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Higher-order organization of
complex networks
Austin R. Benson,1 David F. Gleich,2 Jure Leskovec3*

Networks are a fundamental tool for understanding and modeling complex systems in physics,
biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich,
lower-order connectivity patterns that can be captured at the level of individual nodes and
edges. However, higher-order organization of complex networks—at the level of small network
subgraphs—remains largely unknown. Here, we develop a generalized framework for clustering
networks on the basis of higher-order connectivity patterns.This framework provides
mathematical guarantees on the optimality of obtained clusters and scales to networks with
billions of edges.The framework reveals higher-order organization in a number of networks,
including information propagation units in neuronal networks and hub structure in transportation
networks. Results show that networks exhibit rich higher-order organizational structures
that are exposed by clustering based on higher-order connectivity patterns.

N
etworks are a standard representation of
data throughout the sciences, and higher-
order connectivity patterns are essential to
understanding the fundamental structures
that control and mediate the behavior of

many complex systems (1–7). The most common
higher-order structures are small network sub-
graphs,whichwe refer to asnetworkmotifs (Fig. 1A).
Network motifs are considered building blocks
for complex networks (1, 8). For example, feed-
forward loops (Fig. 1A,M5) have proven funda-
mental to understanding transcriptional regulation
networks (9); triangularmotifs (Fig. 1A,M1–M7) are
crucial for social networks (4); open bidirectional
wedges (Fig. 1A, M13) are key to structural hubs
in the brain (10); and two-hop paths (Fig. 1A,
M8–M13) are essential to understanding air traf-
fic patterns (5). Although network motifs have
been recognized as fundamental units of net-
works, the higher-order organization of networks
at the level of network motifs largely remains an
open question.
Here, we use higher-order network structures

to gain new insights into the organization of com-
plex systems. We develop a framework that iden-
tifies clusters of networkmotifs. For each network
motif (Fig. 1A), a different higher-order clustering
may be revealed (Fig. 1B), which means that dif-
ferent organizational patterns are exposed, de-
pending on the chosen motif.
Conceptually, given a network motif M, our

framework searches for a cluster of nodes Swith
two goals. First, the nodes in S should participate
in many instances ofM. Second, the set S should
avoid cutting instances ofM, which occurs when
only a subset of the nodes fromamotif are in the
set S (Fig. 1B). More precisely, given a motif M,
the higher-order clustering framework aims to
find a cluster (defined by a set of nodes S) that

minimizes the following ratio:

fM ðSÞ ¼ cutM ðS; SÞ=min½volM ðSÞ; volM ðSÞ�
ð1Þ

where S denotes the remainder of the nodes (the
complement of S), cutM(S,S) is the number of
instances of motifM with at least one node in S
and one in S, and volM (S) is the number of nodes

in instances ofM that reside in S. Equation 1 is a
generalization of the conductance metric in spec-
tral graph theory, one of the most useful graph
partitioning scores (11). We refer to fM(S) as the
motif conductance of S with respect toM.
Finding the exact set of nodes S thatminimizes

themotif conductance is computationally infeasible
(12). To approximatelyminimize Eq. 1 and, hence,
to identify higher-order clusters, we developed an
optimization framework that provably finds near-
optimal clusters [supplementarymaterials (13)].
We extend the spectral graph clustering method-
ology, which is based on the eigenvalues and eigen-
vectors of matrices associated with the graph (11),
to account for higher-order structures innetworks.
The resulting method maintains the properties of
traditional spectral graphclustering: computational
efficiency, ease of implementation, andmathemati-
cal guarantees on the near-optimality of obtained
clusters. Specifically, the clusters identified by our
higher-order clustering framework satisfy themotif
Cheeger inequality (14), which means that our
optimization framework finds clusters that are at
most a quadratic factor away from optimal.
The algorithm (illustrated in Fig. 1C) efficiently

identifies a cluster of nodes S as follows:
• Step 1: Given a network and a motif M of

interest, form the motif adjacency matrix WM

whose entries (i, j) are the co-occurrence counts
of nodes i and j in the motifM: (WM)ij = number
of instances of M that contain nodes i and j.
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Fig. 1. Higher-order network structures and the higher-order network clustering framework.
(A) Higher-order structures are captured by network motifs. For example, all 13 connected three-node directed
motifs are shownhere. (B)ClusteringofanetworkbasedonmotifM7. ForagivenmotifM, our frameworkaims to
find a set of nodes S that minimizes motif conductance, fM(S), which we define as the ratio of the number of
motifs cut (filled triangles cut) to theminimumnumber of nodes in instances of themotif in eitherS orS (13). In
this case, there is onemotif cut. (C) Thehigher-order networkclustering framework.Given agraph and amotif of
interest (in this case,M7), the framework forms amotif adjacencymatrix (WM) by counting the number of times
two nodes co-occur in an instance of the motif. An eigenvector of a Laplacian transformation of the motif
adjacencymatrix is then computed.The ordering s of the nodes provided by the components of the eigenvector
(15) produces nested sets Sr = {s1, …, sr} of increasing size r.We prove that the set Sr with the smallest motif-
based conductance, fM(Sr), is a near-optimal higher-order cluster (13).
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• Step 2: Compute the spectral ordering s of
the nodes from the normalized motif Laplacian
matrix constructed via WM (15).
• Step 3: Find the prefix set of s with the

smallest motif conductance (the argument of the
minimum), formally, S : = arg minr fM(Sr), where
Sr = {s1,…, sr}.
For triangular motifs, the algorithm scales to

networkswith billions of edges and, typically, only
takes several hours to process graphs of such size.
On smaller networkswith hundreds of thousands
of edges, the algorithm can process motifs up to
size 9 (13). Although theworst-case computational
complexity of the algorithm for triangular mo-
tifs is Q(m1.5), where m is the number of edges

in the network, in practice, the algorithm ismuch
faster. By analyzing 16 real-world networks where
the number of edges m ranges from 159,000 to
2 billion, we found the computational com-
plexity to scale asQ(m1.2).Moreover, the algorithm
can easily be parallelized, and sampling tech-
niques can be used to further improve perform-
ance (16).
The framework can be applied to directed, un-

directed, andweighted networks, aswell asmotifs
(13). Moreover, it can also be applied to networks
withpositive andnegative signson the edges,which
are common in social networks (friend versus foe
or trust versus distrust edges) and metabolic net-
works (edges signifying activation versus inhibi-

tion) (13). The framework can be used to identify
higher-order structure innetworkswhere domain
knowledge suggests the motif of interest. In
the supplementary materials, we also show that
when a domain-specific higher-order pattern
is not known in advance, the framework can
also serve to identify which motifs are important
for the modular organization of a given network
(13). Such a general framework allows complex
higher-order organizational structures in a num-
ber of different networks by using individual
motifs and sets of motifs. The framework and
mathematical theory immediately extend to other
spectral methods, such as localized algorithms
that find clusters around a seed node (17) and
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Fig. 2. Higher-order cluster in the C. elegans neuronal network. [See (29).]
(A) The four-node bi-fan motif, which is overexpressed in neuronal networks
(1). Intuitively, this motif describes a cooperative propagation of information
from the nodes on the left to the nodes on the right. (B) The best higher-order
cluster in the C. elegans frontal neuronal network based on the motif in (A).
The cluster contains three ring motor neurons (RMEL, -V, and -R; cyan) with
many outgoing connections, which serve as the source of information; six
inner labial sensory neurons (IL2DL, -VR, -R, -DR, -VL, and -L; orange) with
many incomingconnections, servingas the destination of information; and four
URA motor neurons (purple) acting as intermediaries. These RME neurons

have been proposed as pioneers for the nerve ring (21), whereas the IL2
neurons are known regulators of nictation (22), and the higher-order cluster
exposes their organization.The cluster also reveals that RIH serves as a critical
intermediary of information processing. This neuron has incoming links from
three RME neurons, outgoing connections to five of the six IL2 neurons, and
the largest total number of connections of any neuron in the cluster. (C) Il-
lustration of the higher-order cluster in the context of the entire network. Node
locations are the true two-dimensional spatial embedding of the neurons.
Most information flows from left to right, andwe see that RMEV, -R, and -L and
RIH serve as sources of information to the neurons on the right.
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algorithms for finding overlapping clusters (18).
To find several clusters, one can use embeddings
from multiple eigenvectors and k-means clus-
tering (13, 19) or can apply recursive bipartition-
ing (13, 20).
The framework can serve to identify ahigher-order

modular organization of networks.We apply the
higher-order clustering framework to the Caeno-
rhabditis elegans neuronal network, where the
four-node “bi-fan”motif (Fig. 2A) is overexpressed
(1). The higher-order clustering framework then
reveals the organization of themotif within the C.
elegans neuronal network. We find a cluster of
20 neurons in the frontal sectionwith low bi-fan
motif conductance (Fig. 2B). The cluster shows
a way that nictation is controlled. Within the clus-
ter, ring motor neurons (RMEL, -V, or -R), pro-
posed pioneers of the nerve ring (21), propagate
information to inner labial sensory neurons,
regulators of nictation (22), through the neuron
RIH (Fig. 2C). Our framework contextualizes the
importance of the bi-fan motif in this control
mechanism.
The framework also provides new insights into

network organization beyond the clustering of
nodes based only on edges. Results on a trans-

portation reachability network (23) demonstrate
how it finds the essential hub interconnection
airports (Fig. 3). These appear as extrema on
the primary spectral direction (Fig. 3C)when two-
hop motifs (Fig. 3A) are used to capture highly
connected nodes and nonhubs. [The first spectral
coordinate of the normalizedmotif Laplacian em-
bedding was positively correlated with the airport
city’s metropolitan population with Pearson cor-
relation 99% confidence interval (0.33, 0.53).] The
secondary spectral direction identified thewest-east
geography in theNorthAmerican flight network
[it was negatively correlatedwith the airport city’s
longitudewithPearson correlation99%confidence
interval (–0.66, –0.50)]. On the other hand, edge-
basedmethods conflate geography and hub struc-
ture. Forexample,Atlanta, a largehub, is embedded
next to Salina, a nonhub, with an edge-based
method (Fig. 3D).
Our higher-order network clustering framework

unifies motif analysis and network partitioning—
two fundamental tools in network science—and
reveals new organizational patterns andmodules
in complex systems. Prior efforts along these lines
donot provideworst-case performance guarantees
on the obtained clustering (24) and do not reveal

which motifs organize the network (25) but rely
on expanding the size of the network (26, 27).
Theoretical results in the supplementary mate-
rials (13) also explain why classes of hypergraph
partitioning methods are more general than pre-
viously assumed and howmotif-based clustering
provides a rigorous framework for the special
case of partitioning directed graphs. Finally, the
higher-order network clustering framework is
generally applicable to a wide range of network
types, including directed, undirected, weighted,
and signed networks.
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Fig. 3. Higher-order spec-
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(23).] (A) The three higher-
order structures used in our
analysis. Eachmotif is
“anchored”by theblue nodes
i and j, which means our
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cluster together the blue
nodes. Specifically, the motif
adjacencymatrix addsweight
to the (i, j) edge on the basis
of the number of third inter-
mediary nodes (green
squares).The first twomotifs
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on the right connects non-
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network.The edge thickness
is proportional to the weight
in themotif adjacency matrix
WM.The thick, dark lines
indicate that large weights
correspond to popular
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(C) Embedding of nodes
provided by their
corresponding components
of the first two nontrivial eigenvectors of the normalized Laplacian forWM.Themarked cities are eight largeU.S. hubs (green), threeWest Coast nonhubs (red), and
three EastCoast nonhubs (purple).The primary spectral coordinate (left to right) reveals howmuch of a hub the city is, and the second spectral coordinate (top to
bottom) captures west-east geography (13). (D) Embedding of nodes provided by their corresponding components in the first two nontrivial eigenvectors of
the standard, edge-based (non–higher-order) normalized Laplacian. This method does not capture the hub and geography found by the higher-order
method. For example, Atlanta, the largest hub, is in the center of the embedding, next to Salina, a nonhub.

RESEARCH | REPORTS

 o
n 

Ja
nu

ar
y 

2,
 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

http://science.sciencemag.org/


10. C. J. Honey, R. Kötter, M. Breakspear, O. Sporns, Proc. Natl.
Acad. Sci. U.S.A. 104, 10240–10245 (2007).

11. S. E. Schaeffer, Comput. Sci. Rev. 1, 27–64 (2007).
12. Minimizing fM(S) is nondeterministic polynomial-time hard

(NP-hard), which follows from the NP-hardness of the
traditional definition of conductance (28).

13. See the supplementary materials on Science Online.
14. Formally, when the motif has three nodes, the selected cluster

S satisfies fM ðSÞ ≤ 4
ffiffiffiffiffiffi
f�M

p
≤1, where f�M is the smallest motif

conductance of any possible node set S. This inequality is
proved in the supplementary materials.

15. The normalized motif Laplacian matrix is LM = D−1/2(D −WM)D
−1/2,

where D is a diagonal matrix with the row-sums of WM on the
diagonal [Dii = Sj (WM)ij], and D

−1/2 is the same matrix with the

inverse square roots on the diagonal ½D−1=2
ii ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SjðWMÞij

q
�. The

spectral ordering s is the by-value ordering of D−1/2z, where z is
the eigenvector corresponding to the second smallest
eigenvalue of LM, i.e., si is the index of D

−1/2z with the ith
smallest value.

16. C. Seshadhri, A. Pinar, T. G. Kolda, Stat. Anal. Data Min. 7,
294–307 (2014).

17. R. Andersen, F. Chung, K. Lang, in Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science,
FOCS’06, Berkeley, California, 21 to 25 October 2006 (Institute
of Electrical and Electronics Engineers, Piscataway, NJ, 2006),
pp. 475–486.

18. J. J. Whang, I. S. Dhillon, D. F. Gleich, in Proceedings of the
2015 SIAM International Conference on Data Mining, Vancouver,
British Columbia, Canada, 30 April to 2 May 2015,
S. Venkatasubramanian, J. Ye, Eds. (Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2015), pp. 936–944.

19. A. Y. Ng, M. I. Jordan, Y. Weiss, Adv. Neural Inf. Process. Syst.
14, 849–856 (2002).

20. D. Boley, Data Min. Knowl. Discov. 2, 325–344 (1998).
21. D. L. Riddle et al., Eds., C. elegans II (Cold Spring

Harbor Laboratory Press, Cold Spring Harbor, NY,
ed. 2, 1997).

22. H. Lee et al., Nat. Neurosci. 15, 107–112 (2011).
23. B. J. Frey, D. Dueck, Science 315, 972–976

(2007).
24. B. Serrour, A. Arenas, S. Gómez, Comput. Commun. 34,

629–634 (2011).
25. T. Michoel, A. Joshi, B. Nachtergaele, Y. Van de Peer, Mol.

Biosyst. 7, 2769–2778 (2011).
26. A. R. Benson, D. F. Gleich, J. Leskovec, in Proceedings of the

2015 SIAM International Conference on Data Mining, Vancouver,
British Columbia, Canada, 30 April to 2 May 2015,
S. Venkatasubramanian, J. Ye, Eds. (SIAM, Philadelphia, 2015),
pp. 118–126.

27. F. Krzakala et al., Proc. Natl. Acad. Sci. U.S.A. 110,
20935–20940 (2013).

28. D. Wagner, F. Wagner, in Mathematical Foundations
of Computer Science 1993, Proceedings of the
18th International Symposium on Mathematical Foundations
of Computer Science, MFCS’93, Gdańsk, Poland, 30 August to
3 September 1993, A. M. Borzyszkowski, S. Sokolowski, Eds.
(Lecture Notes in Computer Science, Springer, New York,
1993), pp. 744–750.

29. M. Kaiser, C. C. Hilgetag, PLOS Comput. Biol. 2, e95
(2006).

ACKNOWLEDGMENTS

The authors thank R. Sosič for insightful comments. A.R.B. was
supported by a Stanford Graduate Fellowship; D.F.G. was
supported by NSF (CCF-1149756 and IIS-1422918), J.L. was
supported by NSF (IIS-1149837 and CNS-1010921), trans-NIH
initiative Big Data to Knowledge (BD2K), Defense Advanced
Research Projects Agency [XDATA and Simplifying Complexity in
Scientific Discovery (SIMPLEX)], Boeing, Lightspeed, and
Volkswagen. Software implementations and the data sets used
to obtain the results in this manuscript are available at
http://snap.stanford.edu/higher-order/.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/353/6295/163/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S13
Tables S1 to S12
References (30–84)

18 November 2015; accepted 18 May 2016
10.1126/science.aad9029

PLANT SCIENCE

S-Acylation of the cellulose synthase
complex is essential for its plasma
membrane localization
Manoj Kumar,1 Raymond Wightman,2 Ivan Atanassov,1* Anjali Gupta,1

Charlotte H. Hurst,3,4 Piers A. Hemsley,3,4† Simon Turner1†

Plant cellulose microfibrils are synthesized by a process that propels the cellulose
synthase complex (CSC) through the plane of the plasma membrane. How interactions
between membranes and the CSC are regulated is currently unknown. Here, we
demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA)
proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable
region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites.
Mutating both the VR2 and CTcysteines permits CSC assembly and trafficking to the Golgi
but prevents localization to the plasma membrane. Estimates suggest that a single CSC
contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of
the CSC and likely influence its immediate membrane environment.

C
ellulose in plants is synthesized at the plas-
ma membrane by the cellulose synthase
complex (CSC), which contains at least 18
catalytic CESA protein subunits (1). The
direction of CSC movement and the orien-

tation of cellulosemicrofibril deposition are deter-
mined by cortical microtubules (2). Movement of
the CSC through the plane of the plasma mem-
brane is likely to cause severe disruption to the
lipid bilayer (3), which suggests that membrane
partitioning of this process may be important.
Here, we describe the modifications of CESA pro-
teins and demonstrate their importance to the
functioning of the CSC.
S-Acylation involves reversible addition of an

acyl group, often palmitate or stearate, to a cys-
teine residue, which can affect protein structure
or localization (4). A recent study identified many
S-acylated proteins in plants (5), including CESA1
and CESA3, which are essential for cellulose
synthesis in the primary cell wall (6). We used
acyl–resin-assisted capture (acyl-RAC) assays (7)
to confirm that CESA1 is S-acylated (fig. S1) and
showed that CESA6 is also S-acylated (Fig. 1A).
Furthermore, all three CESAs required for cellu-
lose synthesis in the secondary cell wall, CESA4,
CESA7, and CESA8, are S-acylated (Fig. 1A), which
demonstrates that S-acylation is a common fea-
ture of CESA proteins involved in cellulose syn-
thesis in both primary and secondary cell walls.
CESA7 has 26 cysteines (fig. S2A). In order to

identify S-acylated cysteines, we mutated indi-

vidual CESA7 cysteines to serines and tested their
ability to complement the cesa7irx3-1mutant. None
of the eight cysteines in the zinc finger domain
(ZR) showed any significant complementation
(Fig. 2A and figs. S3 and S4). The structure of the
RING-type zinc-finger domain from CESA7 [Pro-
tein Data Bank (PDB) ID: 1WEO] shows that all
eight cysteines are involved in coordinating two
zinc atoms, which makes them unlikely to be
S-acylated. Consequently, we focused our subse-
quent analysis on other regions of CESA7. Two
highly conserved cysteines in the short C termi-
nus (table S1) are also essential for CESA protein
function (Fig. 2A). None of the remaining 16 sin-
gle cysteine mutants showed a substantial effect
on cellulose content (Fig. 2A).
A cysteine-rich region lies within VR2 (8). The

number of VR2 cysteines is conserved among
orthologous CESAs from different species but
varies betweenparalogousCESAs (table S1). There
are four VR2 cysteines in CESA7 (fig. S2), and
mutating them individually has no effect on cel-
lulose biosynthesis (Fig. 2, A and C). We hypoth-
esized that if VR2 is a site of CESA S-acylation, the
remaining VR2 cysteines may support sufficient
S-acylation for CESA7 function. Consequently, we
mutated all four VR2 cysteines in CESA7 (VR2C/S).
The VR2C/S mutant exhibited no complementa-
tion of cesa7irx3-1 (Fig. 2C). Thus, the cysteines in
this region appear to be functionally redundant.
Having identified the VR2 and CT cysteines as

potential S-acylation sites, we proceeded to deter-
mine if these sites were S-acylated.We generated
amutant inwhichbothCT cysteinesweremutated
(CTC/S). The CTC/Smutant did not complement the
cesa7irx3-1mutant (Fig. 2B). Using Acyl-RAC assays
we consistently found that S-acylation was dra-
matically reduced in the VR2C/S mutant, although
some signal remained. The CTC/S mutants exhib-
ited a smaller decrease in S-acylation (Fig. 1, B
and C). We then constructed a mutant in which
both the VR2 and CT cysteines were mutated
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