

To exclude the curve for one or more specific well/dye combinations from view, select the curve(s) to be excluded and then click **Disable Dyes**. Disabling a particular well/dye combination requires replicates to be treated **individually** (this may be specified on the **Analysis Selection/Setup** screen). To restore a disabled plot, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

To display information about a specific data point on the plots, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** and **Plot markers** are displayed or hidden. See *Graphs and Graph Properties* for more information.

Reporting of Melting Temperatures (Tm)

Melting temperatures for each of the product populations are displayed when the cursor is placed over any point on the curve of interest.

Melting temperatures will also be reported on the **Text Report** screen when the appropriate **Tm Product** boxes are selected in the **Columns** selection on that screen.

Comparative Quantitation Plate Sample Values

The **Plate Sample Values** screen displays **Fluorescence** values or **Ct** values for the sampled wells in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Either the fluorescence or the Ct value for each dye for which data was collected
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

	🖻 🖬	4	600	- 9	ء 😒	ΣΔ	1 D S	9 ?			4	≧etup	<u>R</u> un <u>Analysis</u>
_	Analy	/sis Select	on/setup			1	lesults	_			_	_	- Álea In analize
All	1	2	3	4	5	6	7	8	9	10	11	12	C Amplification plots
	Unknown	Unknown	Unknown	Unknown								Calibrator	C Dissociation curve
Α	1.222	1.222	1.222	1.222								1.066 🔄	(* Plate sample values
	0.308	0.308	0.309	0.308								0.824	C Balative quantity shart
	Unknown	Unknown	Unknown	Unknown								Calibrator	C Belative quantity grat
в	1.221 🕹	1.221 🕹	1.221 🚄	1.221 🕹								1.066	C Test senort
	0.318	0.816	0.918	0.318								0.824	
	Unknown	Unknown	Unknown	Unknown								Calibrator	Last cycle: 45
с	1.381 – 🚊	1.881 🕄	1.891 3	1.381 3								1.068 – 🖄	- Directau the values for
	0.324	0.324	0.324	0.324								0.324	C E
-	Unknown	Unknown	Unknown	Unknown								Calibrator	(• Phorescence
D	1.435 4	1.435 4	1.435 4	1.435 4								1.088 3	dRn Last 📃
	0.321	0.324	0.721	0.324								0.324	C Dusing
	Unknown	Unknown	Unknown	Unknown								NTC	dRn 💌
E.		. m 5	a ang 5									0.027 10	
		0.004											
-	Unknown	Unknown	Unknown	Unknown								NTC	
E	1.040 8		. ang 6	1.040								0.007 10	
۲.	1.010	1.010	1,010	1,010								o ner	
-	0.912	U.S12	U.S12	0.312 Linknown								-0.001	
-	1			7								am 10	
G	Lacr	1.567	1.021	Lacr								0.021	
_	0.315	0.315	0.915	0.215								-0.001	
	2		Contraction in	2 COLORING					_			10	
н	1.102	1.102 🖸	1.102	1.102								0.027	
	0.305	0.905	0.805	0.905					L			0.001	
- Dyes	shown						-Well type:	shown					1)

• Association symbol, if used
Analysis Options

Display the Values for Fluorescence or Ct

Under **Display the values for**, specify the form of the data to be displayed by selecting either the **Fluorescence** or the **Ct using** radio button. You will also need to specify the type of fluorescence data to be either displayed or used in calculations by selecting a data type from the menu below the selected radio button. Refer to the tables below for descriptions of the fluorescence data type abbreviations in the menus.

Data Type	How Calculated
R Last	final fluorescence
dR Last	final fluorescence minus the initial fluorescence
Rn Last	normalized final fluorescence (with normalization based on the reference dye)
dRn Last	normalized final fluorescence minus the normalized initial fluorescence (with normalization based on the reference dye)
R Last/R First	final fluorescence divided by the initial fluorescence

When displaying **Fluorescence** values, the following fluorescence data types are available:

When displaying **Ct** values, Ct calculations may be based on the following fluorescence data types:

Data Type	How Calculated					
dR	baseline-corrected fluorescence					
dRn	baseline-corrected normalized fluorescence (with normalization based on the reference dye)					

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last cycle setting also affects the reporting of Ct. Any wells having Ct values greater than the Last cycle value will be reported as **No Ct**.

Comparative Quantitation Standard Curve

The **Standard Curve** is a plot of the initial template quantity in the **Standard** wells (X-axis), versus the **Ct** (threshold cycle). A least mean squares curve fitting algorithm is used to generate the standard curves displayed. Curves are displayed for each dye for which data was collected in **Standard** wells. **Unknown** wells selected during **Analysis Selection/Setup** are also plotted on the standard curve (using a different data point marker) based on their measured **Ct** values.

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, no data will be plotted on this chart. (Note that after validation, many Comparative Quantitation experiments will not include a standard curve.)

Analysis Options

Fluorescence Data Type for Ct Determinations

Select the type of fluorescence data to be used for Ct determinations from the **Ct based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected raw fluorescence), and **dRn** (baseline-corrected, reference dye-normalized fluorescence).

Ct based on:
dRn 💌
dR
dRn

Confidence Interval

The confidence interval for each standard curve may be displayed by selecting the **Show confidence interval** checkbox. The resulting graph shows the confidence limits as hashed lines. The lines show the range of Initial Quantity values at a particular Ct that cannot be statistically distinguished from the fit line with more certainty than the confidence level (**Level** %) selected. The width of the confidence interval is an indicator of the quality of the fit of the data to the standard curve. Confidence interval calculations require a **Replicates** setting of **Treat individually**. Confidence level values may be exported to an Excel file, a text file or an XML file by using the **Export Chart Data** commands on the **File** menu.

Threshold Fluorescence

The **Threshold fluorescence** value for each dye, as calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**, is listed on the command panel. If desired, the threshold fluorescence for a given dye may be adjusted manually by entering a new value in the spin control box for the dye. (To restore the software-calculated values, click **Reset**).

_ Thresho	ld fluorescer	nce —	
FAM	0.031	÷	Reset
CY5	0.032	÷	Reset
HEX	0.027	÷	Reset
N/A		* *	Reset

Excluding Well/Dye Data from Analysis

To exclude a specific well/dye data point from analysis, double click on the data point on the chart. Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen. To restore an excluded data point, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To display information about a specific data point on the plots, place the cursor over the point of interest to display the following information: well location or replicate number, dye name, well type, the initial template quantity and the Ct.

If the well is a **Standard**, the initial template quantity is the amount assigned to the well during plate setup. If the well is an **Unknown**, the initial template quantity is the interpolated amount based on the standard curve.

Note If **Display tooltips** is cleared (deselected) on the **Display** tab of the **Preferences** dialog box, this well information will not be displayed.

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls important display features including whether the **Legend** is displayed or hidden. See *Graphs and Graph Properties* for more information.

Interpretation and Use of Curve Attributes

RSq Value, Slope, and Amplification Efficiency

The graph legend displays information about each curve plotted. (If no legend is displayed on the screen, open the **Graph Properties** dialog box by double-clicking on the graph, and then select the **On** radio button under **Legend**.) Besides correlating plot markers with dyes and well types, the legend displays the R Squared (**RSq**) value and the equation for the line [y = m*log(x) + b], where m is the slope of the line]. The amplification efficiency (**Eff.**), calculated from the slope, is also displayed.

	Log fit values
•	FAM Standards, RSq:1.000
——	FAM Unknowns
	FAM, Y = -3.292*LOG(X) + 39.32, Eff. = 101.3%

The **RSq** value is an indicator of the quality of the fit of the standard curve to the **Standard** data points plotted. The value will always be between 0 and 1. The closer the value is to 1, the better the fit of the line.

The slope of the curve is directly related to the average amplification efficiency throughout the cycling reaction. The equation that relates the slope to amplification efficiency is:

PCR Efficiency = $10^{(-1/\text{slope})} - 1$

where **PCR Efficiency** corresponds to the proportion of template molecules that are doubled every cycle. From this equation it follows that a reaction with 100% efficiency will result in a slope of -3.322.

Initial Template Quantity Calculator

To use the displayed standard curve to calculate an interpolated relative quantity of template in another sample from the run based on the Ct, choose the dye from the **Select dye** menu, then enter the **Ct** value. The software will calculate and display the interpolated relative initial template quantity (**Interpolated qty**).

-Initial template qu	uantity calculator –	
Select dye:	FAM	•
Enter Ct:		
Interpolated qty:		

Amplification Efficiency Calculator

Enter either a Slope value or an amplification Efficiency value into the Amplification efficiency calculator to convert between values, based on the following equation:

PCR Efficiency = $10^{(-1/\text{slope})} - 1$

Amplification effi	iciency calculator
Slope:	
Efficiency (%):	

Implementing Standard Curve Results in Comparative Quantitation Experiments

The **Standard Curve (for validation)** functionality is included in this experiment type to facilitate the determination of the efficiencies of amplification for the gene of interest and the **Normalizer**, a critical step in the initial optimization of **Comparative Quantitation** experiments.

After a particular assay using a particular **Normalizer** has been validated, standard curves may be omitted from later experiments. Some researchers also include standard curves in optimized assays for validation of results.

Determination of Amplification Efficiencies

Define a serial dilution set of wells for two different targets as **Standards** with their corresponding initial quantities, and then analyze the results using the **Standard Curve (for validation)** plot. To determine the amplification efficiencies, enter the reported slope of each curve into the **Amplification efficiency calculator**.

Recording Efficiencies for Use in Relative Quantity Calculations

Enter the slope or efficiency values for the two targets in the **Efficiency Settings** tabbed page of the **Analysis Term Settings** dialog box. Changing these values from the default values (corresponding to 100% efficiency) will cause the Mx3000P software to automatically compensate for differences in efficiencies for the two targets when reporting relative quantities on other **Results** screens. Note that using this feature to compensate for differences in amplification efficiency requires that the GOI and **Normalizer** be detected with different dyes.

Access the Efficiency Settings page by selecting Analysis Term Settings from the Options menu.

	ttings				
Amplifica	tion efficiencie:	s:			
Dye	Slope	Efficiency (%)			
FAM	-3.32	100.0			
HEX	-3.32	100.0			
N/A					
N/A					
			Defaults	•	
Efficiency	Settings are u	sed in determining Co	omparative Quantita	ation results.	
Conseque	ntly, these sett	ings are available on	ly for this experimer	nt type.	

Mx3000P[™] Real-Time PCR System

Comparative Quantitation Relative Quantity Chart

The **Relative Quantity Chart** screen, accessed through the **Results** tab, shows a graph depicting the relative quantity values for each well relative to the **Calibrator**. The relative quantity of the **Calibrator** is automatically defined as 1.0 and is not displayed on the graph. Relative quantities may be displayed in either bar graph (shown) or line plot format. See *Display Options*, below, for more information.

When replicates are treated individually (in Analysis Selection/Setup), the X-axis displays Well Ids (in A1 through H12 format). When replicates are treated collectively, relative quantity values are plotted against the **Replicate** symbol.

Analysis Options

Relative Quantity Based On

Under **Relative quantity based on,** specify the form of the fluorescence data to be used in relative quantity calculations. Available fluorescence data types are: **dR** (baseline-corrected raw fluorescence), and **dRn** (baseline-corrected, reference dye-normalized fluorescence).

Display Options

To change the style of the relative quantity chart from bar graph to line plot, or the reverse, double-click on the graph to open the **Graph Properties** dialog box. In the **Style** section of the dialog, select **Plot** to display the data as a line plot or **Bar** to display the data as a bar graph.

To restrict the results shown to a subset of the replicate set or well/dye combinations, use the **Select replicate/well dyes to plot** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a non-contiguous group.)

To display information about a specific well or replicate set, place the cursor over the bar or point corresponding to the well/replicate set of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including the attributes of the axes. See *Graphs and Graph Properties* for more information.

Comparative Quantitation Relative Quantity Plate

The **Relative Quantity Plate** screen displays the calculated relative quantities of template present in the wells before thermal cycling in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Relative initial template quantity for each dye associated with a gene of interest. For **Unknowns**, the value relative to the **Calibrator** after correction for **Normalizer** quantities is reported. For all well types, the reference dye (**Ref**) and the normalizer dye (**Norm**) are not quantified
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

MМ	x3000P (Sta	indalone) -	Comparat	ive Quanti	tation - [Co	mparative	Quantitati	on Multiple	ж Example	.mxip*]			
File	Edit Instrum	nent Tools	Options	Section Vie	w Window	Help							
\Box	🖻 🔒	8	0 0 0	¥ 🌻	😯 🔳	ΣΔ		9 💡			\$	≩etup	<u>Bun</u> <u>Analysis</u>
	Analysis Selection/Setup (Results)												
	-			_	_								- Augus to another
AI	1 1	2	3	4	5	6	7	8	9	10	11	12	C Amplification plots
	Unknown	Unknown	Unknown	Unknown								Calibrator	C Dissociation curve
A	2.78	2.78	2.76	2.78								1.00	C Plate sample values
1 ^	No. of Control of Cont	Harm	Harry	Bio ma								Harm	C Stanglard curve (for validation)
Ŀ	Linknown	linknown	linknown	Linknown								Calibrator	C Relative quantity ghast
	2												Relative quantity plate
в	211 2	2.10	3.10	2.12								100 -	C Tegt report
L	Norm	Norm	Norm	Norm		<u> </u>						Norm	Balative quantity based on:
	Unknown	Unknown	Unknown	Unknown								Calibrator	nearre quantity based on
C	1.68 📃	1.68 😒	1.68	1.68								1.00	dBn 🗾
	Norm	Norm	Norm	Norm								Norm	
	Unknown	Unknown	Unknown	Unknown								Calibrator	
Lр	2.12 4	2.12 4	2.12	2.12								1.00	
	No.	11	No.	N.L.								No.	
Ŀ	Uniancean	Unknown	Unknown	Unicocom								NTC	
	6											10	
Ľ	0.251	0.258	0.250	0.250								No Et	
	Norm	Norm	Norm	Norm		ļ						Norm	
	Unknown	Unknown	Unknown	Unknown								NTC	
F	2.92	2.82	2.82	2.82								No Ct	
	Norm	Norm	Norm	Norm								Norm	
	Unknown	Unknown	Unknown	Unknown								NTC	
G	1.08 7	1.08	1.08	1.08								No Ct 10	
	Norm	liam	Horn	Norm								Horm	
Ŀ	Unincun	Unknown	Unknown	Unknown								NTC	
			- 8									n a 10	
L "	1 .	1.00	1. A	1.4								no cr	
L	Norm	Norm	Norm	Norm								Norm	
_ Dye	ts shown						Well type:	s shown —					
	808	FAM	HEX				Unkno	wei Cal	ibrator	NTC			
Res	ult s												Door Closed Lamp Off

• Association symbol, if used

Analysis Options

Relative Quantity Based On

Under **Relative quantity based on,** specify the form of the fluorescence data to be used to in relative quantity calculations. Available fluorescence data types are: **dR** (baseline-corrected raw fluorescence), and **dRn** (baseline-corrected, reference-dye normalized fluorescence).

Relative quantities are calculated from the **Ct** values for the gene of interest and the **Normalizer** in both the **Unknown** wells and in the **Calibrator** wells. Therefore, normalizing the data for the reference dye indirectly affects the relative quantity values through changing the **Ct** values.

Comparative Quantitation Text Report

] [š 🖬 🖑) 🖓 💆 🖗	er 🕘 😍	2 ΣΔ	🔲 🔎 🔎 📍	<u>S</u> etup	<u>R</u> un <u>Analysis</u>
	Analysis	Selection/Setu	IP C		Results		
	Well Type	Replicate	Threshold (dRn)	Ct (dRn)	Rel. Quant. to Cal. (dRn)		- Area to analyze
И	Unknown	1	0.0290	27.58	2.78		C Amplification plots
ζ	Unknown	1	0.0107	19.61	Normalizer		C Dissociation curve
	Unknown	2	0.0290	27.44	3.10		C Plate carries values
	Unknown	2	0.0107	19.63	Normalizer		· rjad odripić valućo
	Unknown	3	0.0290	26.70	1.68		 Stanglard curve (for validation)
	Unknown	3	0.0107	18.01	Normalizer		C Relative quantity ghart
	Unknown	4	0.0290	26.47	2.12		C Relative quantity plate
	Unknown	4	0.0107	18.11	Normalizer		G Text report
	Unknown	5	0.0290	29.45	0.258		- regrieport
	Unknown	5	0.0107	18.05	Normalizer		
	Unknown	6	0.0290	26.60	2.82		Last cycle: 45
	Unknown	6	0.0107	18.66	Normalizer		O ended for a web cheered and
	Unknown	7	0.0290	27.11	1.08		Lt and relative quantity based on:
	Unknown	7	0.0107	17.78	Normalizer		dRn
	Unknown	8	0.0290	28.41	1.26		
	Unknown	8	0.0107	19.30	Normalizer		Meiting temperature (Tm) results based of
	Calibrator	9	0.0290	30.72	1.00		- BTD
	Calibrator	9	0.0107	21.28	Normalizer		1
	NTC	10	0.0290	No Ct	Norm, Has No Ot		Datama
	NTC	10	0.0107	No Ct	Normalizer		- Count
							- Well
							Well Name
							- Dye
							Vel Tupe
							Prepicare Syncol
							H Last
							dR Last
							Rn Last
							- Bn Last
							DBL and /BEast
							Select Al Delade
							Deradas
							Autosize columna
							Hard Contract I Contractor
							Contents Univ
18	hown				Well types shown		

The **Text Report** screen shows the data from a run in text format.

Analysis Options

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported when fluorescence value columns (such as **dRn Last**) are selected for display. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last Cycle setting also affects the reporting of Ct and Relative Quantity. Any wells having Ct values greater than the Last cycle value will be reported as No Ct.

Ct and Relative Quantity Based On

Ct and relative quantity based on:	
dRn	-

Select the type of fluorescence data that the reported **Ct** and **Relative Quantity** should be based on from the **Ct and relative quantity based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected fluorescence) and **dRn** (baseline-corrected, reference dye-normalized fluorescence).

Tm Results Based On

Melting temperature (Tm) results based on:					
-R'(T)	•				

Select the type of fluorescence data plot that the reported melting temperature (**Tm**) should be based on from the **Melting temperature (Tm) based on** menu on the command panel. Available designations are: -**R'(T)**, for plots based on raw fluorescence (the negative of the first derivative) of and -**Rn'(T)**, for plots based on the normalized fluorescence (the negative of the first derivative).

Display Options

Columns Included in the Report

Select the **Columns** to be included in the text report by checking the boxes next to the column names. To exclude columns that are selected by default, click on the check box to deselect the column name. To select all columns for display, click **Select All**. The default settings for column selection can be restored by expanding the **Defaults** menu and then clicking **Get**.

If the included columns will not fit in the screen, a horizontal scroll bar appears at the bottom of the window to allow horizontal scrolling.

Column
🗹 Well
🗖 Well Name
🗹 Dye
🗹 Well Type
☑ Replicate Symbol
🗖 R Last
dR Last
Rn Last —
dRn Last
RLast/RFirst
Baseline Start Cycle
Baseline End Cycle
Select All Defaults 🔻
Autosize columns
Hdr & Contents Contents Only

Column Width

To facilitate viewing data, columns can be automatically sized. Clicking the **Contents Only** button will cause each column to be automatically resized to the width of the widest data cell in that column (some column headers may be only partially displayed using this setting). Clicking the **Hdr & Contents** button will cause each column to be resized to the widest cell in that column, including the header cell.

Columns can also be resized manually by dragging the column dividers with the mouse.

Specialized Comparative Quantitation Text Report Columns

Rel. Quant. to Norm.	The estimated quantities of gene of interest relative to the Normalizer target within that well or associated to it during Plate Setup , regardless of the Calibrator. This value is simply an approximation and is not intended as a quantitative result. The calculations are done for each individual well (or set of replicates), regardless of well type.
Rel. Quant. to Std. (for validation)	The quantitative determination of the (relative) initial quantity based on the standard curve for the same dye and target. Note that for experiments that include two standard curves using the same dye (e.g. one for the gene of interest and one for the Normalizer), wells for only one standard curve should be selected for each round of analysis. Alternatively, detection of two targets with the same dye may be distinguished by renaming the dye used for one target as discussed in <u>Using a Single</u> <u>Dye for Detection of Gene of Interest and</u> <u>Normalizer</u> .
Rel. Quant. to Cal.	The relative quantity of the gene of interest corrected for the quantity of the Normalizer target, and relative to the Calibrator sample. (For example, a Rel. Quant. to Cal of 2 means that there is twice as much target in the Unknown sample as in the Calibrator , when the numbers are corrected for the Normalizer quantity in each well.)

A note on standard deviations: Each reported quantity is associated with a standard deviation and a coefficient of variation (cv). When replicates are treated collectively, these values are calculated as zero, since replicate variability is eliminated in the collective treatment. When replicates are treated individually, quantities are calculated for each well based on their individual Ct values and on the average Ct values for the respective Normalizer and Calibrator. The standard deviation of the calculated relative quantities for a group of replicate wells is calculated for each replicate set. The coefficient of variation is calculated as the standard deviation divided by the average.

Mx3000PTM Real-Time PCR System

Exporting Text Report Data

Text report data can be exported from the application in text, Microsoft Excel spreadsheet or XML format for analysis. Text report exporting options are available from the **File** menu. See *Exporting Data to Other Applications* in the *File Menu* section for more information.

File	Edit	Instrument	Tools	Options	Section	View	Win	
N	ew					Ctrl+N		
0	pen					Ctrl+O		
C	lose							
Sa	ave					Ctrl+S		
Sa	ave As					Ctrl+A		
							_	
10	nport v	vell Names					_	
E	xport I	nstrument Da	ata				→	
E	xport (lhart Data					\rightarrow	
E	xport 1	ext Report					•	Export Text Report to Excel
E	xport t	o PowerPoint	®			Ctrl+W		Export Text Report To Text File
E	xport t	o Image File.				Ctrl+I		Export Text Report to XML File

Mx3000P System Experiments: SYBR Green (with Dissociation Curve)

The SYBR Green Experiment Type

SYBR Green experiments typically use a **Standard Curve** to quantitate the amount of target present in **Unknown** samples using SYBR Green I dye for detection of double-stranded DNA (dsDNA). The **Thermal Profile** includes a dissociation curve, used to verify that the majority of fluorescence detected can be attributed to the labeling of specific PCR products, and to verify the absence of primer-dimers and sample contamination. See *Detection using SYBR Green Dye* for more information on the general properties of SYBR Green I dye.

The accumulation of dsDNA can be assessed by the incorporation of SYBR Green I dye into a PCR reaction. A major advantage of this approach is that no fluorescence-labeled probes are required. A limitation is that dye binding to both specific and non-specific PCR products generates the same fluorescence signal. Including a dissociation curve in the experiment facilitates the process of optimizing the assay for conditions that minimize the formation of non-specific products, and provides a means for verifying the predominance of specific products in each run. Using this approach, SYBR Green dye-based assays have been successfully used for a wide variety of QPCR and QRT-PCR applications.

In **SYBR Green** experiments, the Mx3000P instrument detects the fluorescence of the SYBR Green fluorophore during each cycle of the thermal cycling process and a **Fluorescence** value is reported at each cycle. Fluorescence values are generally acquired in the annealing and extension stages of thermal cycling. **Fluorescence** results are typically displayed in an **Amplification plot**, which reflects the change in fluorescence during cycling.

The initial copy numbers of RNA or DNA targets can be quantified using real-time PCR analysis based on threshold cycle (**Ct**) determinations. The Ct is defined as the cycle at which a statistically-significant increase in fluorescence (above background signal measured in the early rounds of amplification) is detected. The threshold cycle is inversely proportional to the log of the initial copy number. In other words, the more template that is present initially, the fewer the number of cycles required for the fluorescence signal to be detectable above background.

Typical **SYBR Green** experiments use a standard curve to quantitate the amount of target present in an **Unknown** sample. In this method, a series of **Standards**, containing a dilution series of a known amount of target, are amplified to generate a curve that relates the initial quantity of the specific target in the **Standard** sample to the **Ct**. The standard curve is then used to interpolate the initial template quantity in **Unknown** wells based on the **Ct** values determined for the **Unknown** wells.

Use of the Dissociation Curve

The **SYBR Green** experiment has two major phases: **Amplification** and **Dissociation**. The **Amplification** phase corresponds to the PCR portion of the experiment, and results in the generation of dsDNA. In the **Dissociation** phase, the dsDNA product is melted into ssDNA by a stepwise increase in temperature, with fluorescence data being collected at each temperature step. The magnitude of the reduction in fluorescence intensity of the SYBR Green dye due to its release from dsDNA provides an indicator of the amount of dsDNA dissociated at each step in the dissociation curve. For data analysis, **Fluorescence** (or its first derivative) is plotted as a function of **Temperature**. In thermal denaturation profiles for complex nucleic acid mixtures such as those generated during PCR amplification, two semi-discrete populations with different transition temperatures can typically be identified in the first derivative plots. Populations with a Tm of 80°C or higher correspond to the larger PCR products, and can usually be assigned to the specific DNA product. DNA products displaying melting temperatures of < 75°C correspond to non-specific DNA products. It is important to note that these populations are not necessarily homogeneous, and may contain multiple PCR product species.

Analysis often includes evaluation of the dissociation curve for no-template-control (**NTC**) reactions in order to monitor the presence of primer-dimers and of contaminating template that might be contributing to the fluorescence signal.

SYBR Green Plate Setup

In the Setup section of the software, open the Plate Setup tab. Shown below is a typical plate setup for a SYBR Green experiment.

Ma Ma	:3000P (Sta	indalone) -	SYBR Gree	en - (SYBR)	Green with	Dissociatio	on Curve E	cample.miq	P*]				
	Plate	A Setup	opeons] ⊮າ ∩]	Thermal	Profile Se	τιρ	د در ا	9 ?				etup)	<u>R</u> un Analysis
All	1	2	3	4	5	6	7	8	9	10	11	12	Import Defaults 🔻
A	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBIR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Quack Selup Welligge:
в	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SVBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SVBR	Unknown REF SYBR	Unknown REF SVBR	Unknown REF SVBR	Unknown REF SVBR	Unknown REF SYBR	Unknown REF SVBR	Collect fluorescence data
с	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SVBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SVBR	Unknown HEF SYBR	Unknown REF SYBR	Unknown HEF SVBR	Unknown REF SYBR	Unknown REF SYBR	Unknown HEF SVBR	Reference give: R0X All wells Standard quantity: R0X
D	NTC REF SYBR 2	NTC REF SYBR 2	NTC REF SYBR 2	NTC REF SYBR 2	Standard REF 1.00e+003	Standard REF 1.00e+003	Standard REF 1.00++003	Standard REF 1.00e+003	Standard REF 2.00e+003	Standard REF 2.00e+003	Standard REF 2.00e+003	Standard REF 2.00e+003	Auto-Increment: TDx v Standard units:
E	Standard REF 5.00e+003	Standard REF 5.00e+000	Standard REF 5.00e+003	Standard REF 5.00e+003	Standard REF 1.00e+004	Standard REF 1.00e+004	Standard REF 1.00e+004	Standard REF 1.00e+00d	Standard REF 2.00e+004	Standard REF 2.00e+00d	Standard REF 2 D0e+00d	Standard REF 2.00e+004	Identify replicates Replicate sympot
F	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Qear Selected Wella
G	Uninovn REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Uninovn REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Plate setup gomments:
н	Unknown REF SYBR 1077-	Unknown REF SYBR	Unknown REF SYBR 1985.	Unknown REF SYBR 10.75- 10.75-	Unknown REF SYBR	Unknown REF SYDR	Unknown REF SYBR 1075-	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR 107F- 107F-	Unknown REF SYBR	Unknown REF SYBR 10755	Template: Human genomic DNA. Reporter dye: SYBR Green. 2 fold discrimination between Unknown sets (replicates 1 and 2).
Des	shows.						Well type	s shown					Full-Screen Plate Negt >
	ROX	SYBR	to selecte	d wells. Ti	he Chilken	selects m	Unkno		яте ј	Starvdard			Door Closed Lamp 0#

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) by using the **Well type** menu on the command panel. The well types available in a **SYBR Green** experiment are described in the table below.

Well Type	Description
Unknown	Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target.
Buffer	Contains only buffer, used to monitor the background fluorescence attributable to the buffer.
NAC	No amplification control; contains all reaction components except DNA polymerase.
NPC	No probe control; contains all reaction components except the fluorescence-labeled probe.
NTC	No template control; contains all reaction components except the template nucleic acid.
Standard	Contains a complete reaction mixture including a known concentration of target nucleic acid. Used to generate a standard curve, which is then used to relate the threshold cycle (Ct) to initial template quantity in Unknown wells.
No RT	No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.
Dye-specific Negative Control	Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in Optics Configuration . This well type assignment is rarely used in SYBR Green experiments (most will use the NTC well type assignment for reactions lacking template).
Dye-specific Positive Control	Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in Optics Configuration . This well type assignment, which qualitatively designates a positive signal for the target without specifying the absolute amount, is rarely used in SYBR Green experiments (most will include Standard wells with known amounts of target).

After assigning the **Well type** to the selected well(s), select the dyes for which data should be collected in these wells using the **Collect fluorescence data** check boxes. SYBR Green I dye data are collected using the FAM filter path. If **FAM**, rather than **SYBR** appears on the setup screen, SYBR Green dye may be assigned to this path in the **Optics Configuration** dialog box.

If you are using a passive reference dye in the selected well(s) select the dye from the **Reference** dye menu. If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.

If the selected well(s) is a **Standard**, enter the amount of template. To do this, first select the dye from the pulldown menu following **Standard quantity**. Next, enter the quantity of template added to the selected well(s) as a decimal number (for example, 400 or 1.234). Specify the units for the quantity in the **Standard Units** dropdown box. Instead of assigning quantities to wells on an individual basis, it is also possible to assign quantities to **Standard** wells sequentially using the **Auto-Increment** feature.

Assign the replicate set number to the selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

Once plate setup is complete, click Next to proceed to the Thermal Profile Setup screen.

SYBR Green Thermal Profile Setup

When the **Thermal Profile Setup** tab is selected in a new SYBR Green experiment, a default thermal profile opens. The default thermal profile should be modified to the specific requirements of the new experiment, as discussed below. It is also possible to **Import** the thermal profile from an existing experiment into the new experiment.

Shown in the figure below is the default thermal profile for a SYBR Green experiment when using the software's **Original Settings**. (If you are using a user-defined default set, the default thermal profile stored in that default set will appear when the **Thermal Profile Setup** screen is opened. See *Preferences-Defaults* for more information about the use and management of **Defaults**.)

In the profile below, segment 1 is an activation step of 95° C for 10 minutes that is compatible with a hot start reaction. Segment 2 is the PCR **Amplification** phase of the experiment and consists of 40 cycles of amplification using a plateau of 95° C/30 seconds for denaturation, followed by a plateau of 55° C/1 minute for annealing, and a plateau of 72° C/30 seconds for extension. Amplification data are collected at the end of each annealing plateau. Segment 3 contains the **Dissociation curve**. The default profile dissociation curve begins with a 1-minute incubation at 95° C to melt the DNA and then a 30-second incubation at 55° C. This is followed by a ramp up to 95° C with **Allpoints** data collection performed during the ramp. Data collection during the ramp slows the ramp rate to 0.01° C/sec to allow for a slow melt of the PCR product.

Mx3000P[™] Real-Time PCR System

Modify the default thermal profile as necessary. At minimum, ensure that the **Amplification** (Segment 2) annealing temperature setting is appropriate for the PCR primer pair used in the current experiment. The properties of all other plateaus, ramps, and segments may also be adjusted. See *Thermal Profile Setup* in the *How-To (Detailed Protocols)* section for more information about changing the default thermal profile.

SYBR Green Data Analysis

Analysis Setup

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Select the segment (Amplification or Dissociation), and then the position (either the ramp or the plateau) from which data should be analyzed. The Dissociation segment should be selected only for viewing the Dissociation curve. All other Results screens require selection of a data set collected during amplification.

M M	(3000P (Sta	indalone) -	SYBR Gree	sn - (SYBR (Green with	Dissociatio	on Curve Ex	ample.mig	p*]				_8 ×
File	Edit Instrum	ment Tools AB AB	Options	Section Vie	w Window	Help Σ. IIII	1 🛞 (at in	Pup Applycic
Ë	Analys	is Selec	tion/Setu			- <u> </u>	Results	8	1			seich	
					6				-	40			-Select Data Collection Barro/Plateau
All	Unknown	Unknown	Unknown	4 Uninovn	Unknown	6 Unknown	Uninovn	Unknown	Unknown	10 Uninovn	Unknown	12 Unknown	Amplification
۸	REF SYBR	REF	REF SYBR	REF SYBR	REF SYBR	REF SYBR	REF SYBR	REF SYBR	REF SYBR	REF SYDR	REF SYBR	REF SYBR	Dissociation
H	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Eyclude Dyes
в	STER	SYBR	SYBR	SYBR	SYBR	SYBR	SYBR	SYBR	SYBR	SYBR	SYBR	SVBR	Replicates
H	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Treat individually Treat collectively
с	SYBR	SYBR	SYBR	SYBR	SYBR -	SYBR	SYBR	SYBR	SYBR	SYBR	SYBR 1	SYBR	- Algorithm enhancements
H	NTC	NTC	NTC	NTC	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Amplification-based threshold
D	sybr 2	syber 2	SYBR 2	SYBR 2	1.00x+003	1.00e+003	1.00++003	1.00x+003	2.00e+003	2.05++002	2.00x+003	2.00e+003	✓ Adaptive baseline ✓ Moving average
F	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Analysis Term Settings
E	5.00e+003	5.00e+000	5,00e+003	5.00e+000	1.00e+004	1,00e+004	1,00+406	1.00e+004	2.00e+004	2.00e+004	2.00e+004	2.00e+004	Adv. Algorithm Settings
E	Unknown	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	
۲.	алык 🙆		алын <u>о</u>	отви 🙆			атык 🙆		алын <u>8</u>	твк 🙆	*** <u>8</u>	алын <u>С</u>	
	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	
G	SYBR 8	⁵¹⁵⁸ 8	SYBR 8	SYBR 8	^{snee} 8	SYBR 8	SYBR 8	^{ener} 8	SYBR 8	SYBR 8		SYBR 3	
L.,	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Unknown REF	Analysis comments:
"	i i i i i i i i i i i i i i i i i i i	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	
												_	
Dye	s shown	SVBR	-				Well type	shown	NTC D	Standard			
Analy	sis Selectio	n/Setup					1	,	,				Door Closed Lamp Off

3. Specify the desired analysis settings on the command panel.

See <u>Analysis Selection and Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. The first of several available results screens will appear. Use the radio buttons under **Area to analyze** to navigate to different analysis screens. The following screens are available for SYBR Green analysis:

Amplification PlotsDissociation CurvePlate Sample ValuesStandard CurveInitial Template QuantityText Report

Selecting the Data Collection Ramp/Plateau

The **SYBR Green Dissociation Curve** experiment typically has two phases: **Amplification** and **Dissociation** (or melting curve). Data can be collected for each of these parts. Prior to data analysis, it is necessary to select which data set will be used in the **Dissociation Curve** analysis (**Dissociation** data set) and which data set will be used for quantitative analyses (**Amplification** data set).

To select the data set to be used in the Amplification analysis (Amplification plots, Plate sample values, Standard curve, Initial template quantity, and Text report), click Amplification from the Select Data Collection Ramp/Plateau box in Analysis Selection/Setup. Then select the appropriate ramp/plateau.

Select Data Collection Ramp/Plateau Amplification Dissociation	
Data Collection Selection	×
Select amplification position:	Cancel

To assign a data set to use in the **Dissociation Curve** analysis, click **Dissociation** from the **Select Data Collection Ramp/Plateau** box and choose the appropriate data set.

SYBR Green Amplification Plots

The Amplification Plots screen, accessed through the Results tab, shows a plot of cycles versus fluorescence for a ramp or plateau on which data are gathered. Select the ramp or plateau for which data should be analyzed using the Analysis Selection/Setup screen.

Analysis Options

Fluorescence Data Type Plotted

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are: **R** (raw fluorescence), **dR** (baseline-corrected raw fluorescence), **Rn** (normalized fluorescence), and **dRn** (baseline-corrected normalized fluorescence).

Threshold Fluorescence

When basing plots on normalized fluorescence (**dR** or on **dRn**), the **Threshold fluorescence** value for each dye is listed on the command panel and is marked on the graph by a horizontal line. (Note that if a dye is hidden using the **Dyes shown** controls or if the check box next to the dye is cleared, the line corresponding to threshold fluorescence for that dye will not be shown on the graph.)

Threshold fluorescence is calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**. If desired, the threshold fluorescence may be adjusted manually. (To restore the software-calculated values, click **Reset**).

Baseline correction is required to establish a threshold fluorescence. Thus selections related to threshold fluorescence are unavailable for \mathbf{R} or \mathbf{Rn} data plots.

Last Cycle Setting

The Last cycle setting specifies the cycle from which the final (last) fluorescence values will be reported in the Text Report and Plate Sample Values screens. The position of the last cycle is marked on the graph with a solid vertical line.

This setting also affects the way Ct values are reported on other **Results** screens. While the **Last** cycle is not directly used to determine Ct, any wells with Ct values greater than the **Last cycle** value will be designated as **No Ct** in screens that display Ct.

Excluding Well/Dye Data from Analysis

To exclude the curve for one or more specific well/dye combinations from analysis, use either of the following two methods. (Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen.)

- From the list under Select amplification plots to display, select the curve(s) to be excluded and then click Disable Dyes.
- Double-click on any data point on the plot to be excluded. This action will exclude the entire data set for the well/dye corresponding to the plot.

To restore a plot that was disabled using either of these methods, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To restrict the plots shown to a subset of the selected well/dye combinations, use the **Select amplification plots to display** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a non-contiguous group.)

To display information about a specific data point on the plots, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** and **Plot Markers** are displayed or hidden. See *Graphs and Graph Properties* for more information.

SYBR Green Dissociation Curve

The **Dissociation Curve** screen, accessed through the **Results** tab, shows a plot of fluorescence (or its first derivative) as a function of temperature for the **Dissociation** segment of the experiment. Ensure that the data set collected during the **Dissociation** segment of the experiment is selected for analysis using the **Analysis Selection/Setup** screen.

The plot shown below is based on the first derivative of the normalized fluorescence reading multiplied by -1 [designated -Rn'(T)]. Plotting results in this way is generally appropriate for complex nucleic acid mixtures such as those generated during PCR amplification. In samples with amplicon, this type of plot will typically display at least two populations with different transition temperatures. Populations with a Tm of 80°C or higher correspond to the larger PCR products, and can usually be assigned as specific DNA product. DNA products displaying melting temperatures of < 75°C correspond to non-specific DNA products. It is important to note that these populations are not necessarily homogeneous, and may contain multiple PCR product species.

Analysis Options

Fluorescence Data Type Plotted

Dissociation curves may be based on four different types of fluorescence: **R** (raw fluorescence), **Rn** (normalized fluorescence), $-\mathbf{R'(T)}$, (the first derivative of the raw fluorescence reading multiplied by -1), and $-\mathbf{Rn'(T)}$ (the first derivative of the normalized fluorescence reading multiplied by -1). Select the desired type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel.

Product Melting Temperature Listings Settings

The Mx3000P software will identify and report **Product melting temperatures** for up to six product populations from each dissociation curve. Set the maximum number of products for which a melting temperature should be calculated using the **Max number** spin control box. This setting controls only the maximum number; the software may detect and report a smaller number of product populations for a given curve.

When basing plots on the negative derivative of fluorescence [-R'(T) or -Rn'(T)], you may specify the minimum peak height to be used for designating product populations. This peak height minimum may be entered in the **Min peak height** box as a decimal number or may be set manually by dragging the horizontal line indicator on the graph to the desired position.

Display Options

To restrict the plots shown to a subset of the selected well/dye combinations, use the **Select dissociation plots to display** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a noncontiguous group.)

To exclude the curve for one or more specific well/dye combinations from view, select the curve(s) to be excluded and then click **Disable Dyes**. Disabling a particular well/dye combination requires replicates to be treated **individually** (this may be specified on the **Analysis Selection/Setup** screen). To restore a disabled plot, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

To display information about a specific data point on the plots, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** and **Plot markers** are displayed or hidden. See *Graphs and Graph Properties* for more information.

Reporting of Melting Temperatures (Tm)

Melting temperatures for each of the identified product populations are displayed when the cursor is placed over any point on the curve of interest.

Melting temperatures will also be reported on the **Text Report** screen when the appropriate **Tm Product** boxes are selected in the **Columns** selection on that screen.

SYBR Green Plate Sample Values

The **Plate Sample Values** screen displays **Fluorescence** values or **Ct** values for the sampled wells in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Either the fluorescence or the Ct value for each dye for which data was collected
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

🗾 Mi	c3000P (Sta	andalone) -	SYBR Gree	en - (SYBR (Green with	Dissociatio	on Curve Ex	ample.mot	p*]				_6×
File	Edit Instru	nent Tools	Options	Section Vie	н Window	Help		21.0					
	>	80	1 10 0	- -	🙂 🗳	² <u>A</u> 🚟	128	2 8				Setup	<u>Run</u> <u>Analysis</u>
	Anal	ysis Selec	tion/Setup			P	tesults						
	1	2	3	4	5	6	7	8	9	10	11	12	Area to analyze
	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	C Dissociation curve
A	Ref 18.91	Ref 18.91	Ref 18.91	Ref 18.91	Ref 18.91	Rel 19.91	Ref 18.91	Ref 18.91	Ref 18.91	Ref 18.91	Ref 18.91	Ref 18.91	Plate sample values
					<u> </u>			<u> </u>	<u> </u>	<u> </u>			C Stangard curve
	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	Unknown Ref	C Test report
в	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	
	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Last cycle: 40 I
с	Ref 18.91	Rief 18.91	Ref 18.91	Ref 18.91	Rud 18.91	Rel 18.91	Rod 18.91	Ref 18.91	Ref 18.91	Ref 18.31	Ref 18.91	Ruf 18.91	Display the values for
			<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>				C Puprescence
	NTC Ref	NTC Ref	NTC Ref	NTC Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	Standard Ref	John Lass
D	**** 2	**** 2	**** 2	^{88,08} 2	28.24 3	28.24 3	28.24 3	28.24 - 3	22.78 4	22.18 4	22.18 4	22.18 4	dia V
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	
E	20.20	20.20	Plat 20.20	20.20	19.07	18.07 C	19.07	19.07 C	17.78 7	17.78 7	17.78 T	17.78 🦷	
	\leq	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		-	-	-	-	
	Ref	Unknown Ruf	Ref	Unkinown Ref	Ref	Unishown Ref	Ref	Ref	Ref	Ref	Ref	Ref	
Ľ	° ~ 8	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	
F	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	
G	20.84	20.34	20.34	20.34	20.34	20.34	20.34	20.34	20.34	20.34	20.34	20.34	
⊢	linknam	Linkoorn	Unincen	Unincen	Unincen	Unincum	Linimour	Unincun	Inimum	Inimum	Internet	Ibinous	
н	Ref. 20.34	Ref 20.34	Ref 20.34	Ref 20.34	Ref. 20.34	Ref.	Ref. 20.34	Ref 29.34	Ref 20.34	Ref 20.34	Ref 20.34	Ref 20.94	
1	<u>o</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>o</u>	<u> </u>	
- Dye	s shown						Well types	s shown					A.1
	ROX	SYBR	1				Unlena	wn	NTC	Shandard			
SYBR	: Slope: -4	286 (71.1)	2) RSq: 0.9	998									Door Closed Lamp Off

Analysis Options

Display the Values for Fluorescence or Ct

Under **Display the values for**, specify the form of the data to be displayed by selecting either the **Fluorescence** or the **Ct using** radio button. You will also need to specify the type of fluorescence data to be either displayed or used in calculations by selecting a data type from the menu below the selected radio button. Refer to the tables below for descriptions of the fluorescence data type abbreviations in the menus.

Data Type	How Calculated						
R Last	final fluorescence						
dR Last	final fluorescence minus the initial fluorescence						
Rn Last	normalized final fluorescence						
dRn Last	normalized final fluorescence minus the normalized initial fluorescence						
R Last/R First	final fluorescence divided by the initial fluorescence						

When displaying Fluorescence values, the following fluorescence data types are available:

When displaying **Ct** values, Ct calculations may be based on the following fluorescence data types:

Data Type	How Calculated
dR	baseline-corrected fluorescence
dRn	baseline-corrected normalized fluorescence

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last cycle setting also affects the reporting of Ct. Any wells having Ct values greater than the Last cycle value will be reported as **No Ct**.

SYBR Green Standard Curve

The **Standard Curve** is a plot of the initial template quantity in the **Standard** wells (X-axis), versus the **Ct** (threshold cycle). A least mean squares curve fitting algorithm is used to generate the standard curves displayed. Curves are displayed for each dye for which data was collected in **Standard** wells. **Unknown** wells selected during **Analysis Selection/Setup** are also plotted on the standard curve (using a different data point marker) based on their measured **Ct** values.

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, no data will be plotted on this chart.

Analysis Options

Fluorescence Data Type for Ct Determinations

Select the type of fluorescence data to be used for Ct determinations from the **Ct based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected raw fluorescence), and **dRn** (baseline-corrected normalized fluorescence).

Ct based on:	
dRn	•
dR	
dRn	

Confidence Interval

The confidence interval for each standard curve may be displayed by selecting the **Show confidence interval** checkbox. The resulting graph shows the confidence limits as hashed lines. The lines show the range of Initial Quantity values at a particular Ct that cannot be statistically distinguished from the fit line with more certainty than the confidence level (**Level** %) selected. The width of the confidence interval is an indicator of the quality of the fit of the data to the standard curve. Confidence interval calculations require a **Replicates** setting of **Treat individually**. Confidence level values may be exported to an Excel file, a text file or an XML file by using the **Export Chart Data** commands on the **File** menu.

Threshold Fluorescence

The **Threshold fluorescence** value for each dye, as calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**, is listed on the command panel. If desired, the threshold fluorescence for a given dye may be adjusted manually by entering a new value in the spin control box for the dye. (To restore the software-calculated values, click **Reset**).

Threshold fluorescence									
SYBR	0.070	÷	Reset						
N/A		i i	Reset						
N/A		* *	Reset						
N/A		* *	Reset						

Excluding Well/Dye Data from Analysis

To exclude a specific well/dye data point from analysis, double click on the data point on the chart. Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen. To restore an excluded data point, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To display information about a specific data point on the plot, place the cursor over the point of interest to display the following information: well location or replicate number, dye name, well type, the initial template quantity and the Ct.

If the well is a **Standard**, the initial template quantity is the amount assigned to the well during plate setup. If the well is an **Unknown**, the initial template quantity is the interpolated amount based on the standard curve.

Note If **Display tooltips** is cleared (deselected) on the **Display** tab of the **Preferences** dialog box, this well information will not be displayed.

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** is displayed or hidden. See *Graphs and Graph Properties* for more information.

Interpretation and Use of Curve Attributes

RSq Value, Slope, and Amplification Efficiency

The graph legend displays information about each curve plotted. (If no legend is displayed on the screen, open the **Graph Properties** dialog box by double-clicking on the graph, and then select the **On** radio button under **Legend**.) Besides correlating plot markers with dyes and well types, the legend displays the R Squared (**RSq**) value and the equation for the line [y = m*log(x) + b], where m is the slope of the line]. The amplification efficiency (**Eff.**), calculated from the slope, is also displayed.

Log fit values
SYBR Standards, RSq:0.995
 - SYBR Unknowns
SYBR, Y = -4.086*LOG(X) + 38.59, Eff. = 75.7%

The **RSq** value is an indicator of the quality of the fit of the standard curve to the **Standard** data points plotted. The value will always be between 0 and 1. The closer the value is to 1, the better the fit of the line.

The slope of the curve is directly related to the average amplification efficiency throughout the cycling reaction. The equation that relates the slope to amplification efficiency is:

PCR Efficiency = $10^{(-1/\text{slope})} - 1$

where PCR Efficiency corresponds to the proportion of template molecules that are doubled every cycle. From this equation it follows that a reaction with 100% efficiency will result in a slope of -3.322.

Initial Template Quantity Calculator

To use the displayed standard curve to calculate an interpolated quantity of template in another sample from the run based on the Ct determined for the sample, choose the dye from the **Select dye** menu, then enter a **Ct** value. The software will calculate and display the interpolated initial template quantity (**Interpolated qty**). Note that initial template quantities are automatically determined, based on the standard curves, for all **Unknowns** in the same experiment, and these results may be viewed on the Initial Template Quantity results screen.

┌─ Initial template qu	antity calculator
Select dye:	SYBR 💌
Enter Ct:	
Interpolated qty:	

Amplification Efficiency Calculator

Enter either a Slope value or an amplification Efficiency value into the Amplification efficiency calculator to convert between values, based on the following equation:

PCR Efficiency = $10^{(-1/\text{slope})} - 1$

Amplification effi	ciency calculator
Slope:	
Efficiency (%):	

SYBR Green Initial Template Quantity

The Initial Template Quantity screen displays interpolated quantities of template added to Unknown wells before thermal cycling in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Initial template quantity (for **Unknowns**, the value interpolated from the standard curve based on the Ct calculated for the **U**nknown; for **Standards**, the amounts entered during plate setup)
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, a standard curve cannot be plotted and an error message will appear in place of results in the **Unknown** wells.

💆 Mb	(3000P (St	andalone) ·	- SYBR Gree	en - (SYBR I	Green with	Dissociati	on Curve Ex	cample.mx	P*]						_ 8 ×
File	Edit Instru	ment Tools	Options	Section Vie	w Window	Help									
	📂 🖬	#	100	× 🖗	😍 🔳	ΣΔ 🔳	1 2 8	2 ?			ŝ	Setup	<u>R</u> un	Analy	sis
	Anal	ysis Selec	tion/Setup			F	Results								
	1	2	2		6	9	7	0	0	10	11	12	-Area to analyze		
All	-	2	3	4	5	6	/	8	9	10	11	12	C Amplification	plote	
	Ref 1144000	Ref 9 234-e003	Ref	Ref 1224-4002	Ref	Ref	Ref 0 554 + 000	Ref	Ref	Ref 9 33 4 4000	Ref	Ref	C Plate sample	value:	
A	5.55464005	3.3349-003	3.33647003	5.55464003	3.3369 003	3.3364 1003	5.55464005	3.33484003	3.3364 1003	5.55464005	3.3338-003	3.3364 4003	C Standard curv	/e	
	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Initial template	e quantity	
в	P.df 9.334e+002	Ref 9.334e+003	Ref 9.334e+002	Ref 9.324e+002	Ref 3.334e+003	Ref 9.334e+002	Ref 9.224e+002	Ref 9.334e+003	Ref \$.334e+002	Raf 9.224e+002	Ref 3.334e+003	Ref 9.334e+002	C Tegt report		
													Interpolated templa	te quantity based o	an:
	Unknown Ref	Unknown Ref	Unknown	Unknown Ref	Unknown	Unknown	Unknown Ref	Unknown	Unknown	Unknown Ref	Unknown Ref	Unknown	dRn		-
С	9.884e+008	9.334e+003	8.334±+008	9.884e+003	9.334e+003	8.334±+008	9.384e+003	9.334e+003	9.334±+003	9.8846+008	9.334e+003	9.334±+003			
	NTC	NTC	NTC	NTC	Starytayd	Standard	Standard	Standard	Standard	Standard	Standard	Standard			
n.	Ref 4.62	Ref 4.62	Ref 4.62	Ref 4.F2	Ref 1.00e+003	Ref 1.00++003	Ref 1.00x+003	Ref 1.00e+003	Ref 2.03a+003	Ref 2.00x+003	Ref 2.00e+003	Ref 2.00a+003			
Ľ	- Z	- 4	- <u> </u>	- 4		0			-						
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard			
E	5.00+1000	5.00e+003	5.00++002	5.00e+000	1.00+1034	1.00++004	1.00+1004	1.00+4004	2.00++004	2.00++004	2.00++004	2.00++004			
		<u> </u>			<u> </u>										
	Ref	Unknown Ref	Ref	Ref	Unknown Ref	Ref	Ref	Unknown Ref	Ref	Ref	Unknown Ref	Unknown Ref			
F	4.304e+003	4.304e+003	4.3046+008	4.304e+003	4.304e+003	4.304e+009	4.304e+003	4.304e+003	4.304±+008	4.804e+008	4.304e+003	4.304±+008			
	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown			
G	Ref 4.304k+003	Ref 4.304e+003	Ref 4.304e+008	Ref 4.304e+003	Ref 4.304e+003	Ref 4.304e+003	Ref 4.504e+003	Ref 4.304e+003	Ref 4.304e+003	Ref 4.504e+003	Ref 4.304e+003	Ref 4.304e+003			
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		2	2	<u> </u>	<u> </u>	2				
	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown Ref	Unknown	Unknown	Unknown Ref	Unknown	Unknown			
н	4.30de+000	4.304e+003	4.304+003	4.30de+003	4.30.de+003	4.384+003	4.30de+003	4.304e+003	4.304+003	d 30de+000	4.30.4e+003	4.334x+003			
Dyes	s shown		_				Well type:	s shown							
	RDX	SYBR					Unkno	wen	ятс ј	Starvdard					
SYBR	: Slope: 4	286 (71.1)	%) RSq: 0.	998									Door Closed	Lamp Off	2/58

Analysis Options

Fluorescence Data Type for Ct Determinations

Select the type of fluorescence data to be used to calculate the Ct values to be used for interpolation from the Interpolated template quantity based on menu on the command panel. Available fluorescence data types are: dR (baseline-corrected raw fluorescence), and dRn (baseline-corrected normalized fluorescence).

SYBR Green Text Report

The Text Report screen shows the data from a run in text format.

Der Heining Freislich Dre Weit Type Registrate Threshold (din) Querithy (cogies) R5g (din) Querithy (cogies) R5g (din) Application plots FAM Using 3 0.0127 23.34 1.00e+003 0.999 -4.290 Piletion of the sample values FAM Standard 3 0.0127 23.34 1.00e+003 0.999 -4.290 Piletion of the sample values FAM Standard 5 0.0127 20.01 5.00e+003 0.999 -4.290 Piletion of the sample values FAM Standard 5 0.0127 10.00e+003 0.999 -4.290 Piletion of the sample values Piletion of t	-	Analyzic Color	tion/Return		-	Deculto	<u> </u>	1	
Dre Weit Type Repicter Threshold (diru) Ct (diru) <thct (diru)<="" th=""> Ct (diru)</thct>		Analysis Selet	Notiosemb			rvesuits			
PAM Unition 1 0.0127 23.81 1.0044403 0.981 4.300 PAM Standard 4 0.0127 22.18 2.004403 0.981 4.300 PAM Standard 5 0.0127 22.18 2.004403 0.981 4.300 PAM Standard 5 0.0127 10.04404 0.981 4.320 C Standard ouve Plate sample values PAM Standard 6 0.0127 10.04404 0.991 4.320 C Standard ouve Standard ouve Standard ouve<	Dye	Well Type	Replicate	Threshold (dRn)	Ct (dRn)	Quantity (copies)	RSq (dRn)	Slope (dRn)	Area to analyze
PAH Standard 3 0.0127 22.02 0.0790 -4.20 FAH Standard 5 0.0127 22.02 5.00e+003 0.596 -4.20 FAH Standard 5 0.0127 20.02 5.00e+003 0.596 -4.20 FAH Standard 6 0.0127 10.07 1.00e+003 0.596 -4.200 FAH Standard 7 0.0127 10.73 2.00e+004 0.596 -4.200 FAH Standard 7 0.0127 10.73 2.00e+004 0.596 -4.200 FAH Standard 7 0.0127 10.73 2.00e+004 0.596 -4.200 FAH Standard 7 0.0127 20.34 4.541e+003 0.596 -4.200 FAH Univorm 6 0.0127 20.34 4.541e+003 0.596 -4.200 FAH Standard 7 0.0127 20.34 4.541e+003 0.596 -4.200 FAH Standard 7 0.0127 20.34 -541e+003 0.596	EAM	Unknown	- 1	0.0127	18.91	1.0546+004	0.998	-4.290	C Amplification plots
FAM Standard 5 0.0122 20.20 Standard 0.998 -4.200 FAM Standard 6 0.0122 19.73 2.000+004 0.998 -4.200 FAM Standard 7 0.0127 17.73 2.000+004 0.998 -4.200 FAM Standard 7 0.0127 20.34 4.941e+003 0.998 -4.200 FAM Unknown 8 0.0127 20.34 9.998 -4.200 FAM Unknown 8 0.0127 20.34 9.998 -4.200 9.998 -4.200	FAM	Standard	4	0.0127	22.18	2.00e+003	0.998	-4.290	C Dissociation curve
FAM Standard 6 0.0127 10.00+00H 0.998 -4.290 FAM Standard 7 0.0122 17.73 2.000+00H 0.998 -4.290 FAM Standard 7 0.0122 20.34 4.941e+003 0.998 -4.290 FAM Standard 6 0.0127 20.34 4.941e+003 0.998 -4.290 FAM Call 6 6 6 0.0127 20.34 4.941e+003 0.998 -4.290 Call	FAM	Standard	5	0.0127	20.20	5.00e+003	0.998	-4.290	C Plate sample values
FAM Standard 7 0.0127 17.73 2.00e+004 0.998 -4.290 FAM Unknown 8 0.0127 20.34 4.941e+003 0.998 -4.290 FAM Unknown 8 0.0127 20.34 4.941e+003 0.998 -4.290 C Initial template quantity FAM Unknown 8 0.0127 20.34 4.941e+003 0.998 -4.290 C Initial template quantity FAM Unknown 8 0.0127 20.34 4.941e+003 0.998 -4.290 C Initial template quantity FAM Initial template Initial template Initial template Initial template quantity Init	FAM	Standard	6	0.0127	19.07	1.00e+004	0.998	-4.290	C Standard curve
PAM Unknown 8 0.0127 20.34 4.941e+003 0.998 -4.290 Image: Contents of the second	FAM	Standard	7	0.0127	17.73	2.00e+004	0.998	-4.290	C Initial template quantity
Last cycle: 40 *** C and final call based on: Gfin Meting temperature [Trij results based of RTT] Column Well Syme Well Syme Well Type Well Type Well Type Replicate Symbol R Last d R Last d R Last B R Last B R Last Contents Drive Select All Defaults Autosize columnet Hit is Contents Drive	FAM	Unknown	8	0.0127	20.34	4.941e+003	0.998	-4.290	Test report
Ct and final call based on: GFin Mething temperature [Tm] results based on [AT[T] Column Well Name Ope Well Type Ope Well Type Papicode Symbol Attosive columns Threshold Select All Defaults Autosive columns Hid & Contents Only									Last cycle: 40 -
dFin Mething temperature [Tri] results based of [ATT] Column Well Well Name Ope Well Type R Last BR Last<									Dt and final call based on:
Meting temperature [Tm] results based of [ATT] Column Well Well Name Due Well Type Meting temperature [Tm] results based of [ATT] Column Well Name Due Well Type Replicate Symbol R Last Autosize column Hd & Contents Duly									dRn
Image: Select All Defaults									Meiting temperature (Tm) results based of
Column Well Well Name Ope Well Type Replicate Symbol R Last GR Last									[-R(T)
Well Well Name Ope Well Type Replicate Symbol Replicate Symbol R Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Select All Defaults Lostents Only									Column
Well Name Dye Well Type Well Type Replicate Symbol R Last GR Last GR Last GR Last GR Last Contents Defaults Contents Contents Defaults Contents Defaults Contents Defaults Contents Defaults Contents Defaults Contents Con									Vel Vel
Image: Select All Contents Drive									Well Name
Well Type Replicate Symbol R Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Rh.Last Contents Only Hid & Contents Only									☑ Dye
Prepriore Symbol R Last Image: Symbol Ima									Well Type
A Last Alast Alast Alast Alast Allast Contents Contents									Reninate Suppol
GR Last GR CAST GR GR G									Blat
GRi Last GRi Last GRi Last RLast/RFist GRi Last RLast/RFist Select AI Defaults Autosize columne Hidt & Contents Only									- Blad
Generata Deja									Balast
Select AJ Defaults Autosize columns Hdt & Contents Only									- Relat
Contents Only									Con Last
Select All Defaults Autosize columna Hidt & Contents Drily									HLastHFirst
Select All Defaults Autosize columns Hick & Contents Drig									Threshold
Autosize columne Hich & Contents Drily									Select All Defaults
Hdt & Contents Only									Autosize columns
									Hdr & Contents Contents Only
									_

Analysis Options

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported when fluorescence value columns (such as **dRn Last**) are selected for display. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last cycle setting also affects the reporting of Ct and the Final Call. Any wells having Ct values greater than the Last cycle value will be reported as No Ct and will be called as negative (-).

Ct and Final Call Based On

Select the type of fluorescence data that the reported **Ct** and **Final Call** should be based on from the **Ct** and **final call based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected fluorescence) and **dRn** (baseline-corrected normalized fluorescence).

Ct and final call based on
d
R
Tm Results Based On

Select the type of fluorescence data plot that the reported melting temperature (**Tm**) should be based on from the **Melting temperature (Tm) results based on** menu on the command panel. Available designations are: -**R'(T)**, for plots based on raw fluorescence (the negative of the first derivative) and -**Rn'(T)**, for plots based on normalized fluorescence (the negative of the first derivative).

Melting temperature (Tm) results	: based on:
-R'(T)	•

Display Options

Columns Included in the Report

Select the **Columns** to be included in the text report by checking the boxes next to the column names. To exclude columns that are selected by default, click on the check box to deselect the column name. To select all columns to display, click **Select All**. The default settings for column selection can be restored by expanding the **Defaults** menu and then clicking **Get**.

If the included columns will not fit in the screen, a horizontal scroll bar appears at the bottom of the window to allow horizontal scrolling.

Column		
🗹 Well		
🗖 Well Name		
🗹 Dye		
🗹 Well Type		
🗹 Replicate Symbol		
🗖 R Last		
🗖 dR Last		
🗖 Rn Last		
🗖 dRn Last		
RLast/RFirst		
☑ Threshold		
Baseline Start Cycle		
Baseline End Cycle		
1 Ct		•
Select All	Defaults	•
Autosize columns		
Hdr & Contents	Contents Only	

Column Width

To facilitate viewing data, columns can be automatically sized. Clicking the **Contents Only** button will cause each column to be automatically resized to the width of the widest data cell in that column (some column headers may be only partially displayed using this setting). Clicking the **Hdr & Contents** button will cause each column to be resized to the widest cell in that column, including the header cell.

Columns can also be resized manually by dragging the column dividers with the mouse.

Mx3000PTM Real-Time PCR System

Exporting Text Report Data

Text report data can be exported from the application in text, Microsoft Excel spreadsheet or XML format for analysis. Text report exporting options are available from the **File** menu. See *Exporting Data to Other Applications* in the *File Menu* section for more information.

File	Edit	Instrument	Tools	Options	Section	View	Win
N	ew					Ctrl+N	
0	pen					Ctrl+O	
C	lose						
S	ave					Ctrl+S	
S	ave As					Ctrl+A	
							_
In	nport \	Well Names					_
E	xport I	instrument Da	ita				•
E	xport (Ihart Data					>
E:	xport 1	lext Report					
E	xport t	o PowerPoint	R			Ctrl+W	
E	xport t	o Image File				Ctrl+I	

Mx3000P System Experiments: Allele Discrimination/SNP's Real-Time

The Allele Discrimination/SNP's Real-Time Experiment Type

The Allele Discrimination/SNP's Real-Time experiment type uses fluorogenic probes to determine the allelic composition of DNA samples. Two fluorogenic probes, labeled with two spectrally distinct dyes, are used to discriminate between two alleles. For example, if amplification in an unknown DNA sample is detected for the dye identifying the wild-type allele but not for the dye identifying a mutant allele, the sample can be designated as wild-type homozygous. If amplification in an unknown DNA sample is detected for the dye identifying the mutant allele but not for the dye identifying the wild-type allele, the sample can be designated as mutant homozygous. If amplification is detected for both dyes, the unknown sample is designated as heterozygous for the two alleles. With properly designed probes, this assay is sensitive enough to detect a single-base difference (single-nucleotide-polymorphism or SNP) between two alleles.

Molecular beacons can be used in a variety of PCR applications, but are commonly used in Allele Discrimination assays due to the high specificity of the molecular beacons in recognizing nucleotide sequence mismatches in DNA and RNA. The hairpin shape of the molecular beacon causes mismatched probe/target hybrids to easily dissociate at significantly lower temperatures than exactly complementary hybrids. This thermal instability of mismatched hybrids increases the specificity of molecular beacons. See *Molecular Beacons Probes* in the *Getting Started* section for more information on the mechanism of action of molecular beacons in QPCR assays.

Monitoring PCR reactions in real-time produces a fluorescence signal during each cycle. Results are displayed as an **Amplification plot** that reflects the change in fluorescence during cycling. For Allele Discrimination/SNP's Real-Time experiments, fluorescence is typically monitored and reported during each annealing step when the molecular beacon is bound to its complementary target.

In the analysis of Allele Discrimination/SNP's Real-Time experiments, the Mx3000P software uses the threshold cycle (Ct) value for each dye in each sample to determine the genotypes of the samples. The threshold cycle is the cycle at which the fluorescence signal is first detectable above background. A Ct value of 24–32 is expected for a sample that contains the specific allele recognized by the probe. A Ct value equal to the final cycle of the PCR reaction (typically 40) indicates the absence of a specific allele. Results are conveniently displayed in the Dual Color Scatter Plot, which shows the Ct for the dye specific to one allele plotted against the Ct for the dye specific to the other allele. Plotted points are grouped according to their positions on the scatter plot, providing a convenient visualization of samples which share the same genotype (allelic composition).

For applications in which a highly quantitative measurement of copy number is not required, the Mx3000P system also offers the Plate Read/Allele Discrimination experiment type, in which fluorescence is monitored when cycling is complete.

Allele Discrimination/SNP's Real-Time Plate Setup

In the Setup section of the software, open the Plate Setup tab. Shown below is a typical plate setup for Allele Discrimination/SNP's Real-Time.

<mark>у М</mark> я	Mx3000P (Standalone) - Allele Discrimination / SNP's Real-Time - [Allele Discrimination Real-Time Example.mxp*]													
				<u>` </u>	l 🥶 🕒 Drefile Cet			8				etup j		Analysis
All	1	2	3	4	5	6	7	8	9	10	11	12	I <u>m</u> port	Defaults 🔻
	FAM Neg	Unknown	Unknown	Unknown	NTC								Quick	: Setup
A	1		5	7	9								Well type:	•
<u> </u>	FAM	FAM	FAM	FAM	FAM								Collect fluorescence	e data
в	TET	TET	TET	TET	TET								TET	🗖 HEX
	FAM	FAM 🔍	FAM 🗢	FAM	FAM 😇								ROX	FAM
	FAM Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								Beference due: B0X	
С	1		5	7	9								- Identify replicates	
-	FAM TET Neg	FAM Unknown	FAM Unknown	FAM Unknown	FAM NTC								Replicate symbol:	_
D			TET		¹¹ 10									Auto-Increment
	FAM –	FAM	FAM	FAM	FAM									
	TET Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								Cjear Seler	sted Wells
E	2	<u>4</u>	_ 6	. 8	10									
	TET Neg	Unknown	Unknown	Unknown	NTC									
F	2		6	<u> </u>	"1 0								Plate setup comments	<u>.</u>
	FAM	FAM	FAM	FAM	FAM									
G														
ď														
н														
													Full-Screen Plate	Ne <u>x</u> t >
Dyes	shown		1 5011	_			- Well types	shown —	UTC .	TET Non	EAM N	-		
Assia		and Duce	FAM	d walls. Th	o Chi kon	aalaata mu		wir J	no j	icineg j	rxw neg		Door Closed	Lamp Off

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) by using the **Well type** menu on the command panel. The well types available in an Allele Discrimination/SNP's Real-Time experiment are described in the table below.

Well Type	Description
Unknown	Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target.
Buffer	Contains only buffer, used to monitor the background fluorescence attributable to the buffer.
NAC	No amplification control; contains all reaction components except DNA polymerase.
NPC	No probe control; contains all reaction components except the fluorescence-labeled probe.
NTC	No template control; contains all reaction components except the template nucleic acid.
No RT	No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.
Dye-specific Negative Control	Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in Optics Configuration . Used in combination with NTC wells to calculate positive and negative calls.
Dye-specific Positive Control	Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in Optics Configuration . Used to validate the reaction mixture.

After assigning the **Well type** to the selected well(s), select the dyes for which data should be collected in these wells using the **Collect fluorescence data** check boxes.

If you are using a passive reference dye in the selected well(s) select the dye from the **Reference** dye menu. If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.

Assign the replicate set number to the selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

Once plate setup is complete, click Next to proceed to the Thermal Profile Setup screen.

Allele Discrimination/SNP's Real-Time Thermal Profile Setup

When the **Thermal Profile Setup** tab is selected in a new Allele Discrimination/SNP's Real-Time experiment, a default thermal profile opens. The default thermal profile should be modified to the specific requirements of the new experiment, as discussed below. It is also possible to **Import** the thermal profile from an existing experiment into the new experiment.

Shown in the figure below is the default thermal profile for an Allele Discrimination/SNP's Real-Time experiment when using the software's **Original Settings**. (If you are using a user-defined default set, the default thermal profile stored in that default set will appear when the **Thermal Profile Setup** screen is opened. See *Preferences-Defaults* for more information about the use and management of **Defaults**.)

In the profile below, segment 1 is an activation step of 95°C for 10 minutes that is compatible with a hot start reaction. Segment 2 consists of 40 cycles of amplification using a plateau of 95°C/30 seconds for denaturation, followed by a plateau of 55°C/1 minute for annealing, and a plateau of 72°C/30 seconds for extension.

Some applications use a two-step amplification protocol instead of the three-step protocol in the default thermal profile. A typical two-step amplification segment consists of 40 cycles of amplification using a plateau of 95°C/30 seconds for denaturation, followed by a plateau of 60°C/1 minute for annealing and extension.

Data are collected at the end of each annealing plateau in the default thermal profile. These collection settings are suitable for a typical Allele Discrimination/SNP's Real-Time experiment.

Modify the default thermal profile as necessary. At minimum, ensure that the temperature setting for the annealing plateau in Segment 2 is appropriate for the PCR primer pair used in the current experiment. The properties of all other plateaus, ramps, and segments may also be adjusted. See *Thermal Profile Setup* in the *How-To (Detailed Protocols)* section for more information about changing the default thermal profile and data collection options.

Allele Discrimination/SNP's Real-Time Data Analysis Analysis Setup

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Select the data collection ramp/plateau from which data should be analyzed.
- 3. Specify the desired analysis settings on the command panel.

🗾 Mi	[Mx3000P (Standalone) - Allele Discrimination / SNP's Real-Time - [Allele Discrimination Real-Time Example.mxp*]												
File													
📋 🗁 • 🖬 🕮 🕮 🗠 🗠 🖳 🏵 🔼 🚣 📕							. 🔎					etup	<u>Run</u> <u>Analysis</u>
	Analys	sis Selec	tion/Setu	ip)		F	Results						
	1	2	3	4	Б	6	7	8	0	10	11	12	Select data collection ramp/plateau:
All	ERM Neg	Linknown	Jinknown	Hoknown	NTC	0	, ·	0		10		12	€ Segment 1
۵	TET	TET	TET	TET	TET								Ramp 1
	FAM	FAM 🔍	FAM O	FAM	FAM 🙂								- Plateau 1
	FAM Neg	Unknown	Unknown	Unknown	NTC								Q Plateau 2
В	1		5	7	9								Ramp 3
⊢	FAM FAM Neg	FAM Unknown	FAM	FAM	FAM NTC								Placeau 3
с	TET		TET		TET								
	FAM	FAM 🔍	FAM 🔍	FAM	FAM 💛								
	TET Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								Exclude Dyes
D	2	4	6	. 8	10								Replicates
⊢	FAM TET Neg	Unknown	Unknown	FAM Unknown	FAM NTC								Treat individually
E	TET		TET CO		^{TET} 1 ()								I reat collectively
	FAM (FAM	FAM	FAM	FAM								Algorithm enhancements
	TET Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								Amplification-based threshold
F	2	<u>-</u> 4	6	. 8	10								Moving average
⊢	P AM	1.000	rem.	rem.	1.000								Analuis Tam Calinas
G													Anagsis reim seturigs
													Adv. Algorithm Settings
н													Analysis <u>c</u> omments:
l ''													
	_												
- Dye:	shown						- Well types	s shown					P
	TET	ROX	FAM				Unkno	vvn t	ITC	TET Neg	FAM Neg		
Analy	alvsis Selection/Setun												

See <u>Analysis Selection and Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. One of several available results screens will appear. Use the radio buttons under **Area to analyze** to navigate to different analysis screens. The following screens are available for Allele Discrimination/SNP's Real-Time analysis:

Amplification Plots Plate Sample Values Dual Color Scatter Plot Final Call Results Text Report

Mx3000P[™] Real-Time PCR System

Allele Discrimination/SNP's Real-Time Amplification Plots

The Amplification Plots screen, accessed through the Results tab, shows a plot of cycles versus fluorescence for a ramp or plateau on which data are gathered. Select the ramp or plateau for which data should be analyzed using the Analysis Selection/Setup screen.

Analysis Options

Fluorescence Data Type Plotted

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are: **R** (raw fluorescence), **dR** (baseline-corrected raw fluorescence), **Rn** (normalized fluorescence), and **dRn** (baseline-corrected normalized fluorescence).

Threshold Fluorescence

When basing plots on normalized fluorescence (**dR** or on **dRn**), the **Threshold fluorescence** value for each dye is listed on the command panel and is marked on the graph by a horizontal line. (Note that if a dye is hidden using the **Dyes shown** controls or if the check box next to the dye is cleared, the line corresponding to threshold fluorescence for that dye will not be shown on the graph.)

Threshold fluorescence is calculated by the Mx3000P software according to the settings provided in **Analysis Term Settings**. If desired, the threshold fluorescence may be adjusted manually. (To restore the software-calculated values, click **Reset**).

Baseline correction is required to establish a threshold fluorescence. Thus selections related to threshold fluorescence are unavailable for \mathbf{R} or \mathbf{Rn} data plots.

Last Cycle Setting

The Last cycle setting specifies the cycle from which the final (last) fluorescence values will be reported in the Text Report and Plate Sample Values screens. The position of the last cycle is marked on the graph with a solid vertical line.

This setting also affects the way Ct values are reported on other **Results** screens. While the **Last** cycle is not directly used to determine Ct, any wells with Ct values greater than the **Last cycle** value will be designated as **No Ct** in screens that display Ct.

Excluding Well/Dye Data from Analysis

To exclude the curve for one or more specific well/dye combinations from analysis, use either of the following two methods. (Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen.)

- From the list under Select amplification plots to display, select the curve(s) to be excluded and then click Disable Dyes.
- Double-click on any data point on the plot to be excluded. This action will exclude the entire data set for the well/dye corresponding to the plot.

To restore a plot that was disabled using either of these methods, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Display Options

To restrict the plots shown to a subset of the selected well/dye combinations, use the **Select amplification plots to display** list near the bottom of the command panel. You may display a single plot or any subset of plots by selecting the desired plots from the list. (While selecting plots with the mouse, use the **Shift** key to select a contiguous group or the **Ctrl** key to select a non-contiguous group.)

To display information about a specific data point on the plots, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** and **Plot Markers** are displayed or hidden. See *Graphs and Graph Properties* for more information.

Allele Discrimination/SNP's Real-Time Plate Sample Values

The **Plate Sample Values** screen displays **Fluorescence** values or **Ct** values for the sampled wells in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Either the fluorescence or the Ct value for each dye for which data was collected
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

<mark>ј М</mark> ж	3000P (Sta	ndalone) -	Allele Disc	rimination	/ SNP's Rea	al-Time - [/	Allele Discri	imination R	teal-Time B	xample 3.r	nxp*]		_ B ×
File I	Edit Instrum	nent Tools	Options :	Section Vie	w Window	Help ¶∑ I⊞							
		l 😅 🗳	≝ [⊾] / tian /Ratur] ~ [[]						etup	
	Anaiy	/sis Selec	tion/Setup	_		R	esults	_					
All	1	2	3	4	5	6	7	8	9	10	11	12	Area to analyze
	FAM Neg	Unknown No Ct	Unknown 28.41	Unknown 29.46	NTC No Ct								Amplification plots Plate sample values
A	1	. 3	5		9								C Dual color scatter plot
	FAM Neg	Unknown	Unknown	26.55 Unknown	NO LE								C Final <u>c</u> all results C Text report
В	28.33	3	5	7	¹⁰ G								
	No Ct FAM Neg	25.64 Unknown	No Ct Unknown	26.87 Unknown	No Ct NTC								Last cycle: 36
с	28.34	No Ct	28.35	29.47	No Ct								Display the values for
	No Ct	25.54	No Ct 💛	26.61	No Ct								
n	No Ct	Unknown No Ct	Unknown 28.29	Unknown 29.49	NTC No Ct								• Ct using
	25.63 Z	25.58 ⁴	No Ct	0 26.61	No Ct								dRn 💌
	TET Neg	Unknown No Ct	Unknown 28.24	Unknown 29.29	NTC No Ct								
E	25 44 2	4	No Ct	26.54	1 U								
	TET Neg	Unknown No. Ct	Unknown 28.35	Unknown 23.56	NTC No.Ct								
F	2	4	6	8	10								
	25.48	25.51	No Ct	26.54	No Ct								
G													
-													
н													
Dyes	TET		EAM	_			EAM N	shown	nown	NTC	TET Neg	-	
Resul	ts _							• ,		,			Door Closed Lamp Off

Analysis Options

Display the Values for Fluorescence or Ct

Under **Display the values for**, specify the form of the data to be displayed by selecting either the **Fluorescence** or the **Ct using** radio button. For either of these options, you will need to specify the type of fluorescence data to be used in the analysis by selecting a data type from the menu below the selected radio button. Refer to the tables below for descriptions of the fluorescence data type abbreviations in the menus.

Data Type	How Calculated
R Last	final fluorescence
dR Last	final fluorescence minus the initial fluorescence
Rn Last	normalized final fluorescence
dRn Last	normalized final fluorescence minus the normalized initial fluorescence
R Last/R First	final fluorescence divided by the initial fluorescence

When displaying Fluorescence values, the following fluorescence data types are available:

When displaying **Ct** values, Ct calculations may be based on the following fluorescence data types:

Data Type	How Calculated
dR	baseline-corrected fluorescence
dRn	baseline-corrected normalized fluorescence

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last Cycle setting also affects the reporting of Ct. Any wells having Ct values greater than the Last cycle value will be reported as No Ct.

Allele Discrimination/SNP's Real-Time Dual Color Scatter Plot

The **Dual Color Scatter Plot** screen is useful to compare the amplification properties of two different targets (represented by two different dyes) in the same well. This form of analysis is especially useful for allele discrimination experiments, where the quantity of each of two possible alleles is indicated by a different dye.

Each plotted point represents the coordinates of either the fluorescence values or threshold cycle (Ct) values for the two dyes in a single well. For example, the X-axis may correspond to TET Ct while the Y-axis corresponds to FAM Ct and the plotted point (x,y) corresponds to the coordinates describing the two Ct values determined for a given well. The position of the data point for a given well on the scatter plot indicates the presence or absence of each allele. Colored rectangles on the plot are used to group wells with a common genotype (allelic composition). The shapes of the genotype-marking rectangles may be changed, and individual data points may also be excluded from the genotype group. The two alleles may be named on this screen, with the user-provided allele names reflected in the genotype descriptions of the wells on this and other **Results** screens.

Analysis Options

Last Cycle Setting

Last cycle:	40	•
-------------	----	---

The **Last cycle** setting specifies the cycle from which the fluorescence values will be plotted if **Fluorescence** is selected under **Display the values for**. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

This setting also affects the way Ct values are reported on this and other **Results** screens. While the **Last cycle** is not directly used to determine Ct, any wells with Ct values greater than the **Last cycle** value will be plotted with a Ct value corresponding to the last cycle for which data was collected. The same wells will be designated as **No Ct** in screens that display Ct values.

Plot the Values for Fluorescence or Ct

Under **Display the values for**, specify the form of the data to be plotted by selecting either the **Fluorescence** or the **Ct using** radio button. For either of these options, you will need to specify the type of fluorescence data to be used in the analysis from the menu below the selected radio button. Refer to the tables below for descriptions of the fluorescence data type abbreviations in the menus.

Display the values for Fluorescence	
dRn Last 💌	
C Ct using	
dRn 💌	

When plotting **Fluorescence** values, the following fluorescence data types are available:

Data Type	How Calculated
R Last	final fluorescence
dR Last	final fluorescence minus the initial fluorescence
Rn Last	normalized final fluorescence
dRn Last	normalized final fluorescence minus the normalized initial fluorescence
R Last/R First	final fluorescence divided by the initial fluorescence

When plotting **Ct** values, Ct calculations may be based on the following fluorescence data types:

Data Type	How Calculated					
dR	baseline-corrected fluorescence					
dRn	baseline-corrected normalized fluorescence					

Note that if no reference dye has been assigned to the wells and dRn, Rn Last or dRn Last is selected, a message like the following will appear below the graph:

Some of the selected wells have not been displayed. 4 of 18 did not have both dyes selected for analysis 4 of 18 did not have a reference dye specified

Allele Associations

The Allele associations section of the command panel is used to identify the association between each of the plotted dyes and the allele detected by the dye. The allele/dye specified in the top menu will be plotted on the X axis, and the allele/dye specified in the bottom menu will be plotted on the Y axis. Any two dyes assigned during **Plate Setup** may be selected in these menus.

Allele associations Allele A TET					
Allele B FAM					
Both TET and FAM					
Rename Alleles/Genotypes					

By default, alleles are named *Allele A* and *Allele B*. The allele names also correspond to the genotypes assigned to wells in which a single allele is detected. *Both* is the default name for the genotype group in which both alleles are detected. Each of these allele/genotype names may be changed to user-specified names by clicking **Rename Alleles/Genotypes**. When the following dialog box appears, enter the desired allele/genotype names and then click **OK**.

Rename Allele/Genotypes						
Allele A: wild-type						
Allele B: mutant						
Both: heterozyg	jote					
ОК	Cancel					

The new allele names will appear in the Allele associations section of the command panel. The specified allele or genotype names are also displayed on some other **Results** screens.

Display Options

Display of Genotype Groups on the Scatter Plot

Wells with a common genotype (allelic composition) are grouped on the scatter plot in colorcoded rectangles. The genotype corresponding to each group is indicated in the graph legend (see *Graph Properties* below). If a single allele was detected in a well, the genotype designation corresponds to the allele name. If both alleles were detected, the genotype is designated *Both* by default; this designation may be changed by clicking **Rename Alleles/Genotypes** on the command panel. If neither allele was detected, the genotype is designated *None*.

The size and shape of each rectangle may be changed by dragging any side of the rectangle with the mouse. The color of the rectangle and the enclosed group of data points may be changed for any genotype by double-clicking on the genotype's entry in the legend.

Note The size and shape of a rectangle does not convey information about dye intensity, data quality, or any other measured data attribute. The rectangles are only intended to identify and group the data points which fit the positive/negative calling result criteria that define each genotype.

Any well may be manually excluded from the genotype groups by double-clicking on the data point for the well. The following dialog box will appear.

Remove Well A1 🔀								
Remove well A1 from	genotype "wild-type"?							
Vec	No							
les								

Once **Yes** is selected, the symbol for the affected data point will change to the color and point style assigned to excluded data points. In addition, the **Genotype** for the well will change in the **Text Report**.

To restore any manually removed data points to their original genotype assignments, click **Reset Genotypes** on the command panel.

Rename Alleles/Genotypes	
Reset Genotypes	

Graph Properties

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the legend is shown or hidden and the attributes of the axes. See *Graphs and Graph Properties* for more information.

To display information about a specific data point on the scatter plot, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

Allele Discrimination/SNP's Real-Time Final Call Results

The **Final Call Results** screen provides a simple depiction of whether product was accumulated for each dye in each well in a plate format. A plus sign (+) signifies accumulation of product for the indicated dye, while a minus sign (-) signifies that product accumulation was not detected. Calling is based on Ct, where + is returned if the Ct is less than the last cycle for which data was collected and – is returned if the Ct is equal to the last cycle for which data was collected, indicating that the threshold fluorescence value was not attained during amplification.

In each well with a well type assigned, the following information is shown:

- Well type
- The final call for each dye for which data was collected. [For all well types, the reference dye (**Ref**) is not associated with a final call]
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

The allele associated with each dye is shown under Allele associations on the command panel. Allele names may be changed on the **Dual color scatter plot** screen.

🗾 Мж	[Mx3000P (Standalone) - Allele Discrimination / SNP's Real-Time - [Allele Discrimination Real-Time Example.mxp*]													
File E	le Edit Instrument Tools Options Section View Window Help													
								<u> .</u>			<u> </u>	etup	<u>Run</u> <u>Analysi</u>	<u>s</u> _
	Analy	sis Selecti	on/Setup		<u> </u>	R	esults							
All	1	2	3	4	5	6	7	8	9	10	11	12	Area to analyze	
	FAM Neg	Unknown	Unknown	Unknown	NTC								C Amplification plots O Plate sample values	
A	1		5	7	9								C Dual color scatter plot	
-	FAM -	FAM + Unknown	FAM - Unknown	FAM + Unknown	FAM - NTC								Final <u>call results</u> Text report	
в	TET +		TET +	TET + 7										
_	FAM -	FAM +	FAM -	FAM +	FAM -								Results based on Ct calculated from :	-
C	FAM Neg TET +	Unknown TET -	Unknown TET +	Unknown TET +	TET -									
Ŭ	FAM -	FAM +	FAM -	FAM +	FAM -								wild-type: TET	
	TET Neg	Unknown TET -	Unknown TET +	Unknown TET +	NTC TET -								mutant: FAM	
D	2	4	6	8	10									
	TET Neg	Unknown	Unknown	Unknown	NTC					-				
E	2		6	8	10									
	FAM +	FAM +	FAM -	FAM +	FAM -									
F	TET -	TET -	TET +	TET +	TET 1									
	FAM +	FAM +	FAM -	FAM +	FAM -									
G														
н														
	,													
														1.1
- Dyes	shown						- Well types	shown						
	TET	ROX	FAM				FAM Ne	eg Unki	nown	NTC	TET Neg	1		
Result	sults Door Closed Lamo Off													

Analysis Options

Fluorescence Data Type for Ct Determinations

Select the type of fluorescence data to be used to calculate the Ct values to be used for interpolation from the **Results based on Ct calculated from** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected raw fluorescence), and **dRn** (baseline-corrected normalized fluorescence). If dRn is selected, but no reference dye was assigned during **Plate Setup**, the final call result will be replaced with the error indicator of **No Ref**.

Effect of Threshold Fluorescence

Positive and negative calls are based on threshold cycle (Ct), the cycle at which the fluorescence signal first exceeds or equals the threshold fluorescence for the experiment. The settings that determine how threshold fluorescence is calculated may be accessed and adjusted on the **Threshold Fluorescence** tabbed page of the **Analysis Term Settings** dialog box. Threshold fluorescence may also be adjusted manually.

Allele Discrimination/SNP's Real-Time Text Report

<mark>У М</mark> ж3000	P (Stand	lalone) - Allele	Discrimination	/ SNP's P	eal-Time -	[Allele Discrimin	ation Rea	l-Time Example	3.mxp*]	
		a Tools Uptio	ns Section Vie		2 Σ <mark>Λ</mark>		2		Setup	Run Analysis
	Analysis Selection/Setup									
Well Name	Duo	Wall Turne	Doplicato	Belact	dDo Lock	Threshold (dDp)	L CE (dDa)	Einal Call (dBa)	Construng (d	
Sample 1	TET	EAM Nega	1 Kepiicace	0.614	0.240	0.0651	28.41		wild-type	Area to analyze
Sample 1	EAM	FAM Nega	1	0.869	0.240	0.0631	20.41 No.Ct	- T	wild-type	C Amplification plots
	TET	TET Negat	2	0.405	0.027	0.0651	No Ct		mutant	C Plate sample values
	EAM	TET Negat	2	1.370	0.541	0.0682	25.52	+	mutant	C Duel estes settes stat
Homo-Fam	TET	Unknown	3	0.400	0.021	0.0651	No Ct	-	mutant	O Dual color scatter plot
Homo-Fam	FAM	Unknown	3	1.362	0.539	0.0682	25.59	+	mutant	C Final <u>call results</u>
Homo-Fam	TET	Unknown	4	0.401	0.026	0.0651	No Ct	-	mutant	 Text report
Homo-Fam	FAM	Unknown	4	1.371	0.545	0.0682	25.50	+	mutant	
Homo-Tet	TET	Unknown	5	0.618	0.244	0.0651	28.39	+	wild-type	Last qualer 36
Homo-Tet	FAM	Unknown	5	0.871	0.060	0.0682	No Ct	-	wild-type	
Homo-Tet	TET	Unknown	6	0.622	0.247	0.0651	28.29	+	wild-type	Ct and final call based on:
Homo-Tet	FAM	Unknown	6	0.879	0.062	0.0682	No Ct	-	wild-type	
Hetero	TEL	Unknown	/	0.514	0.139	0.0651	29.57	+	heterozygote	jann 🗾
Hetero	FAM	Unknown		1.175	0.364	0.0682	25.58	+	neterozygote	
Hetero	EAM	Unknown	0	1 102	0.141	0.0651	29,44	+	heterozygote	
necero	TET	NTC	0	0.391	0.370	0.0002	20,30 No Ct	T	None	
	EAM	NTC	9	0.301	0.003	0.0682	No Ct		None	Vell Name
	TET	NTC	10	0.380	0.002	0.0651	No Ct	-	None	Due
	EAM	NTC	10	0.809	0.002	0.0682	No Ct	-	None	
										M Replicate Sumbel
										dR Last
										🛛 🗹 Rn Last
										🗹 dRn Last
										Baseline Start Cucle
										Deseline Stat Cycle
										Select All Defaults 🔻
										Autosize columns
										Hdr & Contents Contents Unly
- Dies show]
Jyes snow		ROX	EAM			EAM No.	Usker	NTC	TET Non	
		1.500	1.7500(J PAWINEg) OHKHOV	and mic) terneg	
Hesults										Door Closed Lamp Off 🗐 📾

The Text Report screen shows the data from a run in text format.

Analysis Options

Last Cycle

The **Last cycle** setting specifies the cycle from which the fluorescence values will be reported when fluorescence value columns (such as **dRn Last**) are selected for display. By default, the cycle shown is the last cycle of the ramp or plateau being analyzed.

The Last cycle setting also affects the reporting of Ct and the Final Call. Wells having Ct values greater than the Last cycle value will be reported as No Ct and will be called as negative (–).

Ct and Final Call Based On

Select the type of fluorescence data that the reported **Ct** and **Final Call** should be based on from the **Ct and final call based on** menu on the command panel. Available fluorescence data types are: **dR** (baseline-corrected fluorescence) and **dRn** (baseline-corrected normalized fluorescence).

Ct and final call based on	
dR	•

Display Options

Columns Included in the Report

Select the **Columns** to be included in the text report by checking the boxes next to the column names. To exclude columns that are selected by default, click on the check box to deselect the column name. To select all columns to display, click **Select All**. The default settings for column selection can be restored by expanding the **Defaults** menu and then clicking **Get**.

If the included columns will not fit in the screen, a horizontal scroll bar appears at the bottom of the window to allow horizontal scrolling.

Column							
🗹 Well							
Well Name							
🗹 Dye							
🗹 Well Type							
Replicate Symbol							
R Last							
dR Last							
Rn Last -							
dRn Last							
Inreshold Receive Start Cuele							
Select All Defaults 🔻							
Autosize columns							
Hdr & Contents Contents Only							

Column Width

To facilitate viewing data, columns can be automatically sized. Clicking the **Contents Only** button will cause each column to be automatically resized to the width of the widest data cell in that column (some column headers may be only partially displayed using this setting). Clicking the **Hdr & Contents** button will cause each column to be resized to the widest cell in that column, including the header cell.

Columns can also be resized manually by dragging the column dividers with the mouse.

Exporting Text Report Data

Text report data can be exported from the application in text, Microsoft Excel spreadsheet or XML format for analysis. Text report exporting options are available from the **File** menu. See *Exporting Data to Other Applications* in the *File Menu* section for more information.

File	Edit	Instrument	Tools	Options	Section	View	Win
N	lew					Ctrl+N	
C	pen					Ctrl+O	
C	lose						
s	ave					Ctrl+S	
S	ave As					Ctrl+A	
Ir	nport \	Vell Names					•
E	xport I	nstrument Da	ita				•
E	xport (Ihart Data					>
E	xport 1	'ext Report					
E	xport t	o PowerPoint	R			Ctrl+W	
E	xport t	o Image File.				Ctrl+I	

Mx3000P System Experiments: Molecular Beacon Melting Curve

The Molecular Beacon Melting Curve Experiment Type

After a molecular beacon is manufactured, its melting characteristics are verified by melting curve analysis to determine the molecular beacon's target specificity, experimental melting temperature (Tm), and the appropriate annealing temperature for subsequent PCR experiments. Melting curves are typically performed with the molecular beacon alone (**MB**) and in the presence of either a perfectly-matched (**MBO**) or a mismatched (**MBMO**) oligonucleotide target in order to determine the temperature that results in maximum specificity.

A melting curve displays the fluorescence of the molecular beacon at various temperatures in the presence or absence of the diagnostic single-stranded oligonucleotide targets. At high temperatures, the molecular beacon will assume an unstructured conformation and will fluoresce. In the absence of the single-stranded oligonucleotide target, as the temperature decreases the molecular beacon will assume a hairpin conformation, and fluorescence will be quenched. The temperature at which half-maximum fluorescence is obtained gives the Tm for that molecular beacon.

In the presence of either single-stranded oligonucleotide, as temperature decreases the molecular beacon will hybridize to the target, physically separating the fluorophore and quencher, and allowing fluorescence. At higher temperatures in the curve, the perfectly matched oligonucleotide (**Well type** of **MBO**) is expected to demonstrate greater binding (and therefore greater fluorescence) compared to the mismatched oligonucleotide (**Well type** of **MBO**). The temperature window displaying a significant difference in **Fluorescence** between the **MBO** and **MBMO** wells represents the range of acceptable annealing temperatures to achieve discrimination between the two target oligonucleotides.

Selecting the Optimal Annealing Temperature

An annealing temperature should be chosen at which the molecular beacon will bind efficiently to its complementary target, and at which the molecular beacon will adopt a stem-loop conformation when unbound to target. For allele discrimination or other assays requiring specificity, the annealing temperature should be chosen according to the temperature at which the molecular beacon binds to its completely complementary target but binds minimally to a mismatched target.

The figure below illustrates a typical molecular beacon melting profile performed in the development of an allele discrimination assay. Three melting curves are shown: molecular beacon alone (**MB**) (blue curve), molecular beacon plus its complementary single stranded oligonucleotide target (**MBO**) (red curve), and molecular beacon plus a single stranded oligonucleotide target containing a single mismatch (**MBMO**) (green curve). To ensure PCR assay specificity in discrimination, an annealing temperature at which the molecular beacon will bind to its completely complementary target but not to a mismatched target should be chosen. In this example, an annealing temperature of 60°C will provide low background fluorescence, high fluorescence when the perfectly matched target is present and low fluorescence when a target containing a single mismatch is present.

Molecular Beacon Melting Curve Plate Setup

In the **Setup** section of the software, open the **Plate Setup** tab. Shown below is a typical **Molecular Beacon Melting Curve** plate setup. In this example, the melting curve for a single molecular beacon labeled with TET is analyzed.

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) by using the **Well type** menu on the command panel. The well types available in a Molecular Beacon Melting Curve experiment are described in the table below.

Well Type	Description
MBO	Contains the molecular beacon plus its perfectly matched oligonucleotide.
MB	Contains the molecular beacon only.
МВМО	Contains the molecular beacon plus a single-base mismatched oligonucleotide.
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.

The **Active dye** menu is used to specify which dye will be displayed in the **Analysis** screens. If the experiment is analyzing the melting curve for more than one molecular beacon, select the dye corresponding to the molecular beacon that you want to analyze first. After the experiment has been run, the **Active dye** assignment may be changed in this menu to allow analysis of the other molecular beacons labeled with other dyes.

Select the dye(s) for which data should be collected for the selected wells using the **Collect fluorescence data** check boxes. Typically, only the dye(s) used to label the molecular beacon(s) will have data collected.

Assign replicate set numbers to selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

Once plate setup is complete, click Next to proceed to the Thermal Profile Setup screen.

Molecular Beacon Melting Curve Thermal Profile Setup

When the **Thermal Profile Setup** tab is selected in a new Molecular Beacon Melting Curve experiment, a default thermal profile opens. The default thermal profile should be modified to the specific requirements of the new experiment, as discussed below. It is also possible to **Import** the thermal profile from an existing experiment into the new experiment.

Shown in the figure below is the default thermal profile for a Molecular Beacon Melting Curve when using the software's **Original Settings**. (If you are using a user-defined default set, the default thermal profile stored in that default set will appear when the **Thermal Profile Setup** screen is opened. See *Preferences-Defaults* for more information about the use and management of **Defaults**.)

Segment 1 contains a plateau of 95°C for 3 minutes, which is used to denature the molecular beacon prior to the melting curve. The melting curve, in Segment 2, consists of 56 successive 1-minute plateaus in which the temperature is decreased by 1.0°C for each plateau (from 80°C to 25°C). This cycle-by-cycle decrease in temperature is indicated by the downward pointing arrow adjacent to the data collection marker for this plateau.

Data are collected throughout each plateau during the melting curve (Segment 2) in the default thermal profile. These settings are suitable for a typical Molecular Beacon Melting Curve.

If necessary, modify the default thermal profile according to the specific requirements of the current experiment. The properties of any of the plateaus, ramps, and segments may be adjusted. See *Thermal Profile Setup* in the *How-To (Detailed Protocols)* section for more information about changing the default thermal profile and data collection options.

Molecular Beacon Melting Curve Data Analysis

Analysis Setup

If more than one molecular beacon was assayed in the experiment, navigate to the **Plate Setup** screen and select the dye to be analyzed from the **Active Dye** menu.

Í <u>m</u> port	Defaults 🔻						
Quick	: Setup						
Well type:	•						
Active <u>d</u> ye:							
Collect fluorescend	ce data						
E ROX	🗖 CY5						
FAM	TET						
-Identify replicates-							
Replicate sym <u>b</u> ol:	•						
Auto-Increment							
Clear Selected Wells							

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Select the data collection ramp/plateau from which data should be analyzed.
- Specify the desired analysis settings on the command panel. For Molecular Beacon Melting Curve experiments, the only analysis settings that are available are **Replicates** (controlling replicate treatment) and **Adv. Algorithm Settings** (controlling the statistical basis for reporting read data). The remainder of the settings on the command panel concern analysis of amplification data only.

🕅 Mx3000P (Standalone) - Molecular Beacon Melting Eurve - [Molecular Beacon Melting Eurve Example.mxp*]											X		
File Edit Instrument Tools Options Section View Window Help													
	൙ 🔒	8	00	4 👰	🕄 💽	Σ_Δ 🛄	بر حر 🛛	9 ?			S	}etup	<u>Run</u> <u>Analysis</u>
Analysis Selection/Setup Results													
All	1	2	3	4	5	6	7	8	9	10	11	12	Select data collection ramp/plateau:
				MB	MB	MBO	MBO	MBMO	MEMO				E Segment 2
A				- 1	1	2		3	3				- Ramp 1
				TELSS	TET SP	TET ex	TET SS	TET RE	TET <<				E - Segment 3
						NBO	NEG	NEWO	ND NO				
в				4	4	5	5	6	6				
	<u> </u>												
с													
													Egclude Dyes
D													Replicates
													C Treat individually
ε													Treat collectively
													Algorithm enhancements
													Amplification-based threshold
F													Adaptive paseline Moving average
	<u> </u>												
G													Analysis Term Settings
ũ													Adv. Algorithm Setting:
	1												
н													Analysis gomments:
Dyes	shown						-Well types	shown					
	TET ME MEO MEMO												
Analy	Analysis Selection/Setup Door Closed Lamp Off Miles												

See <u>Analysis Selection/Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. One of two available results screens will appear. Use the radio buttons under **Area to analyze** to navigate between analysis screens. The following screens are available for Molecular Beacon Melting Curve analysis:

Molecular Beacon Melting Curve Annealing Range

Molecular Beacon Melting Curves/Temperature

Molecular Beacon Melting Curve Annealing Range

The **Annealing Range** screen displays the optimal annealing range for the beacon(s) tested. The optimal range is the temperature range in which the molecular beacon plus perfectly-matched oligo (MBO) has a greater fluorescence than the beacon plus mismatched oligo (MBMO) and in which the background fluorescence is low.

The **Suggested Annealing Temperature Range**, calculated using the algorithm described below, is reported on the command panel at the right of the screen, and is indicated on the plot by two vertical lines.

Suggested Annealing Temperature Range Calculations

The Mx3000P system software uses the algorithm below to calculate the annealing temperature range.

Note *The annealing temperature algorithm does not incorporate data points collected below* 40°C or above 85°C.

Suggested Minimum Annealing Temperature

- 1. The minimum fluorescence value of the MBMO melting curve (green curve in the plot above) is determined.
- 2. The temperature at this minimum MBMO fluorescence value is determined.
- 3. The difference between the MBO (red curve in the plot above) and the MBMO curve fluorescence values at the temperature corresponding to the MBMO minimum is calculated.
- 4. 10% of the difference between the MBO and the MBMO fluorescence values (MBO value minus MBMO value) is added to the MBMO minimum fluorescence value.
- 5. This adjusted fluorescence value corresponds to two temperatures on the MBMO curve. The lower of these two temperatures is the minimum temperature of the **Suggested Annealing Temperature Range**.

Suggested Maximum Annealing Temperature

- 1. Following steps 1–3 above, the difference between the MBO curve (red curve above) and the MBMO (green curve above) fluorescence values at the temperature corresponding to the MBMO minimum is calculated.
- 2. 60% of the difference between the MBO and the MBMO fluorescence values is added to the MBMO minimum fluorescence value.
- 3. This adjusted fluorescence value corresponds to one temperature on the MBO curve. This is the maximum temperature of the Suggested Annealing Temperature Range.

Molecular Beacons Melting Curve Melting Curves/Temperature

The **Melting Curves/Temperature** screen calculates and displays the melting temperature for the beacon(s) tested.

The **Melting Temperature**, calculated using the algorithm described below, is reported on the command panel at the right of the screen, and is indicated on the plot by a vertical line.

Calculating the Suggested Melting Temperature

The Mx3000P system software uses the algorithm below to calculate the melting temperature.

- 1. The range of fluorescence of the MBO curve (red curve in the plot above) is calculated.
- 2. The value from step 1 is multiplied by 0.5.
- 3. The resulting value is added to the MBO curve minimum fluorescence value.
- 4. The temperature at which the fluorescence value of the MBO curve equals the result of step3 is the reported **Melting Temperature**.

Mx3000P System Experiments: Quantitative Plate Read

The Quantitative Plate Read Experiment Type

The **Quantitative Plate Read** experiment type uses a standard curve to estimate the amount of target present in an **Unknown** sample using a fluorescence-labeled probe or SYBR Green dye for detection. A series of **Standard** samples, containing dilutions of a known amount of target, are included in the experiment to generate a **Standard Curve** that relates the quantity of the specific target to the final fluorescence reading. The standard curve is then used to estimate the template quantity in **Unknown** wells based on the fluorescence reading for each well.

In contrast to the Mx3000P system's real-time **Quantitative PCR** experiment type, which uses threshold cycle (Ct) values to calculate initial quantities, **Quantitative Plate Read** experiments use only endpoint fluorescence values for calculating the initial quantities in **Unknowns**. Thus, although this experiment type reports **Initial template quantity** on analysis screens, the plate read measurements are taken at a phase in PCR amplification where the amplification efficiency can be influenced by limiting reagents and other spurious factors and this form of analysis should not be assumed to provide an accurate quantification of starting copy number of a target sequence.

Quantitative Plate Read Plate Setup

In the Setup section of the software, open the Plate Setup tab. Shown below is a typical plate setup for Quantitative Plate Read.

🐹 Ma	3000P (Sta	andalone) ·	Quantitat	ive Plate R	ead - [New	Experimen	t.mкp*]						_@ ×
	Edit Instru Plate	ment Tools	options] ⊮າ ⊂	Section Vie	w Window	Help ΣΔ	ير €ر	9 9				<u>i</u> etup	<u>B</u> un <u>A</u> nalysis
All	1 Standard	2 Standard	3 Standard	4 Standard	5 Standard	6 Standard	7 Standard	8 Standard	9 Standard	10 Standard	11 Standard	12 Standard	Defaults
A	REF 1.00++003	REF 1.00++003	REF 1.00e+003	REF 1.00++003	8EF 5.00+0022	REF 5.00+10022	REF 5.00+1002	8.00+0022	REF 2.50e+002	REF 2.50++002	REF 2.50e+002	REF 2.50e+002	Well type: Unknown
в	REF 1.25e+002	REF 1.25e+002	REF 1.25e+002	REF 1.25e+002	REF 6.25e+001	REF 6.25e+001	REF 6.25e+001	REF 6.25e+001	REF 3.11e+001	REF 2.11e+001	REF 2.11e+001	REF 3.11e+001	FROX CYS FSYBB CHEX
с	NTC SYBR 7	NTC SYBR 7	NTC SYBR 7	NTC SYBR 7	NTC SYBR 8	NTC SYBR 8	NTC SYBR 8	NTC SYBR 8	NTC SVBR 9	NTC SYBR 9	NTC SYBR 9	NTC REF SVBR 9	Reference gye: RDX All wells Standard quantity RDX P 31.12
D	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Uninovn REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Uninovn REF SYBR	Unknown REF SYBR 2	Unknown REF SYBR 2	AutoIncrement:10x Standard units: copes
E	Unanown REF SYBR	Unknown REF SVER 3	Unknown REF SYBR 3	Unanown REF SYBR	Unknown REF SYBR	Unknown REF SYBR	Unenown REF SYBR	Unknown REF SVBR 4	Unknown REF SVBR	Unknown REF SYBR	Unknown REF SYBR	Unknown REF SVDR	Idenity repicates Replicate symbol 15 Auto-Increment
F													Clear Selected Wells
G													Set Read Properties Plate setup gomments:
н													
													Full-Screen Plate Start Run
Dyes	Dyes shown Well types shown ROX SYBR Standard NIC												
Assign	Assign Well Type and Dyes to selected wells. The Chi key selects multiple wells. Door Closed Lamp Off Pres												

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Note In order for the Mx3000P software to calculate p-values for positive or negative calling in Unknown wells, the Quantitative Plate Read experiment must include at least three NTC or dye-specific negative control wells for each dye.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) by using the **Well type** menu on the command panel. The well types available in a Quantitative Plate Read experiment are described in the table below.

Well Type	Description								
Unknown	Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target.								
Buffer	Contains only buffer, used to monitor the background fluorescence attributable to the buffer.								
NAC	No amplification control; contains all reaction components except DNA polymerase.								
NPC	No probe control; contains all reaction components except the fluorescence- labeled probe.								
NTC	No template control; contains all reaction components except the template nucleic acid.								
Standard	Contains a complete reaction mixture including a known concentration of target nucleic acid. Used to generate a standard curve, which is then used to relate fluorescence to initial template quantity in Unknown wells.								
No RT	No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.								
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.								
Dye-specific Negative Control	Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in Optics Configuration . This well type assignment is rarely used in Quantitative Plate Read experiments.								
Dye-specific Positive Control	Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in Optics Configuration . This well type assignment, which qualitatively designates a positive signal for the target without specifying the absolute amount, is rarely used in Quantitative Plate Read experiments.								

After assigning the **Well type** to the selected well(s), select the dyes for which data should be collected in the wells using the **Collect fluorescence data** check boxes.

If you are using a passive reference dye in the selected well(s) select the dye from the **Reference** dye menu. If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.

If the selected well(s) is a **Standard**, for each dye for which standard curve data will be collected, enter the amount of template. To do this, first select the dye from the pulldown menu following **Standard quantity**. Next, enter the quantity of template added to the selected well(s) as a decimal number (for example, 400 or 1.234). Specify the units for the quantity in the **Standard units** menu. Instead of assigning quantities to wells on an individual basis, it is also possible to assign quantities to **Standard** wells sequentially using the **Auto-Increment** feature.

Assign the replicate set number to the selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

To run the experiment, set the read properties and then click Start Run to initiate the run.

Quantitative Plate Read Data Analysis

Analysis Setup

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Specify the desired analysis settings on the command panel. (Algorithm Enhancements apply only to real-time experiments and the settings in this section are unavailable for plate read experiments.)

📶 Mx3000P (Standalone) - Quantitative Plate Read - [Quantitative Plate Read Standard Curve Example.mxp*]													
File Edit Instrument Tools Options Section Wew Window Help													
	2 1	80	100	- 9	😍 🔳	²∆ 🛄	10 %	2 8			, S	ietup	<u>Run</u> <u>Analysis</u>
Analysis Selection/Setup Results													
All	1	2	3	4	5	6	7	8	9	10	11	12	Select data collection ramp/plateau:
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	E Segment 1
A	5.00++006	5.00+000	5.00++000	5.00++000	2.50++000	2.50+1000	2.50++000	2.50++000	1.25+1000	1.25+400	1.25+1000	1.25+1000	Q, Plateau 1
						-			\simeq		<u> </u>	\simeq	
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	NTC	NTC	NTC	NTC	
6	4	- 4	4	4	<u> </u>	2		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
С													
													Exclusion Duran
D													- Renicates
													C Treat individually
													Treat collectively
Ľ													Algorithm enhancements
													Amplification-based threshold
F													Adaptive baseline Moving avistage
G													Analysis Term Settings
													Adv. Algorithm Setting:
													Analysis comments:
"													
								_	_				
- Dyes	Des shown												
	NOX SVSR Standard MIC Unknown												
Analy	Analysis Selection/Setup												

See <u>Analysis Selection/Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. One of several available results screens will appear. Use the radio buttons under **Area to analyze** to navigate to different analysis screens. The following screens are available for Quantitative Plate Read analysis:

<u>Plate Sample Values</u> <u>Standard Curve</u> <u>Initial Template Quantity</u> <u>Dual Color Scatter Plot</u> <u>Fluorescence Intensity Values</u> <u>Final Call Results</u> <u>Text Report</u>
Quantitative Plate Read Plate Sample Values

The **Plate Sample Values** screen displays fluorescence values for the sampled wells in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Fluorescence value for each dye for which data was collected
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

🐹 Ma	3000P (Sta	ndalone) -	Quantitati	ive Plate R	ead - [Quar	ititative Pl	ate Read S	tandard Cu	irve Examp	de.mxp*]			_8 ×
	at Intru	ent 1006	options :	u P	e window	Σ _Δ	ير 🔍 ا	9			C A	Setup	<u>Run</u> <u>Analysis</u>
	Analy	/sis Select	tion/Setup			P	tesults						
AII A	1 Standard 4571	2 Standard 4571	3 Standard 4571	4 Standard 4571	5 Standard 3425	6 Standard 3426	7 Standard 1425	8 Standard 3426	9 Standard 2907	10 Standard 2907	11 Standard 2507	12 Standard 2907	Area to analyze Fjate sample values Stangland curve Initial template quantity
в	Standard 2620	Standard 2520	Standard 2620	Standard 2820	Standard 2463	Standard 2463	Standard 2462	Standard 2462	NTC 2334 6	NTC 2884 6	NTC 2884 6	NTC 2884 6	Dual color scatter plot Flyorescence intensity values Final gall results Tegt report
c													Fluorescence.
D													
E													
F													
G	2219 7	2219 7	2219 7	Unknown 2219	2979	2979 <u>8</u>	2979	2979 8	2548 <u>9</u>	2548 <u>9</u>	2548 9	2548 9	
н	283910	2839 0	²⁸⁹⁹ 10	289910	Unknown 3245	Uninown 3245	Unimown 8245	Uninovn 3245	Unknown 4871 2	Unknown 4671	Unknown 4671	4671 1 2	
- Dyes	shown						Well types	shown	700 L	NTC	Unknown		
Resul	la la												Door Closed Lamp Off

Analysis Options

Select the type of fluorescence data to be displayed from the **Fluorescence** menu on the command panel. Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post- Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Quantitative Plate Read Standard Curve

The **Standard Curve** is a plot of the initial template quantity in the **Standard** wells (X-axis), versus **Fluorescence**. A least mean squares curve fitting algorithm is used to generate the standard curves displayed. Curves are displayed for each dye for which data was collected in **Standard** wells. **Unknown** wells selected during **Analysis Selection/Setup** are also plotted on the standard curve (using a different data point marker) based on their measured **Fluorescence** values.

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, no data will be plotted on this chart.

Analysis Options

Fluorescence Data Type

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)

Confidence Interval

The confidence interval for each standard curve may be displayed by selecting the **Show confidence interval** checkbox. The resulting graph shows the confidence limits as hashed lines. The lines show the range of Initial Quantity values at a particular Fluorescence that cannot be statistically distinguished from the fit line with more certainty than the confidence level (**Level %**) selected. The width of the confidence interval is an indicator of the quality of the fit of the data to the standard curve. Confidence interval calculations require a **Replicates** setting of **Treat individually**. Confidence level values may be exported to an Excel file, a text file or an XML file by using the **Export Chart Data** commands on the **File** menu.

Display Options

To display information about a specific data point on the plot, place the cursor over the point of interest to display the following information: the well location, the well type, the dye associated with the well, the initial template quantity and the fluorescence. If the well is a **Standard**, the initial template quantity is the amount assigned to the well during plate setup. If the well is an **Unknown**, the initial template quantity is the interpolated amount based on the standard curve.

Note If **Display tooltips** is cleared (deselected) on the **Display** tab of the **Preferences** dialog box, this well information will not be displayed.

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the **Legend** is displayed or hidden. See *Graphs and Graph Properties* for more information.

To exclude a specific well/dye data point, double click on the data point on the chart. (Disabling a particular well/dye combination requires a replicate treatment setting of **Treat individually**, specified on the **Analysis Selection/Setup** screen). To restore an excluded data point, go to the **Analysis Selection/Setup** screen, click on **Exclude Dyes**, and then press the button corresponding to the specific dye/well combination, restoring the button to a depressed state.

Interpretation and Use of Curve Attributes

The graph legend displays information about each curve plotted. (If no legend is displayed on the screen, open the **Graph Properties** dialog box by double-clicking on the graph, and then select the **On** radio button under **Legend**.) Besides correlating plot markers with dyes and well types, the legend displays the R Squared (**RSq**) value and the equation for the line (y = mx + b).

The **RSq** value is an indication or the quality of the fit of the standard curve to the **Standard** data points plotted. The value will always be between 0 and 1. The closer the value is to 1, the better the fit of the line.

Using the Initial Template Quantity Calculator

To use the displayed standard curve to calculate an interpolated quantity of template in another sample from the run based on the fluorescence reading, choose the dye from the **Select dye** menu, then enter the **fluorescence** value. The software will calculate and display the interpolated initial template quantity (**Interpolated qty**). Note that initial template quantities are automatically determined, based on the standard curves, for all **Unknowns** in the same experiment, and these results may be viewed on the Initial Template Quantity results screen.

ity calculator
SYBR 💌
3341
2.26 copies

Quantitative Plate Read Initial Template Quantity

The Initial Template Quantity screen displays interpolated quantities of template added to Unknown wells before thermal cycling in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Initial template quantity (for Unknowns, the value interpolated from the standard curve based on the fluorescence measured for the Unknown; for Standards, the amounts entered during plate setup)
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

If less than two **Standard** wells were selected in **Analysis Selection/Setup**, a standard curve cannot be plotted and an error message will appear in place of results in the **Unknown** wells.

Analysis Options

Fluorescence Data Type

Select the type of fluorescence data to be used for interpolation from the **Fluorescence** menu on the command panel. Available fluorescence data types are:

Data Type	How Calculated					
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)					
Rpost	final fluorescence (use also for single reading initiated with Post-Read)					
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)					
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)					
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)					
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)					

Quantitative Plate Read Dual Color Scatter Plot

The **Dual Color Scatter Plot** screen is useful to compare the final quantities of two different targets (represented by two different dyes) in the same well.

Each plotted point represents the coordinates of the fluorescence values for two dyes in a single well. For example, the X-axis may correspond to FAM fluorescence while the Y-axis corresponds to TET fluorescence and the plotted point (x,y) corresponds to the coordinates describing the two fluorescence values determined for a given well.

Analysis Options

Dye Selection

Specify the dye for which data should be plotted on each axis by selecting the dyes of interest from the X axis and Y axis menus on the command panel. Any two dyes assigned during **Plate Setup** may be specified.

A well will not be included in the scatter plot if the two dyes selected for the plot are not assigned to that well. An error message similar to the example shown below will appear if wells selected during **Analysis Selection/Setup** cannot be displayed.

Some of the selected wells have not been displayed. 8 of 18 did not have both dyes selected for analysis

Fluorescence Data Type Plotted

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are:

Data Type	How Calculated					
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)					
Rpost	final fluorescence (use also for single reading initiated with Post-Read)					
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)					
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)					
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)					
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)					
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)					

Note that if no reference dye has been assigned to the wells and a normalized data type (**Rn**) is selected, a message like the following will appear below the graph:

Some of the selected wells have not been displayed. 4 of 18 did not have both dyes selected for analysis 4 of 18 did not have a reference dye specified

Display Options

To display information about a specific data point on the scatter plot, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including the attributes of the axes. See *Graphs and Graph Properties* for more information.

Quantitative Plate Read Fluorescence Intensity Values

The **Fluorescence Intensity Values** screen displays a colorized image of final calls and fluorescence intensities. A plus sign (+) indicates a positive call and a minus sign (-) indicates a negative call.

A spectrum of colors, displayed at the bottom of the screen, is used to indicate the relative fluorescence readings for each dye in each well.

The circle for each well is divided into arcs which correspond to the dyes selected for analysis in the **Analysis Selection/Setup** screen. An **R** in a portion of the circle indicates that portion refers to a reference dye. The replicate set number, if any, appears in the lower right corner of the well.

Interpreting the Intensity Values Display

The accumulation of product can be interpolated by comparing the color in the arc to the horizontal color bar at the bottom of the screen. On the color bar, as fluorescence values increase, the corresponding color shifts from blue towards red. Note that the bar only covers the fluorescence range measured on the plate. For example, in the example shown above, the range of fluorescence measured in the run was between 2202 and 4699, and this is the range that is covered by the color bar.

Interpreting Final Calls

The **p-value** is the probability that the mean of one set of sample data is different from the mean of another set of sample data. The first set of sample data is always the control wells in the analysis selection. When replicates are being treated individually, the second set of sample data consists of a single well (usually an **Unknown** well). When replicates are being treated collectively, the second set of sample data consists of all of the replicates. If the **p-value** exceeds the user-specified confidence level, the well/dye is called as positive and signified with a plus sign (+); otherwise, the well is called as negative (no difference detected) and signified with a minus sign (-). The confidence level for positive calling is displayed on the command panel. This value may be changed using the **Analysis Term Settings** dialog box that may be accessed by clicking the corresponding button on the **Analysis Selection/Setup** screen.

Analysis Options

Fluorescence Data Type Displayed and Used for Calculations

Under **p-values and final calls based on,** specify the form of the fluorescence data to be displayed and used in calculating the p-values used for making final calls.

p-values and final	p-values and final calls based on:						
Rpre		•					
Confidence level:	99.00%						

Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Display Options

Adjusting the Fluorescence Intensity Range

The range of fluorescence intensity covered by the color spectrum can be manually specified by clicking the **Edit False Color Limits** button to open the **False Color Limits** dialog box.

The minimum value for the **Low Fluorescence Limit** is 0 and the maximum value for the **High Fluorescence Limit** is 65535. A range of at least 4 must be specified. Manually specifying a narrow range of values is helpful when attempting to discern small differences in fluorescence values among samples.

False Colors Versus Grayscale

By default, the Mx3000P software uses a multi-hued spectrum of colors to depict differences in fluorescence values on this screen. The depiction may be changed to grayscale by deselecting the **Use false colors** checkbox. All colors will turn to shades of gray and the color bar will display a gradient of gray from black (lowest fluorescence) to white (highest fluorescence).

Quantitative Plate Read Final Call Results

The **Final Call Results** screen provides a simple depiction of whether product was accumulated for each dye in each well in a plate format. A plus sign (+) signifies detection of product accumulation for the indicated dye, while a minus sign (-) signifies that product accumulation was not detected. See below for more information on how final calls are made.

In each well with a well type assigned, the following information is shown:

- Well type
- The final call for each dye for which data was collected. [For all well types, the reference dye (**Ref**) is not associated with a final call]
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

Mx Mx	3000P (Sta	indalone) -	Quantitati	ive Plate R	ead - [Quai	ntitative Pl	ate Read S	tandard Cu	ите Екатр	le.mxp*]			X
File E	dit Instrun	nent Tools	Options	Section Vie	w Window	Help							· · · · · · · · · · · · · · · · · · ·
	B	88	100	4 👰	😯 🔼	ΣΔ	200	9 7			Ş	ietup	<u>Run</u> <u>Analysis</u>
	Analy	/sis Select	tion/Setup			B	lesults						
All	1	2	3	4	5	6	7	8	9	10	11	12	C Plate sample values
	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	C Stangard curve
^	SYBR +	SYER + 1	SYBN # .	SYDR +	ster • 2	SYBR * 2	san+2	ster: 2	SYBR*3	⁵⁴⁸⁺ 3	****3	SABK + 3	C Initial template quantity
	Standard	Standard	Standard	Standard	Sandard	Standard	Standard	Standard	NTC	NTC	NTC	NTC	Dual color scatter plot Dual color scatter plot Dual color scatter plot
в	SYBR + 🎢		SYBR -	SYBR - 🔏	SYBR -	SYBR - 🖳	SYBR - E	SYBR -	SYBR - 🚖	SYBR - 🚖		SYBR - 🚖	Final gall results
	+							<u> </u>	V	V	<u> </u>	V	C Tegt report
													p-values and final calls based on:
С													Rpost 💌
													Confidence levet 99.00%
D													
E													
F													
	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	
G	SYBR - 7		SYBR -	SYBR - 7	SYBR - 2	SYBR -	SYBR -	SYBR - 2	SYBR - 9	SYBR- 9		sybr - 91	
	Linknown	Inknown	Unknown	Linknown	Interven	linknown	Linknown	Interven	linknown	Linknown	Interven	Unknown	
н	518.8	5108+0	SYDR+	548.4	SYDR + C	SYDR + C	500.0	5108 + 4	SYDR + C	548+	5108 +	syst +	
	-1U		10	-10						12		12	
	_		_		_	_		_	_			_	
- Depr	about to						- Mail turner	, shown					
Gas	SYBR						Standa	and 1	NTC	Unknown			
Result	2												Door Closed Lamp Off

Interpreting Final Calls

The **p-value** is the probability that the mean of one set of sample data is different from the mean of another set of sample data. The first set of sample data is always the control wells in the analysis selection. When replicates are being treated individually, the second set of sample data consists of a single well (usually an **Unknown** well). When replicates are being treated collectively, the second set of sample data consists of all of the replicates. If the **p-value** exceeds the user-specified confidence level, the well/dye is called as positive and signified with a plus sign (+); otherwise, the well is called as negative (no difference detected) and signified with a minus sign (-). The **Confidence level** is displayed on the command panel. This value may be changed using the **Analysis Term Settings** dialog box..

Analysis Options

p-Values and Final Calls Based On

Under **p-values and final calls based on,** specify the form of the fluorescence data to be used in calculating the p-values used for making final calls.

p-values and final	calls based on:	
Rpre		-
Confidence level:	99.00%	

Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Note that if no reference dye has been assigned to the wells and a normalized data type (**Rn**) is selected, a **No Ref** error designation will replace the final call entry on the plate.

Quantitative Plate Read Text Report

The Text Report screen shows the data from a run in text format.

) 🖻		1 in 19	⇔ 👰	😧 🔁 ΣΔ	🔳 🔎 🔎 🍞		<u>S</u> etup	<u>Run</u> <u>Analysis</u>
	Analysis	Selection/Set	ιp		Results			
ell Type	Dye	Replicate	Rpost	Final Call (Rpre)	Quantity Avg.	Quantity Std. Dev.	<u>*</u>	data in particular
indard	SYBR	1	4543	+	5.00	0.000e+000		Hiea to analyze
ndard	SYBR	1	4660	+	5.00	0.000++000		C Plate sample values
ndard	SYER	1	4501	+	5.00	0.000e+000		C Standard curve
ndard	SVBR	1	4580	+	5.00	0.000+000		C. Initial template quantity
ndard	SYBR	2	3375	+	2.50	0.000e+000		C Dual aslas satisfies also
vdard	SVBR	2	3417	+	2.50	0.000e+000		 Dual color scatter plot
dard	SYER	2	3340	+	2.50	0.000+000		Flyorescence intensity values
dard	SVBR	2	3571	+	2.50	0.000e+000		C Final call results
dard	SYBR	3	2959	+	1.25	0.000+000		G Textment
dard	SVBR	3	2989	+	1.25	0.000e+000		se i egrieport
dard	SYBR	3	2919	+	1.25	0.000e+000		nonliner and final calls based on
dard	SVBR	3	2760	+	1.25	0.000e+000		pratice and intercals based on
dard	SYBR	4	2717	+	6.250e-001	0.000++000		Rpre
dard	SVBR	4	2586		6.250e-001	0.000e+000		
dard	SYBR	4	2630	-	6.250e-001	0.000++000		Column
dard	SVBR	4	2547	-	6.250e-001	0.000e+000	_	C Martin
dard	SYBR	5	2439		3.125e-001	0.000++000	1	L wei
dard	SYER	5	2446	-	3.125e-001	0.000e+000		Well Type
dard	SVBR	5	2487		3.125e-001	0.000++000		Well Name
dard	SYER	5	2479	-	3.125e-001	0.000++000		Dve
	SVBR	6	2307		4.964e-002	6.355e-002		E Banlasta Sumbal
	SYER	6	2363	-	4.964e-002	6.355e-002		Methicate Symbol
	SVBR	6	2393		4.964e-002	6.355e-002		Hpre
	SYER	6	2272	-	4.964e-002	6.355e-002		✓ Apost
nown	SVBR	7	2203		0.000e+000	0.000e+000		Brpre
nown	SYBR	7	2206	-	0.000e+000	0.000e+000		Broost
nown	SVBR	7	2261		0.000e+000	0.000+000		Bread Brea
nown	SYBR	7	2205		0.000e+000	0.000++000		L Hpost-Hpre
OWD	SVBR	8	2346		1.026e-001	1.218e-001		Rnpost-Rnpre
nown	SYBR	8	2358	-	1.026e-001	1.218e-001		Rpost/Rpie
nown	SVBR.	8	2460	-	1.026e-001	1.218e-001		p-values
nown	SYBR	8	2352		1.026e-001	1.218e-001		E Final Call
nown	SYER	9	2412	-	4.808e-001	2.041e-001		
nown	SVER	9	2598		4.808e-001	2.041e-001		Select All Defaults
nown	SYER	9	2585	-	4.808e-001	2.041e-001		
nown	SVER	9	2598		4.808e-001	2.041e-001		Autospe columna
nown	SYER	10	2782	+	1.27	2.067e-001		Hide & Contents Contents Delu
nown	SVER	10	2878	+	1.27	2.067e-001		
nown	SYER.	10	2997	+	1.27	2.067e-001	-	
nian	SVED	10	2941	*	1 27	2.067e-001	<u> </u>	
s sho	~n				- Well types shown -			
OVD	P				Standard	MTC Information		

Analysis Options

p-Values and Final Calls Based On

Under **p-values and final calls based on,** specify the form of the fluorescence data to be used in calculating the p-values used for making final calls.

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Available fluorescence data types are:

Note that if no reference dye has been assigned to the wells and a normalized data type (**Rn**) is selected, a **No Reference** error designation will replace the p-value and final call entries in the report.

Display Options

Columns Included in the Report

Column	
🗹 Well	
🗹 Well Type	
🗖 Well Name	
🗹 Dye	
🗹 Replicate Symbol	
Rpre R	
Rpost	
Rnpre	
Rnpost	
D Rpost-Rpre	
Rnpost-Rnpre	
Rpost/Rpre	
p-values	-
LIVI Final Call	
Select All	Defaults 🔻
Autosize columns	
Hdr & Contents	Contents Only

Select the **Columns** to be included in the text report by checking the boxes next to the column names. To exclude columns that are selected by default, click on the check box to deselect the column name. To select all columns to display, click **Select All**. The default settings for column selection can be restored by expanding the **Defaults** menu and then clicking **Get**.

If the included columns will not fit in the screen, a horizontal scroll bar appears at the bottom of the window to allow horizontal scrolling.

Column Width

To facilitate viewing data, columns can be automatically sized. Clicking the **Contents Only** button will cause each column to be automatically resized to the width of the widest data cell in that column (some column headers may be only partially displayed using this setting). Clicking the **Hdr & Contents** button will cause each column to be resized to the widest cell in that column, including the header cell.

Columns can also be resized manually by dragging the column dividers with the mouse.

Exporting Text Report Data

Text report data can be exported from the application in text, Microsoft Excel spreadsheet or XML format for analysis. Text report exporting options are available from the **File** menu. See *Exporting Data to Other Applications* in the *File Menu* section for more information.

File	Edit	Instrument	Tools	Options	Section	View	Win	
N	ew					Ctrl+N		
0	pen					Ctrl+O		
C	lose							
Sa	ave					Ctrl+S		
Sa	ave As					Ctrl+A		
In	nport V	Vell Names					×	
E	xport I	nstrument Da	ita				•	
E	xport C	hart Data					.≻	
E	xport T	ext Report					•	Export Text Report to Excel
E	xport t	o PowerPoint	®			Ctrl+W		Export Text Report To Text File
E	xport t	o Image File				Ctrl+I		Export Text Report to XML File

Mx3000P System Experiments: Plate Read/Allele Discrimination

The Plate Read/Allele Discrimination Experiment Type

The **Plate Read/Allele Discrimination** experiment type is used both for general plate-reading tasks and for allele discrimination assays with endpoint detection. In both cases, samples may be called as positive or negative for the presence of a specific sequence based on whether the endpoint fluorescence readings meet user-defined statistical criteria.

This experiment type may be used for any application that requires a single round of plate readings or pre- and post-cycling readings collected at a single temperature. The simplest application of the plate read function of the Mx3000P instrument is qualitative detection, or detection of the presence or absence of a specific PCR product. In experiments of this type, a fluorogenic probe is added to PCR reactions along with the other PCR components. PCR is carried out on any thermal cycler and then the fluorescence is detected at the end of cycling using the plate read mode of the Mx3000P instrument. This reading provides a measure of the amount of specific product that has accumulated at the end of the PCR reaction and can be used to detect the presence or absence of a particular sequence. Note that plate read measurements are taken at a phase in PCR amplification where the amplification efficiency can be influenced by limiting reagents, small differences in reaction components, or cycling conditions and do not provide an accurate quantification of starting copy number of a target sequence.

The Allele Discrimination assay with endpoint detection is a commonly used application of the plate read function of the Mx3000P system. For example, two fluorogenic probes, labeled with two spectrally distinct dyes, might be used to discriminate between the wild-type allele and a mutant allele. If Fluorescence of the unknown DNA sample is statistically higher than background for the dye identifying the wild-type allele but not for the dye identifying the mutant allele, the sample can be designated as wild-type homozygous. If Fluorescence is above background for the dye identifying the mutant allele but not for the dye identifying the wild-type allele but not for the dye identifying the wild-type allele, the sample can be designated as mutant allele but not for the dye identifying the wild-type allele, the sample can be designated as mutant homozygous. If the sample generates intermediate values for both dyes, it is designated as heterozygous for the two alleles. Results are conveniently displayed to highlight the allelic composition of the samples on the Dual Color Scatter Plot, the Fluorescence Intensity Values and the Final Call Results analysis screens.

The Mx3000P system also features the Allele Discrimination/SNP's Real Time experiment type, which should be used for allele discrimination assays that require maximum accuracy and sensitivity.

Plate Read/Allele Discrimination Plate Setup

In the **Setup** section of the software, open the **Plate Setup** tab. Shown below is a typical plate setup for an allele discrimination assay performed using a **Plate Read/Allele Discrimination** experiment.

<mark>У</mark> Мж	Mx3000P (Standalone) - Plate Read / Allele Discrimination - [Allele Discrimination Plate Read Example.mxp*] Image: Control of the state of th													
File t	ait Instrum	ient iools	Silvo		w window	Heip ¶ ∑ I @		<u>a</u>				-	Dur	Augustusia -
		I 😅 🖢	≝ ≌∕		2	J ² ∆ ≞	. 🖉				5	etup	<u> </u>	Analysis
	Plate	Setup												
AII	1	2	3	4	5	6	7	8	9	10	11	12	Import	Defaults 💌
	FAM Neg	Unknown	Unknown	Unknown	NTC								Quick S	etup
A	1		5	Έ 7	` 9								Well type:	
	FAM	FAM	FAM	FAM	FAM								Collect fluorescence d	ata
	FAM Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET									HEX
В	1	3	<u>د</u>		9								ROX 🔽	FAM
	FAM Neg	Unknown	Unknown	Unknown	NTC									
С			E 5	" 7	ш Q								Reference dye: ROX	
	FAM	FAM	FAM	FAM	FAM								Identify replicates	
	TET Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								Heplicate symbol:	
D	2	4	6		10									uto-Increment
	TET Neg	Unknown	Unknown	Unknown	NTC								Clear Selecte	d'Wells
E			TET		^{TET} 1 ()									
	FAM –	FAM	FAM	FAM 💛	FAM								Set Read Pro	operties
	TET Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								Plate setup comments:	
F	2	4	6	8	10								Flate setup comments.	
	FAM	FAM	FAM	FAM	FAM									
G														
н														
													Full-Screen Plate	Start Hun
Dyes	shown		1	_			Well types	shown				_		
		RUX	JI FAM				I FAM N	leg j Uni	nown J	NIC	IET Neg			0.11

The Mx3000P software features several shortcuts to expedite plate setup including the ability to **Import** an existing setup, to use a **Default** setup, and to rapidly specify collection of data for all dyes in all wells by using **Quick Setup**.

Note In order for the Mx3000P software to calculate p-values for positive or negative calling in **Unknown** wells, the Plate Read/Allele Discrimination experiment must include at least three **NTC** or **dye-specific negative control** wells for each dye.

Plate Setup is accomplished using the selection boxes and commands on the command panel at the right of the screen. The command panel is designed to be followed in a top-to-bottom order, beginning with **Well type** assignment. All other selections are unavailable until after **Well type** has been assigned.

Select the well(s) to be assigned using the mouse then assign the well(s) by using the **Well type** menu on the command panel. The well types available in an Allele Discrimination Plate Read experiment are described in the table below.

Well Type	Description
Unknown	Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target.
Buffer	Contains only buffer, used to monitor the background fluorescence attributable to the buffer.
NAC	No amplification control; contains all reaction components except DNA polymerase.
NPC	No probe control; contains all reaction components except the fluorescence- labeled probe.
NTC	No template control; contains all reaction components except the template nucleic acid.
No RT	No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.
Not in Use	Optional designation for wells that are not in use. It is not necessary to define any unused wells. This well type is equivalent to an unassigned well.
Dye-specific Negative Control	Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in Optics Configuration .
Dye-specific Positive Control	Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in Optics Configuration .

After assigning the **Well type** to the selected well(s), select the dyes for which data should be collected in the wells using the **Collect fluorescence data** check boxes.

If you are using a passive reference dye in the selected well(s) select the dye from the **Reference** dye menu. If all sample wells on the plate will contain the same passive reference dye, depress the **All wells** button.

Assign the replicate set number to the selected well(s) by using the **Replicate symbol** menu. Instead of assigning replicate numbers to wells on an individual basis, it is also possible to assign replicates sequentially using the **Auto-Increment** feature.

To run the experiment, set the read properties and then click Start Run to initiate the run.

Plate Read/Allele Discrimination Data Analysis

Analysis Setup

On the Analysis Selection/Setup screen:

- 1. Select the wells to be included in the analysis.
- 2. Specify the desired analysis settings on the command panel. (Algorithm Enhancements apply only to real-time experiments and the settings in this section are unavailable for plate read experiments.)

<mark>ј М</mark> я	(Mx3000P (Standalone) - Plate Read / Allele Discrimination - [Allele Discrimination Plate Read Example.mxp*]												
File I	idit Instrum	ient Tools	Options	Section Vie	w Window	Help						. [
느	- 🖬		2 ×				. 🔎				5	etup	<u>Run</u> <u>Analysis</u>
	Analys	is Selec	tion/Setu			F	Results						
All	1	2	3	4	5	6	7	8	9	10	11	12	Select data collection ramp/plateau:
	FAM Neg	Unknown	Unknown	Unknown	NTC								Ramp 1
A	1		5	7	9								Q, Plateau 1
	FAM FAM Neg	FAM Unknown	EAM Unknown	FAM Unknown	FAM NTC								
в	TET		TET	TET 7	TET								
	FAM	FAM \cong	FAM 💛	FAM	FAM								
6	FAM Neg	Unknown TET	Unknown TET	Unknown TET	NTC TET								
Ľ	EAM 1	EAM 3	EAM O	EAM	EAM 🖯								
	TET Neg	Unknown	Unknown	Unknown	NTC								E <u>x</u> clude Dyes
D	2		6	8	10								Replicates
	FAM TET Neg	FAM Unknown	FAM Unknown	FAM Unknown	FAM NTC								C Treat individually
Е	^{TET} 2		TET A		^{TET} 1 ()								I reat collectively
	FAM	FAM	FAM	FAM	FAM								Algorithm enhancements
E	TET	TET	TET	TET	TET								Adaptive <u>b</u> aseline
L .		FAM 🖆	FAM 0	FAM O	FAM								Moving average
													Analysis Term Settings
G													Adv. Algorithm Settings
													Analusis commente:
н													
- Dyes	shown						- Well types	shown					
	TET	ROX	FAM				FAM N	leg Unk	nown	NTC	TET Neg		
Analy	sis Selectio	n/Setup											Door Closed Lamp Off

See <u>Analysis Selection/Setup</u> for more detailed instructions on using the features on this screen.

When all selections and settings are made, click the **Results** tab. One of several available results screens will appear. Use the radio buttons under **Area to analyze** to navigate to different analysis screens. The following screens are available for Plate Read/Allele Discrimination analysis:

<u>Plate Sample Values</u> <u>Dual Color Scatter Plot</u> <u>Fluorescence Intensity Values</u> <u>Final Call Results</u> <u>Text Report</u>

Plate Read/Allele Discrimination Plate Sample Values

The **Plate Sample Values** screen displays fluorescence values for the sampled wells in a plate format.

In each well with a well type assigned, the following information is shown:

- Well type
- Fluorescence value for each dye for which data was collected
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

<mark>У</mark> Мж File I	3000P (Sta Edit Instrum	ndalone) - nent Tools	Plate Read	d / Allele Di Section Vie	<mark>scriminatio</mark> w Window	on - [Allele Help	Discrimina	tion Plate I	Read Exam	ple.mxp*]					_ 8 ×
Ľ	🖻 -	6		<u>cu •</u>	2	Σ		9 ?			<u>S</u>	etup	<u>R</u> un	Analys	sis)
	Analysis Selection/Setup														
AII	1	2	3	4	5	6	7	8	9	10	11	12	Area to analyze		
A	FAM Neg 0.523 0.533 FAM Neg 0.523	Unknown 0.230 1.123 Unknown 0.230	Unknown 0.527 0.536 Unknown 0.527	Unknown 0.384 0.903 Unknown 0.384	NTC 0.215 0.487 NTC 0.215								Plate sample Dual color so Fluorescenc Final gall res Te <u>x</u> t report	: <u>values</u> catter plot e intensity values ults	
	0.533	1.123	0.536	0.903	0.487								Fluorescence: Rn,post		•
С	0.523	0.230 1.123	0.527 0.536	0.384 0.903	0.215										
D	TET Neg 0.233 1.134	Unknown 0.229 1.132	Unknown 0.531	Unknown 0.380 0.903	NTC 0.223 0.484										
E	TET Neg 0.233 1.124	Unknown 0.229	Unknown 0.531	Unknown 0.380	NTC 0.223										
F	1.134	Unknown 0.229 1.132	Unknown 0.531 0.538	Unknown 0.380 0.903	NTC 0.223 0.484										
G															
н															
Person							Well her								
Dyes	TET	ROX	FAM				FAM N	eg Uni	(nown	NTC	TET Neg	1			
Resul	ts												Door Closed	Lamp Off	

Analysis Options

Select the type of fluorescence data to be displayed from the **Fluorescence** menu on the command panel. Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Plate Read/Allele Discrimination Dual Color Scatter Plot

The **Dual Color Scatter Plot** screen is useful to compare the final quantities of two different targets (represented by two different dyes) in the same well. This form of analysis is especially useful for allele discrimination experiments, where the quantity of each of two possible alleles is indicated by a different dye.

Each plotted point represents the coordinates of the fluorescence values for two dyes in a single well. For example, the X-axis may correspond to TET fluorescence while the Y-axis corresponds to FAM fluorescence and the plotted point (x,y) corresponds to the coordinates describing the two fluorescence values determined for a given well. The position of the data point for a given well on the scatter plot indicates the presence or absence of each allele. Colored rectangles on the plot are used to group wells with a common genotype (allelic composition). The shapes of the genotype-marking rectangles may be changed, and individual data points may also be excluded from the genotype group. The two alleles may be named on this screen, with the user-provided allele names reflected in the genotype descriptions of the wells on this and other **Results** screens.

Analysis Options

Fluorescence Data Type Plotted

Select the type of fluorescence data to be plotted from the **Fluorescence** menu on the command panel. Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Note that if no reference dye has been assigned to the wells and a normalized data type (**Rn**) is selected, a message like the following will appear below the graph:

Some of the selected wells have not been displayed. 4 of 18 did not have both dyes selected for analysis 4 of 18 did not have a reference dye specified

Allele Associations

The Allele associations section of the command panel is used to identify the association between each of the plotted dyes and the allele detected by the dye. The allele/dye specified in the top menu will be plotted on the X axis, and the allele/dye specified in the bottom menu will be plotted on the Y axis. Any two dyes assigned during Plate Setup may be selected in these menus.

Allele associations
Allele B FAM
Both TET and FAM
Rename Alleles/Genotypes

By default, alleles are named *Allele A* and *Allele B*. The allele names also correspond to the genotypes assigned to wells in which a single allele is detected. *Both* is the default name for the genotype group in which both alleles are detected. Each of these allele/genotype names may be

changed to user-specified names by clicking **Rename Alleles/Genotypes**. When the following dialog box appears, enter the desired allele/genotype names and then click **OK**.

Rename Allele/Genotypes									
Allele A: wild-type									
Allele B: mutant									
Both: heterozygote									
OK Cancel									

The new allele names will appear in the Allele associations section of the command panel. The specified allele or genotype names are also displayed on some other **Results** screens.

Display Options

Display of Genotype Groups on the Scatter Plot

Wells with a common genotype (allelic composition) are grouped on the scatter plot in colorcoded rectangles. The genotype corresponding to each group is indicated in the graph legend (see *Graph Properties* below). If a single allele was detected in a well, the genotype designation corresponds to the allele name. If both alleles were detected, the genotype is designated *Both* by default; this designation may be changed by clicking **Rename Alleles/Genotypes** on the command panel. If neither allele was detected, the genotype is designated *None*.

The size and shape of each rectangle may be changed by dragging any side of the rectangle with the mouse. The color of the rectangle and the enclosed group of data points may be changed for any genotype by double-clicking on the genotype's entry in the legend.

Note The size and shape of a rectangle does not convey information about dye intensity, data quality, or any other measured data attribute. The rectangles are only intended to identify and group the data points which fit the positive/negative calling result criteria that define each genotype.

Any well may be manually excluded from the genotype groups by double-clicking on the data point for the well. The following dialog box will appear.

Remove Well A1									
Remove well A1 from genotype "wild-type"?									
	Yes	No							

Once **Yes** is selected, the symbol for the affected data point will change to the color and point style assigned to excluded data points. In addition, the **Genotype** for the well will change in the **Text Report**.

To restore any manually removed data points to their original genotype assignments, click **Reset Genotypes** on the command panel.

Rename Alleles/Genotypes	
Reset Genotypes	

Graph Properties

The **Graph Properties** dialog box, accessed by double-clicking on the graph, controls several display features including whether the legend is shown or hidden and the attributes of the axes. See *Graphs and Graph Properties* for more information.

To display information about a specific data point on the scatter plot, place the cursor over the point of interest. (Note that **Display tooltips** must be selected on the **Display** tab of the **Preferences** dialog box in order for the well information to be displayed.)

Plate Read/Allele Discrimination Fluorescence Intensity Values

The **Fluorescence Intensity Values** screen displays a colorized image of final calls and fluorescence intensities. A plus sign (+) indicates a positive call and a minus sign (-) indicates a negative call.

A spectrum of colors, displayed at the bottom of the screen, is used to indicate the relative fluorescence readings for each dye in each well.

The circle for each well is divided into arcs which correspond to the dyes selected for analysis in the **Analysis Selection/Setup** screen. An **R** in a portion of the circle indicates that portion refers to a reference dye. The replicate set number, if any, appears in the lower right corner of the well.

Interpreting the Intensity Values Display

The accumulation of product can be interpolated by comparing the color in the arc to the horizontal color bar at the bottom of the screen. On the color bar, as fluorescence values increase, the corresponding color shifts from blue towards red. Note that the bar only covers the fluorescence range measured on the plate. For example, in the example shown above, the range of fluorescence measured in the run was between 3857 and 21946, and this is the range that is covered by the color bar.

Interpreting Final Calls

The **p-value** is the probability that the mean of one set of sample data is different from the mean of another set of sample data. The first set of sample data is always the control wells in the analysis selection. When replicates are being treated individually, the second set of sample data consists of a single well (usually an **Unknown** well). When replicates are being treated collectively, the second set of sample data consists of all of the replicates. If the **p-value** exceeds the user-specified confidence level, the well/dye is called as positive and signified with a plus sign (+); otherwise, the well is called as negative (no difference detected) and signified with a minus sign (-). The confidence level for positive calling is displayed on the command panel. This value may be changed using the **Analysis Term Settings** dialog box that may be accessed by clicking the corresponding button on the **Analysis Selection/Setup** screen.

Analysis Options

Fluorescence Data Type Displayed and Used for Calculations

Under **p-values and final calls based on,** specify the form of the fluorescence data to be displayed and used in calculating the p-values used for making final calls.

p-values and final calls based on:							
Rpre		•					
Confidence level:	99.00%						

Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Display Options

Adjusting the Fluorescence Intensity Range

False colors					
Edit False Color Limits					
Use false colors					

The range of fluorescence intensity covered by the color spectrum can be manually specified by clicking the **Edit False Color Limits** button to open the **False Color Limits** dialog box. The minimum value for the **Low Fluorescence Limit** is 0 and the maximum value for the **High Fluorescence Limit** is 65535. A range of at least 4 must be specified. Manually specifying a narrow range of values is helpful when attempting to discern small differences in fluorescence values among samples.

False Colors Versus Grayscale

By default, the Mx3000P software uses a multi-hued spectrum of colors to depict differences in fluorescence values on this screen. The depiction may be changed to grayscale by deselecting the **Use false colors** checkbox. All colors will turn to shades of gray and the color bar will display a gradient of gray from black (lowest fluorescence) to white (highest fluorescence).

Plate Read/Allele Discrimination Final Call Results

The **Final Call Results** screen provides a simple depiction of whether product was accumulated for each dye in each well in a plate format. A plus sign (+) signifies detection of product accumulation for the indicated dye, while a minus sign (-) signifies that product accumulation was not detected. See below for more information on how final calls are made.

In each well with a well type assigned, the following information is shown:

- Well type
- The final call for each dye for which data was collected. [For all well types, the reference dye (**Ref**) is not associated with a final call]
- Replicate symbol, if used (when replicates are treated collectively, the replicate symbol is underlined)

The allele associated with each dye is shown under Allele associations on the command panel. Allele names may be changed on the **Dual color scatter plot** screen.

🗾 Mə	Mx3000P (Standalone) - Plate Read / Allele Discrimination - [Allele Discrimination Plate Read Example.mxp*]													
File	edit Instrur	nent loois] /9≣⊾ [7	Options :	Section Vie	w Window	Help								
	🥭 • 🖿		≣ ⊻)				. 🏸	2 8	1			etup	<u>Run</u> <u>Analysis</u>	
	Analysis Selection/Selup													
All	1	2	3	4	5	6	7	8	9	10	11	12	Area to analyze	
⊢	FAM Neg	Unknown	Unknown	Unknown	NTC								Plate sample values O Plate sample values	
A	1	<u> </u>	5	" 7	9								C Fluorescence intensity values	
	FAM -	FAM +	FAM -	FAM +	FAM -								Final call results	
в	TET +	TET -	TET +	TET +	TET								C Text report	
	FAM -	FAM +	FAM -	FAM +	FAM -								p-values and final calls based on:	_
	FAM Neg	Unknown TET -	Unknown TET +	Unknown TET +	NTC TET -								Rn,post	-
C	1	3	5	7	9								Confidence level: 99.00%	
⊢	FAM - TET Neg	FAM + Unknown	FAM - Unknown	FAM + Unknown	FAM - NTC								Allele associations	
D	TET .	TET -	TET +	TET +	¹¹ 10								mutant: FAM	
	FAM +	FAM +	FAM -	FAM +	FAM -									
E.	TET Neg TET -	Unknown TET -	Unknown TET +	Unknown TET +	NTC TET -									
1	$_{\text{FAM}+}$ \leq	FAM + 4	FAM -	FAM +	EAM -									
	TET Neg	Unknown TET -	Unknown TET +	Unknown TET +	NTC									
F	2	4	6	8	10									
⊢	FAM +	FAM +	FAM -	FAM +	FAM -									
G														
н														
l														
Dyes	s shown						-Well types	shown					0	
	TET	ROX	FAM				FAM N	eg Uni	nown	NTC	TET Neg			
Resu	ts												Door Closed Lamp Off	₽ ≠63

Interpreting Final Calls

The **p-value** is the probability that the mean of one set of sample data is different from the mean of another set of sample data. The first set of sample data is always the control wells in the analysis selection. When replicates are being treated individually, the second set of sample data consists of a single well (usually an **Unknown** well). When replicates are being treated collectively, the second set of sample data consists of all of the replicates. If the **p-value** exceeds the user-specified confidence level, the well/dye is called as positive and signified with a plus sign (+); otherwise, the well is called as negative (no difference detected) and signified with a minus sign (-). The **Confidence level** is displayed on the command panel. This value may be changed using the **Analysis Term Settings** dialog box..

Analysis Options

p-Values and Final Calls Based On

Under **p-values and final calls based on,** specify the form of the fluorescence data to be used in calculating the p-values used for making final calls.

p-values and final calls based on:							
Rpre		-					
Confidence level:	99.00%						

Available fluorescence data types are:

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post-Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Note that if no reference dye has been assigned to the wells and a normalized data type (Rn) is selected, a No Ref error designation will replace the final call entry on the plate.

Plate Read/Allele Discrimination Text Report

) 🖻 🛛		§ 🗿 🗠		2 📀	2 Σ	R 🔍 🛄) ?	2	<u>S</u> etup	<u>R</u> un <u>Analysis</u>
A	nalysis S	election/Set	tup			Results				
ell Type	Dye	Replicate	Rnpre	Rnpost	Rnpost	p-value (Rn,post)	Final Call (Rn,post)	Genotype (Rn,post)		- Area to analyze
AM Nega	TET	1	No data	0.523	No pre	100.00%	+	wild-type		C Di
M Nega	FAM	1	No data	0.533	No pre	93.68%	-	wild-type		 Plate sample values
T Negat	TET	2	No data	0.233	No pre	84.84%	-	mutant		 Dual color scatter plot
FNegat	FAM	2	No data	1.134	No pre	100.00%	+	mutant		 C Fluorescence intensity values
Nown	IEI	3	No data	0.230	No pre	67.27%	-	mutant		 C Final call results
nown	FAM	3	No data	1.123	No pre	100.00%	+	mutant		G Tautanad
nown	IEI	4	No data	0.229	No pre	62.23%	-	mutant		
nown	TET	4	No data	1.132	No pre	100.00%	+	mutant		
	IEI EAM	5	No data	0.52/	No pre	100.00%	+	wild-type		p-values and final calls based on:
(IOWI)	TET	2	No data	0.535	No pre	95,61%	-	wild-type		Rn,post
(TOWIT	TET FOM	6	No data	0.531	No pre	06 47%	+	wild-type		- '
(TOWIT	TET	7	No data	0.530	No pre	90,47%	-	wilu-type		Column
known	EOM	7	No data	0.304	No pre	100.00%		beterozygote		
	TET	, 9	No data	0.380	No pre	100.00%	+	beterozygote		
	EAM	8	No data	0,000	No pre	100.00%	+	heterozygote		
-	TET	q	No data	0.215	No pre	(84,66%)		None		- Vell Name
с с	FAM	ģ	No data	0.487	No pre	(64.31%)	-	None		🗌 🗹 Dye
c .	TET	10	No data	0.223	No pre	(9.63%)	-	None		Beplicate
c .	FAM	10	No data	0.484	No pre	(71.77%)	-	None		
-					ne pre	(
										Hnpre H
										Rnpost
										Rpost-Rpre
										Rnpost-Bnpre
										Brost/Bore
										p-values
										📔 🗹 Final Call
										Genotype
										Select All Defaults
										Autosize columns
										Hdr & Contents Contents Only
es shown									1	

The **Text Report** screen shows the data from a run in text format.

Analysis Options

p-Values and Final Calls Based On

p-values and final calls based on:	
Rpre	•

Under **p-values and final calls based on,** specify the form of the fluorescence data to be used in calculating the p-values used for making final calls.

Data Type	How Calculated
Rpre	initial fluorescence (use also for single reading initiated with Pre-Read)
Rpost	final fluorescence (use also for single reading initiated with Post-Read)
Rn,pre	normalized initial fluorescence (use also for single reading initiated with Pre-Read)
Rn,post	normalized final fluorescence (use also for single reading initiated with Post- Read)
Rpost–Rpre	total change in fluorescence (final fluorescence minus initial fluorescence)
Rn,post–Rn,pre	total change in normalized fluorescence (normalized final fluorescence minus normalized initial fluorescence)
Rpost/Rpre	fold-change in fluorescence (final fluorescence divided by initial fluorescence)

Available fluorescence data types are:

Note that if no reference dye has been assigned to the wells and a normalized data type (**Rn**) is selected, a **No Reference** error designation will replace the p-value and final call entries in the report.

Display Options

Columns Included in the Report

Select the **Columns** to be included in the text report by checking the boxes next to the column names. To exclude columns that are selected by default, click on the check box to deselect the column name. To select all columns to display, click **Select All**. The default settings for column selection can be restored by expanding the **Defaults** menu and then clicking **Get**.

If the included columns will not fit in the screen, a horizontal scroll bar appears at the bottom of the window to allow horizontal scrolling.

Column Width

To facilitate viewing data, columns can be automatically sized. Clicking the **Contents Only** button will cause each column to be automatically resized to the width of the widest data cell in that column (some column headers may be only partially displayed using this setting). Clicking the **Hdr & Contents** button will cause each column to be resized to the widest cell in that column, including the header cell.

Columns can also be resized manually by dragging the column dividers with the mouse.

Exporting Text Report Data

Text report data can be exported from the application in text, Microsoft Excel spreadsheet or XML format for analysis. Text report exporting options are available from the **File** menu. See *Exporting Data to Other Applications* in the *File Menu* section for more information.

File	Edit	Instrument	Tools	Options	Section	View	Win
N	ew					Ctrl+N	
C	pen					Ctrl+O	
	lose						
S	ave					Ctrl+S	
S	ave As					Ctrl+A	
I	nport \	Vell Names					•
E	xport I	nstrument Da	ata				•
E	xport (Ihart Data					•
E	xport 1	'ext Report					•
E	xport t	o PowerPoint	®			Ctrl+W	
E	xport t	o Image File.				Ctrl+I	

Maintaining the Mx3000P Instrument

Hardware Information

Replacement Parts

It is important to use only Stratagene-supplied replacement parts in the maintenance of the Mx3000P system (excluding fuses).

Fuses

The Mx3000P instrument uses a single slow-acting fuse. The fuse housing is located adjacent to the power cord inlet in the power entry module.

To replace the fuse, disconnect the Mx3000P instrument from the power source, open the fuse housing cover and remove the fuse holder from the power entry module. Replace the fuse with the appropriate fuse type from the table below, and then replace the fuse holder.

Instrument Type (Voltage)	Replacement Fuse
110-V	10-A, 250-V, 5×20-mm slow-acting fuse
230-V	5-A, 250-V, 5×20-mm slow-acting fuse

Warning: High voltage present. Turn off the power switch and remove the power cord from the power entry module prior to replacing the fuse.
Changing the Lamp

The lamp of the Mx3000P system has an average life expectancy of 2000 hours. Replacement bulb assemblies are available from Stratagene (Catalog #401411).

Important: Never touch the glass portions of the quartz-tungsten halogen lamp!

The lamp is located in the excitation housing, on the left-hand side of the instrument. Before changing the lamp, be sure to turn off the instrument. The lamp is replaced, along with the lamp housing, as follows:

- 1. Remove the two screws securing the excitation housing cover panel and remove the panel.
- 2. Disconnect the wire connector for the lamp housing. This is located near the bottom of the module towards the front of the instrument.
- 3. Loosen the thumbscrew that holds the lamp housing in the excitation module.
- 4. Remove the old lamp housing and lamp.
- 5. Insert the new lamp housing and lamp. A keyway on the lamp housing allows the housing to be placed in its holder in only one orientation. Push the housing in as far as it will go.
- 6. Tighten the thumbscrew.
- 7. Connect the wire connector.
- 8. Replace the cover panel and the two cover screws.
- 9. After the lamp has been changed, reset the lamp timer to 0. To do this, access the Lamp Reset and Utilities dialog box (from the Instrument menu) and click the Reset button. The Total time will be set to 0 and the current date will be entered in the Last date reset field.

Cleaning the Instrument

Clean the exterior housing of the Mx3000P system using only mild soap and warm water on a soft cloth. Do not use alcohol or solvent-based cleaners.

The wells of the thermal block should be cleaned with cotton swabs and isopropyl alcohol. Ensure the block is at room temperature before cleaning.

Appendix

Mx3000P System Troubleshooting

Observation	Suggestion
"Communication Error" appears in software	Instrument has not finished warming up, wait for both front panel LED's to become steady lights and for the instrument communication icon in the bottom right corner of the screen to turn from red to green.
	Verify that the Mx3000P instrument is powered on.
	Verify that the RS-232 cable between the PC and Mx3000P instrument is attached. If the "Communication Error" warning persists, connect the cable to the other USB port on the PC.
Lamp On or other instrument-related software commands are not available	Make sure the software version running is not a Standalone version. If using software installed for analysis only or if multiple copies of the software are open, <i>Standalone</i> will appear in the upper left corner of the Mx3000P software title bar.
	When communication between the PC and the instrument is established, the communication icon in the lower right corner is green.
Software locks up or shuts down during a run	Turn off the sleep mode for the monitor and disable the screen saver. This can be accessed in the Microsoft Windows software Control Panel.
Lower LED power indicator light never comes on	Verify that the instrument is plugged into the power source or surge protector and that power is getting to the instrument.
	Check fuse on back panel near the power cord. If fuse is burned out, replace the fuse. See <i>Fuses</i> for more information.
After switching on the instrument, the upper LED status indicator light does not indicate Ready status (steadily lit)	During instrument power-up, the upper LED should remain off for 2-3 minutes while the instrument warms up. The instrument will perform a self-test, which is indicated by a blinking upper LED. If the LED does not light continuously after the self-test is completed, reboot the instrument (power off the instrument, wait 30 seconds, and then switch the instrument power on). If this does not address the problem, contact <u>Stratagene Technical</u> <u>Services</u> .
Very low amplification signal	May indicate that the lamp is starting to fail. Check lamp, and replace if necessary. See Changing the Lamp.

Sudden amplification signal loss or downward drift during run	Check lamp, replace if necessary. See Changing the Lamp.
Signal fluctuates during run	Check lamp, replace if necessary. See Changing the Lamp.
	Verify that the fluorescence signal is below the recommended maximum of 35000. If necessary, adjust the Filter Gain Settings to bring the signal into the recommended range.
Consistently unexpected	Check the sample container for contaminating material.
results in one sample	Check optical clarity of sample container cap.
	Clean the thermal block.
Decreased volume in sample containers at end of run	Sample containers are not vapor tight. Ensure caps are tightly sealed and containers are not malformed.
Software font difficult to read/Poor resolution of text	Microsoft Windows software display settings are incorrect. Required minimum settings are 16 bit high color and 1024x768 resolution.
Chart printing is low quality	Check the status of the High resolution chart printing option on the Print Page Setup dialog box. Chart printing using most printers will be enhanced by selecting the High resolution chart printing option. Limitations of certain printer drivers cause incompatibilities with this setting; try deselecting the High resolution chart printing checkbox.
Difficulty in manually setting baseline	When running samples with a broad dynamic range, use the adaptive baseline algorithm.
Increased signal noise for run	Use the moving average algorithm.
Ct value reported for NTC (no-target control) sample is less than the total number of cycles but the amplification plot curve is horizontal	Examine variation in fluorescence intensity during the run. Review amplification plot and adjust the threshold accordingly.

Appendix

w increase in The probe or beacon is not binding the target efficiently. La uorescence with cycling annealing temperature and verify melting temperature.	
	Target PCR product is too long, redesign primers to yield a PCR product <150 bp in length.
	Magnesium concentration is too low; run a titration to optimize concentration.
	Insufficient or non-specific product, verify product formation through gel electrophoresis.
Increase in fluorescence in control reactions without template	The reaction has been contaminated.
Excess condensation in reaction tubes	When using single tubes or strip tubes, install the Perfect Fit frame on the thermal block to optimize contact between the sample tubes and the hot top.

Getting Support for the Mx3000P Real-Time PCR System

Email: tech_services@stratagene.com

QPCRSystemsSupport@stratagene.com

World Wide Web: www.stratagene.com

United States and Canada

Stratagene 11011 North Torrey Pines Road La Jolla, CA 92037 USA Telephone: (858) 535-5400 Order Toll Free: (800) 424-5444 Technical Services: (800) 894-1304

Europe

Location	Telephone	Fax	Technical Services
Austria	0800 292 499	0800 292 496	0800 292 498
Belgium	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 15775	0800 15740	0800 15720
France	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 919 288	0800 919 287	0800 919 289
Germany	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 182 8232	0800 182 8231	0800 182 8234
Netherlands	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 023 0446	+31 (0)20 312 5700	0800 023 0448
Switzerland	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 563 080	0800 563 082	0800 563 081
United Kingdom	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 917 3282	0800 917 3283	0800 917 3281

Japan Technical Services

Telephone: 03-5159-2070 Email: jtech@stratagene.com

All Other Countries

Please contact your local distributor. A complete list of distributors is available at www.stratagene.com.

QPCR Glossary

Experiment Type and QPCR Detection Chemistry Terms

Real-Time Experiments: Experiments that monitor and report the accumulation of PCR product, as detected by increased fluorescence, during thermal cycling. This allows data collection during the early exponential phase of PCR so that results may be calculated from **Ct** values.

Plate-Read Experiments: A one-time fluorescence reading taken on a plate. Experiments can be performed including pre- and post- thermal cycling readings in the same experiment. Results are evaluated as + or -.

Quantitative PCR Experiment Type: Experiments of this type typically use a standard curve to quantitate the amount of target present in an Unknown sample with high accuracy using a fluorescence-labeled probe for detection. A series of Standard samples, containing dilutions of a known amount of target, are amplified to generate a curve that relates the initial quantity of the specific target to the Ct. The standard curve is then used to derive the initial template quantity in Unknown wells based on their Ct values. This method is sometimes referred to as absolute quantitation or as standard-curve quantitation in the literature. This experiment type is also useful for primer/probe optimization experiments in the absence of a standard curve.

Comparative Quantitation Experiment Type: This experiment type is a form of relative quantitation, comparing the levels of a target gene in test samples (referred to as **Unknowns**) relative to a sample of reference (referred to as the **Calibrator**). For example, the **Calibrator** sample might contain RNA from untreated cells, while the **Unknowns** might contain RNA from cells treated with different agents of interest. This experiment type provides an efficient method for comparing levels of RNA or DNA across samples when information about the absolute amounts of target in any sample is not required. This method is used for establishing relative quantitation without the need for repeatedly performing a dilution series standard curve.

SYBR Green Experiment Type: Experiments of this type typically use a standard curve to quantitate the amount of target present in an **Unknown** sample using SYBR Green I dye for detection. This experiment type is also useful for SYBR Green assay optimization experiments in the absence of a standard curve. The thermal profile includes a dissociation curve, used to discriminate between specific and non-specific PCR products.

Allele Discrimination/SNP's Real Time Experiment Type: This experiment type uses fluorescencelabeled probes to determine the allelic composition of DNA samples. Two fluorogenic probes, labeled with two spectrally distinct dyes, are used to discriminate between two different alleles that may differ by as little as a single nucleotide. The presence or absence of a given allele is based on the Ct value determined for the allele-specific probe.

Molecular Beacon Melting Curve Experiment Type: This experiment type analyzes the melting characteristics of a molecular beacon for the determination of the experimental melting temperature (Tm) and optimal annealing temperature for subsequent PCR experiments. Melting curves are typically performed with the molecular beacon alone and in the presence of both perfectly-matched and mismatched oligonucleotide targets in order to determine the temperature that exhibits the best discrimination.

Plate Read/Allele Discrimination Experiment Type: This experiment type is used both for general plate-reading tasks and for allele discrimination assays with endpoint detection. In both cases, samples may be called as positive or negative for the presence of a specific sequence based on whether the endpoint fluorescence readings meet user-defined statistical criteria.

Quantitative Plate Read: This experiment type uses a standard curve to estimate the amount of target present in an **Unknown** sample using a fluorescence-labeled probe for detection. A series of **Standard** samples, containing dilutions of a known amount of target, are included in the experiment to generate a curve that relates the quantity of the specific target to the final fluorescence reading. The standard curve is then used to estimate the template quantity in **Unknown** wells based on their fluorescence readings.

Reference Dye: Passive dye used for normalization of the fluorescence signal of the reporter fluorophore. The reference dye fluoresces at a constant level during the reaction.

Reporter Dye: Fluorescent dye that increases in fluorescence signal as the amount of PCR product increases.

Normalizer: Available only in **Comparative Quantitation** to designate the dye corresponding to the target used for normalization of the fluorescence signal across samples.

Molecular Beacon Probes: Hairpin-shaped fluorescence-labeled probes that can be used to monitor PCR product formation either during or after the amplification process. The free probe will maintain its hairpin structure, which causes the quenching of the fluorophore. In the bound form the fluorophore is separated from the quencher and is thereby able to fluoresce.

TaqMan Probes: linear FRET fluorescence-labeled probes that can be used to monitor PCR product formation either during or after the amplification process. As the DNA polymerase extends the upstream primer and encounters the downstream probe, the exonuclease activity of the polymerase cleaves the probe. In this event, the reporter fluorophore is released into the reaction solution and is able to fluoresce.

Quencher: a moiety that absorbs the energy of the reporter dye in its excited state. The quencher can emit its own fluorescence signal (TAMRA) or emit no fluorescence signal (DABCYL, BHQ).

Well-Types

Unknown: Contains a complete reaction mixture including a test template that contains an unknown amount of the specific target.

Buffer: Contains only buffer, used to monitor the background fluorescence attributable to the buffer.

NAC: No amplification control; contains all reaction components except DNA polymerase.

NPC: No probe control; contains all reaction components except the fluorescence-labeled probe.

NTC: No template control; contains all reaction components except the template nucleic acid.

Standard: Contains a complete reaction mixture including a known concentration of target nucleic acid. Used to generate a standard curve, which is then used to relate the threshold cycle (**Ct**) to initial template quantity in **Unknown** wells.

No RT: No reverse transcriptase control; contains all QRT-PCR reaction components except reverse transcriptase.

Negative Control: Contains all reaction components except the template or target sequence detected with the specified dye. Negative control well types available correspond to the dyes defined in **Optics Configuration**. In allele discrimination experiments, **Negative Control** wells are used in combination with **NTC** wells to calculate positive and negative calls.

Positive Control: Contains all reaction components including template known to be positive for the target sequence that is detected with the specified dye. Positive control well types available correspond to the dyes defined in **Optics Configuration**. Typically used in allele discrimination experiments to validate the reaction mixture.

Calibrator: Available only in **Comparative Quantitation** as the reference sample to which **Unknowns** are compared. Contains a complete reaction mixture including a characterized target. The level of a gene of interest in the **Calibrator** wells is set to 1.0 for comparison to the relative quantities in **Unknown** samples.

MBO: Available only in **Molecular Beacon Melting Curve** experiments. Sample type that contains the molecular beacon plus an oligonucleotide corresponding to its perfectly matched target.

MB: Available only in **Molecular Beacon Melting Curve** experiments. Sample type that contains the molecular beacon only (in the absence of target).

MBMO: Available only in **Molecular Beacon Melting Curve** experiments. Sample type that contains the molecular beacon plus an oligonucleotide corresponding to a target with a single-base mismatch.

Analysis Terms

Standard Curve: The Standard Curve is a plot of the initial template quantity added to standard wells on the X-axis, versus the **Ct** (threshold cycle) on the Y-axis. A best-fit curve is displayed for each dye with data collected in **Standard** wells.

Amplification Plot: The Amplification Plots view shows a plot of cycles versus fluorescence for each ramp or plateau on which data are gathered.

Dual Color Scatter Plot: The Dual Color Scatter Plot view is used to compare the amplification properties of two different targets (represented by two different dyes) in the same well. Each plotted point represents the coordinates of either the fluorescence values or threshold cycle (**Ct**) values for the two dyes in a single well.

Initial Template Quantity: Provides interpolated quantities of template added to **Unknown** wells before thermal cycling. The quantities are interpolated from a standard curve based on the calculated Ct values determined for the known quantities of template in the **Standard** wells.

Baseline Correction: For each well and each path the raw fluorescence data are fit over the specified range of cycles using a linear least mean squares algorithm to produce a baseline. The value of the baseline function is calculated for every cycle and subtracted from the raw fluorescence to produce the baseline corrected fluorescence (**dR**).

Threshold Cycle (Ct): The cycle at which fluorescence is determined to be statistically significant above background signal contributed by the fluorescently labeled oligonucleotides within the PCR reaction. The threshold cycle is inversely proportional to the log of the initial copy number.

Background Cycle Range: Specifies the range of cycles of fluorescence data the software uses to calculate the background noise level when using the **Background-based threshold** algorithm to set the threshold fluorescence. The region specified is typically in the cycle range before exponential amplification occurs. The standard deviation of the raw fluorescence for the specified cycles is calculated and is multiplied by the constant Sigma multiplier for threshold fluorescence.

Replicates: Allows specifying sets of replicated wells as the basis for the software to average results from those wells when the **Treat Collectively** setting is used. (Selecting **Treat Individually** in the **Analysis Selection/Setup** screen will cause the program to analyze each well independent of any replicate definitions.)

Collective Replicate Treatment: Will cause the program to analyze all wells with the same replicate symbol as a group, effectively treating the measurements as all coming from the same well.

R squared: The **RSq** value is an indication of the fit of the standard curve to the standard data points plotted. The value will always be between 0 and 1. The closer the value is to 1, the better the fit of the line.

Sigma: Measurement of the variability (standard deviation) of the fluorescence measured from all wells and more than one cycle. Typically its value is determined from the first few cycles, before the PCR reaction starts to affect the measurement. The Sigma multiplier is a user-defined number that is used to multiply by sigma to create a threshold value for determination of Ct.

p-value: The probability that the mean of one set of sample data is different than the mean of another set of sample data. The first set of sample data is always the control wells in the analysis selection. When replicates are being treated individually, the second set of sample data consists of a single well (usually an **Unknown** well). When replicates are being treated collectively, the second set of sample data consists of all of the replicates. If the p-value exceeds the user-specified confidence level, the well/dye is given a (+) call, whereas if the p-value does not exceed the user-specified confidence level, the well/dye is given a (-) call.

Confidence Level: The user-defined confidence level for calls is the statistical probability required before the algorithm will call amplification occurrence in a well. The default is 99%.

Multicomponent: A term used for distinguishing the contribution that each dye and the background makes to the total fluorescence spectra detected.

Fluorescence Data Terms

R: fluorescence reading in arbitrary units

dR: baseline subtracted fluorescence reading

Rn: fluorescence reading normalized to the reference dye

dRn: baseline subtracted fluorescence reading normalized to the reference dye

R Last: the final fluorescence reading in a real-time experiment

dR Last: the final fluorescence reading minus the initial fluorescence reading in a real-time experiment

Rn Last: the final fluorescence normalized to a reference dye in a real-time experiment

dRn Last: the normalized final fluorescence reading minus the normalized first fluorescence reading in a real-time experiment

R Last/R First: the final fluorescence reading divided by the initial fluorescence reading in a realtime experiment

Rpre: initial fluorescence reading in a plate-read experiment

Rpost: final fluorescence reading in a plate-read experiment

Rn, pre: fluorescence before thermal cycling normalized to the reference dye in a plate-read experiment

Rn, post: fluorescence after thermal cycling normalized to the reference dye in a plate-read experiment

Rpost-Rpre: the total change in fluorescence in a plate-read experiment

Rn, post-Rn, pre: the total change in normalized fluorescence in a plate-read experiment

Rpost/Rpre: the final fluorescence reading divided by the initial fluorescence reading in a plateread experiment

Selected QPCR Links

Stratagene Webpages

www.Mx3000P.com

<u>Stratagene QPCR Links</u> (Provides links for primer/probe design applications and links for other QPCR-related topics.)

Stratagene Lab Tools (See the PCR Designer section.)

Stratagene QPCR Products

Other Websites

http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi

http://www.pitt.edu/~rsup/oligocalc.html

http://searchlauncher.bcm.tmc.edu/

http://www.ncbi.nlm.nih.gov/blast/

Trademark Information

Mx4000[®] and PicoFuge[®] are registered trademarks of Stratagene in the United States.

Mx3000P is a trademark of Stratagene.

SYBR® is a registered trademark of Molecular Probes, Inc.

TaqMan[®] is a registered trademark of Roche Molecular Systems, Inc.

Microsoft[®], Outlook[®], PowerPoint[®] and Windows[®] are registered trademarks of Microsoft Corporation.

А

Aborting a Run
Plate Read Experiments121
Real-Time Experiments
Accessories4
Adaptive Baseline43, 129
Adding a Plateau98
Adding a Segment
Adjusting the Size of the Printed Screen
Advanced Algorithm Settings
Advanced Settings for Amplification-based Threshold
Algorithm Enhancements
Adaptive Baseline43, 129
Amplification-based Threshold
Moving Average45, 129
All Points Data Collection, Definition107
Allele Discrimination
Endpoint Experiments
Real-Time Experiments
Allele Discrimination Plate Read
Definitions of Available Well Types267
Description of the Experiment
Typical Plate Setup266
Allele Discrimination Plate Read Data Analysis
Allele Names272
Analysis Setup
Dual Color Scatter Plot271
Final Call Results278
Fluorescence Intensity Values
Plate Sample Values
Quick Protocol77
Text Report

Allele Discrimination Real-Time	
Definitions of Available Well Types	216
Description of the Experiment	214
Typical Plate Setup	215
Typical Thermal Profile Setup	217
Allele Discrimination Real-Time Data Ana	lysis
Allele Names	
Amplification Plots	
Analysis Setup	219
Dual Color Scatter Plot	224
Final Call Results	
Plate Sample Values	222
Quick Protocol	74
Text Report	230
Amplification Efficiency Calculator15	1, 181, 209
Amplification Plots	
Allele Discrimination Real-Time	220
Comparative Quantitation	171
Quantitative PCR	144
SYBR Green	199
Amplification-based Threshold	39, 128
Amplification-based Threshold-Advanced	Settings 39
Analysis Term Settings	
	10
Confidence Level for Calls	49
Real-Time	
Baseline Correction	42
Efficiency Settings	48, 181
Replicates	47, 131
Smoothing	45
Threshold Fluorescence	
Analysis Term Settings Toolbar Icon	65

Analyzing the Data
Advanced Algorithm Settings130
Algorithm Enhancements128
Analysis Comments130
Analysis Selection/Setup126
Analysis Term Settings
Plate Read49
Real-Time
Baseline, Methods for Setting42
Curve Smoothing45
Excluding Individual Dyes from Analysis127
General Analysis Instructions
Graphs and Graph Properties133
Moving Average45
Positive and Negative Calls132
Replicate Treatment
Selecting Replicates
Selecting the Data Collection Ramp or Plateau for Analysis
Selecting the Wells to Analyze126
Setting the Confidence Level for Plate Read Calls
Threshold Fluorescence, Methods for Setting 38
ASC Files Importing Well Names from 19
Assigning a Reference Dye 84
Assigning Dyes to Paths
Assigning Replicates
Assigning Standard Quantities
Assigning Well Types and Dyes83
Auto-filenaming
Auto-Increment
Replicates
Standard Quantities85
В
Background Cycle Range41
Background Sigma Multiplier41
Background-based Threshold41, 128

Baseline Correction	
Active Settings	43
Changing the Baseline Cycle Range	43
Methods Available	42
Resulting Cycle Range	43

С

Calculating Interpolated Quantity of Sample	
Comparative Quantitation	180
QPCR	151
Quantitative Plate Read	252
SYBR Green	209
Calling Plate Read Experiments Based on P-va	alue132
Calling Real-Time Experiments Based On Thr Cycle (Ct)	eshold
Cap Application	4
Cascade Plots	62
Cautions and Warnings	2
Centrifuging Samples	4
Changing the Instrument Scan Order	37
Changing the Lamp	284
Clearing Wells	83
Close an Experiment	17
Collect Fluorescence Data Checkboxes	83
Color Preferences	51
Color Scheme	51
Comments	
Analysis	130
Plate Setup	80
Thermal Profile	99
Well	89
Comparative Quantitation	
Definitions of Available Well Types	164
Description of the Experiment	159
Typical Plate Setup	163
Typical Plate Setup for Non-Multiplexed Experiments	166
Typical Thermal Profile Setup	167

Comparative Quantitation Data Analysis
Amplification Plots171
Analysis Setup169
Dissociation Curve173
Plate Sample Values
Quick Protocol72
Relative Quantity Chart
Relative Quantity Plate 184
Standard Curve 177
Text Report 186
Compositive Quantitation Efficiency Settings 181
Comparative Quantitation Efficiency Settings 181
Efficiency Settings
Confidence Interval for Standard Curves149, 178, 207, 251
Confidence Level
Plate Read Calls261, 276
Standard Curve149, 178, 207, 251
Consolidate Plots
Plate Read Raw Data Plots124
Real-Time Raw Data Plots117
Consumables4
Context-Sensitive Help (F1 Key)63
Convert to New Experiment Type24
Copy/Paste Commands27
Create Default Set55
Create New Experiment64
Ct, Definition137
Curve Smoothing45
Custom Dyes, Defining
Custom Filter Sets, Defining
Cycle Increments
Setting Temperature and Time101
Cycle Number Thermal Profile Setup 95, 98
nemu rome betup
ע
Data Collection
All Points
Endpoint96, 99, 103, 104, 106

Data Point Markers, Show or Hide on Graph	133
Data Storage Location	50
Default Sets55,	91, 109
Defaults	
Active Default Set	55, 56
Applying to a Post-Run Experiment	58
Changing the Active Default Set	57
Modifying Settings for a Default Set	56
Original Software Settings	59
Setting Preferences	55
Setup and Analysis	55
User-Defined Sets	55
Defining Custom Dyes	
Defining Custom Filter Sets	35
Deleting a Plateau or Segment	99
Detection Chemistries	10
Disable the New Experiment Prompt Dialog	54
Display Attributes of Data Points on Graphs 1: 208, 251	50, 179,
Display Preferences	53
Display Tooltips53, 150, 1	79, 208
Displaying Expanded Plots	
Format Options	62
Displaying/Hiding Dyes	81
Displaying/Hiding Well Types	81
Dissociation Curve	
Comparative Quantitation	173
SYBR Green	201
Download Data from Instrument	31
Dual Color Scatter Plot	
Allele Discrimination Plate-Read	271
Allele Discrimination Real-Time	224
Quantitative PCR	153
Quantitative Plate Read	255
Dye Assignment	
Dye Definition Information	
Dye Information	
Dyes Shown	81

None 103, 104, 107

Е

Edit Cycle Range for Baseline Correction43
Edit Menu Commands
Copy/Paste27
Undo/Redo27
Efficiency Settings for Comparative Quantitation48
Elements of the Thermal Profile95
E-mail Experiment24
Enable Well-Type Colors54
Endpoint Data Collection, Definition106
Endpoints for Baseline Calculation43
Excitation and Emission Information for Filter Sets35
Expanded Raw Data Plots117, 123
Experiment Files
Create New Experiment16, 64
Naming Preferences50
Open an Experiment
Recent
Save an Experiment64
Storage Location
Export Formatting Options
Chart Data23
Instrument Data22
Exporting Data to Excel
Exporting Data to Text Files21
Exporting Data to XML Files21
Exporting Views to Image Files24
Exporting Views to PowerPoint24
F
F1 Key, Context-Sensitive Help63
False Color Limits

File Menu Commands
Close17
Convert to New Experiment Type24
E-mail Experiment24
Exit
Export Commands20
Import Well Names19
New16
Open17
Page Setup25
Print
Print Preview
Print Report25
Print Screen
Recent Experiments
Save
Save As
File Preferences
Filter Set Gain Settings
Filter Set Information
Final Call Results
Allele Discrimination Plate Read278
Allele Discrimination Real-Time
Quantitative Plate Read
First Cycle
Setting Temperature and Time101
Fluorescence Intensity Values
Allele Discrimination Plate Read275
Quantitative Plate Read
Fuse Replacement
G
Gain Settings, Changing
Gloves4
Graph Properties Bar Chart vs. Plot (Comparative Quantitation).134
Modifying Graph Title/Axes/Background Color133
Show or Hide Legend
Show or Hide Plot Markers134
Graph Properties Dialog Box133

Graphical Temperature Resolution	45
Help Icon	66
Help Menu Commands	63
1	
Import Existing Plate Setup	90
Import Thermal Profile Setup	108
Import Well Names from Excel or ASC Files	19
Initial Template Quantity	150
	152
Quantitative Plate Read	253
SYBR Green	210
Initial Template Quantity Calculator	
Comparative Quantitation	180
Quantitative PCR	151
Quantitative Plate Read	252
SYBR Green	209
Instrument Menu Commands	
Download Data from Instrument	31
Filter Set Gain Settings	30
Lamp On/Off	29
Lamp Reset and Utilities	29
Multiple Instrument Control	28
Oualification Test	28
Self-Test	29
Update Filter Configuration	30
Instrument Status Indicators	2
Invalid Sets (Replicates)	2
L	
Lamp	
Changing	

Show or Hide
Loading Samples
M
Managing Defaults
Maximum and Minimum Plate Read Temperature121
Maximum and Minimum Plateau Temperature95
Maximum and Minimum Plateau Time95, 107
Maximum and Minimum Segment Cycles95
Melting Curve/Melting Temperature
Molecular Beacons Melting Curve
Menu Commands
Edit Menu
File Menu16
Help Menu63
Instrument Menu
Options Menu
Section Menu60
Tools Menu32
View Menu61
Window Menu62
Molecular Beacon Melting Curve
Definitions of Available Well Types236
Description of the Experiment233
Specifying the Active Dye238
Typical Plate Setup235
Typical Thermal Profile Setup237
Molecular Beacon Melting Curve Data Analysis
Active Dye Selection
Analysis Setup
Annealing Temperature Range Calculation240
Optimum Melting Temperature Calculation242
Quick Protocol
Molecular Beacons Probes11, 214, 233

Legend

Monitoring Raw Data
Plate-Read Experiments122
Real-Time Experiments
Monitoring Thermal Profile Status during Run112
Moving Average45, 129
Multiple Instrument Control
Mx3000P Hardware
Changing the Lamp284
Cleaning
Expected Lamp Life
Fuse Replacement
Instrument Status Indicators2
Sample Loading and Unloading3
Mx3000P Help66
Mx3000P Software Version
Information63
Ν
Non-adaptive Baseline43
Normal Segment
Thermal Profile Setup97
Normalizer
Comparative Quantitation159
0
Open an Experiment
Optics Configuration
Optics Configuration Toolbar Icon65
Options Menu Commands
Analysis Term Settings
Plate Read
Real-Time
Optics Configuration
Defining Dyes and Filter Sets
Dye Definitions
Dye Information
Filter Set Definitions
Optical Path Dye Assignments

Preferences
Colors
Defaults55
Display53
Display Tooltips53
File
Original Settings
Colors
Setup and Analysis59
Р
Page Setup
Passive Reference Dye
PCR Efficiency Calculation151, 180, 209
Perfect Fit Frame
Plate Read Experiments14
Plate Sample Values
Allele Discrimination Plate Read
Allele Discrimination Real-Time222
Comparative Quantitation175
Quantitative PCR
Quantitative Plate Read
SYBR Green204

Plate Setup

Assigning a Reference Dye	84
Comments	80
Copy/Paste Well Information	27
Default Plate Setup	91
Deselecting Wells	82
Dyes Shown and Well Types Shown	81
Full-Screen Plate View	94
Import Plate Setup	90
Overview	80
Quick Setup	93
Replicates	88
Selecting the Dye/Optical Path	83
Selecting the Well Type	83
Selecting the Wells	82
Standard Quantities	85
Well Information	89
Plate Setup Ouick Protocol	68
Plateau Properties	
Setting or Changing	101
Time Range	95, 107
Plateaus	95, 101
Plot Markers	
Changing the Plot Marker for a Well	135
Show or Hide on Graph	133
Preferences	
Defaults	55
Display	53
Display Tooltips	53
File	50
Preferences Dialog Box	50
Print Page Setup	25
Print Preview	25
Print Report	25
Print Screen Toolbar Icon	64
Print Toolbar Icon	64
Printing Plate as Full-Screen	94
rinning Thermai Prome as Full-Screen	

P-values	
Calling Results Based On	132
Viewing P-values in Text Report	132
P-values and Final Calls Based On258, 261, 279, 280	262, 276,
Q	
QPCR Internet Links	32, 294
Qualification Test	
Quantitative PCR	
Definitions of Available Well Types	139
Description of the Experiment	137
Typical Plate Setup	138
Typical Thermal Profile Setup	141
Quantitative PCR Data Analysis	
Amplification Plots	144
Analysis Setup	143
Dual Color Scatter Plot	
Initial Template Quantity	152
Plate Sample Values	146
Quick Protocol	71
Standard Curve	148
Text Report	
Quantitative Plate Read	
Definitions of Available Well Types	
Description of the Experiment	
Typical Plate Setup	244
Ouantitative Plate Read Data Analysis	
Analysis Setup	247
Dual Color Scatter Plot	
Final Call Results	
Fluorescence Intensity Values	
Initial Template Quantity	
Plate Sample Values	248
Quick Protocol	
Standard Curve	250
Text Report	

Quick Protocols

Allele Discrimination Plate Read Analysis	77
Allele Discrimination Real-Time Analysis	74
Comparative Quantitation Analysis	72
Molecular Beacon Melting Curve Analysis	75
Plate Setup	68
Quantitative PCR Analysis	71
Quantitative Plate Read	76
Running the Experiment	70
SYBR Green Analysis	73
Thermal Profile Setup	69

R

Ramp Properties, Setting or Changing104
Ramps95, 104
Read Statistic
Real-Time Experiments13
Recent Experiments List
Reference Dyes, Assigning
Relative Quantity Based On182, 185
Relative Quantity Chart182
Relative Quantity Plate184
Replacing a Fuse
Replacing the Lamp
Replicate Treatment Toolbar Icon65
Replicate Wells, Assigning
Replicates in Plate Read Experiments
Replicates in Real-Time Experiments47, 131
Resetting the Lamp Timer
Resolving Invalid Replicate Sets
Retrieving Data from Instrument Following Loss of PC Connection

Running Plate Read Experiments
Aborting the Run121
Monitoring the Run120
Preparing for the Run119
Pre-Read and Post-Read Options120
Selecting Dyes to View During Run122
Selecting Well Types to View During Run123
Setting Number of Reads121
Setting Read Properties119, 121
Setting Temperature121
Starting the Run119
Viewing Expanded Raw Data Plots123
Viewing Raw Data Plots122
Y-axis Value to View During Run123
Running Real-Time Experiments
Aborting the Run
Analyzing Data During the Run113
Monitoring the Run112
Preparing for the Run111
Selecting Dyes to View During Run116
Selecting Ramp/Plateau to View During Run116
Selecting Well Types to View During Run116
Starting the Run111
Viewing Expanded Raw Data Plots117
Viewing Raw Data Plots115
Viewing Thermal Profile Status during the Run112
Y-axis Value to View During Run117
Running the Experiment Quick Protocol70
S
Safety Information
Sample Containers
Sample Loading and Unloading
Save an Experiment18, 64
Scan Order 37

Scheme Colors, Defining and Editing51 Sealing Sample Containers4

Section Menu Commands

Setup/Run/Analysis	60
Segment Cycle Number	

Segment Labels
Segment Properties, Setting or Changing105
Segment Range
Segments
Selecting the Dyes/Optical Paths for Data Collection
Selecting Wells
Self-Test
Setting the Confidence Level for Plate Read Calls.49, 258, 261, 276, 279
Setting Up an Experiment
Overview
Plate Setup
Quick Plate Setup93
Thermal Profile Setup95
Shortcut Keys
Standard Curve
Comparative Quantitation177
QPCR148
Quantitative Plate Read250
SYBR Green
Standard Quantities, Assigning
Standard Units
Assigning Units to Standard Wells85
Comparative Quantitation (Arbitrary Units)165
Stratagene Support
SYBR Green
Definitions of Available Well Types193
Description of the Experiment190
Typical Plate Setup192
Typical Thermal Profile Setup195
SYBR Green Data Analysis
Amplification Plots
Analysis Setup
Dissociation Curve
Initial Template Quantity
Plate Sample Values 204
Product Melting Temperatures 202
Ouick Protocol 72
Standard Curve 200
Taut Dan art
1ехі кероп211

SYBR Green Dye	12, 190
1	
TaqMan Probes	
Term Settings	288
Text Report	
Allele Discrimination Plate Read	
Allele Discrimination Real-Time	
Comparative Quantitation	
Quantitative PCR	
Quantitative Plate Read	
SYBR Green	
Thermal Block	3
Thermal Profile Quick Protocol	69
Thermal Profile Setup	
Adding a Normal Segment	97
Adding a Plateau	98
Comments	99
Cycle Increments	
Data Collection	
Deleting a Plateau or Segment	99
First Cycle Setting	101
Full-Screen Profile View	99
Import Thermal Profile Setup	
Plateau	95
Plateau Properties	
Ramp	95
Ramp Properties	104
Segment	95
Segment Labels	
Segment Number	95
Segment Properties	
Using a Default Profile	109
Threshold Cycle (Ct) in Allele Discriminat	tion214
Threshold Cycle (Ct) in QPCR	
Threshold Fluorescence	
Adjusting Threshold Fluorescence Man	ually 136
Amplification-based Threshold	
Background-based Threshold	41

 $Mx3000P^{\text{TM}} \text{ Real-Time PCR System}$

Threshold Fluorescence, Options for Setting	
Tile Plots	62
Toolbar Icons	64
Toolbar Size Preferences	53
Tools Menu Commands	
QPCR Internet Links	32
Windows Explorer	32
Tooltips	
Displaying	53
Effects on Results Displays53, 1	45, 150
Trademarks	295
Treat Replicates Collectively	131
Troubleshooting	285
U	
Undo/Redo	27, 64
Update Filter Configuration	30
User-Defined Defaults	55

V
View Menu Commands61
Viewing Data Point Attributes on Graphs53
Viewing Plate as Full-Screen94
Viewing Raw Data from Plate Read Experiments.122
Viewing Raw Data from Real-Time Experiments.115
Viewing Thermal Profile as Full-Screen99
W
Warm Up Time, Lamp16, 29, 65, 111, 119
Warning Symbols2
Well Names
Entering
Importing19
Well Type, Assigning
Well Types Shown
Window Menu Commands
Cascade Plots62
Tile Plots62