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Phylogenetic ctDNA analysis depicts 
early-stage lung cancer evolution
A list of authors and their affiliations appears in the online version of the paper.

Lung cancer is the leading cause of cancer-related deaths1,2. Metastatic 
non-small-cell lung cancer (NSCLC) cannot be cured with systemic 
 chemotherapy, yet clinical studies have shown a 5% benefit of post-
operative (adjuvant) chemotherapy on overall survival3. This modest  
survival benefit may reflect a vulnerability of low-volume disease in 
the context of reduced intra-tumour heterogeneity4. ctDNA detection 
in plasma following resection of breast5,6 and colorectal7 tumours has 
been shown to identify patients who are very likely to relapse post-
operatively in advance of established clinical parameters. Identifying, 
monitoring and genomically characterizing residual disease following 
primary lung cancer surgery may improve outcomes in the adjuvant 
setting. This would create a therapeutic setting in which only patients 
who are very likely to have cancer recurrence would receive treatment 
and intervention could be directed to the evolving tumour subclone 
that seeds metastatic recurrence.

Here, we report a bespoke multiplex-PCR next-generation sequencing  
(NGS) approach to ctDNA profiling in the context of the prospective 
tumour evolutionary NSCLC TRACERx study (https://clinicaltrials.
gov/ct2/show/NCT01888601). We address determinants of ctDNA 
detection in early-stage NSCLC and investigate the ability of ctDNA 
to identify and genomically characterize postoperative NSCLC relapse 
within a tumour phylogenetic framework.

Phylogenetic ctDNA profiling
The TRACERx study monitors the clonal evolution of NSCLC from 
diagnosis through to death8,9. Using multi-region exome sequencing  
(M-seq)-derived tumour phylogenetic trees developed through pro-
spective analysis of 100 patients from the TRACERx cohort, we con-
ducted a phylogenetic approach to ctDNA profiling in  early-stage 
NSCLC (Fig. 1). Bespoke multiplex-PCR assay panels were synthe-
sized for each patient, targeting clonal and subclonal single- nucleotide 
 variants (SNVs) selected to track phylogenetic tumour branches in 
plasma (Fig. 1). SNV detection in plasma was established through 
a  calling algorithm using negative control samples (see Methods). 
Analytical validation of the multiplex-PCR NGS platform demon-
strated a sensitivity of above 99% for the detection of SNVs at 
 frequencies above 0.1% and the specificity of detecting a single SNV 

was 99.6% (Extended Data Fig. 1a). At least two SNVs were detected 
in ctDNA from early-stage NSCLCs that had been analysed in our 
published discovery cohort data10, suggesting biological sensitivity of 
a two-SNV threshold for ctDNA detection. Therefore, we selected a 
threshold of two detected SNVs for calling a sample ctDNA- positive 
for validation within this study, to minimize type I errors when  testing 
up to 30 tumour-specific SNVs per time point in a single patient  
(see Extended Data Fig. 1b for justification).

Determinants of ctDNA detection in NSCLC
We sought to identify clinicopathological determinants of ctDNA detec-
tion in early-stage NSCLC by profiling preoperative plasma  samples 
in 100 TRACERx patients. Samples from four patients could not be 
analysed (see cohort design in Extended Data Fig. 2a, patient char-
acteristics in Extended Data Table 1a–c and Supplementary Table 1).  
Individual assay panels were designed to target a median of 18 SNVs 
(range, 10–22), comprising a median of 11 clonal SNVs (range, 2–20) 
and a median of 6 subclonal SNVs (range, 0–16) per patient (Extended 
Data Fig. 2b, e).

At least two SNVs were detected in ctDNA preoperatively in 46 out 
of 96 (48%) early-stage NSCLCs and a single SNV was detected in 12 
additional cases (Fig. 2a). Centrally reviewed pathology data revealed 
that ctDNA detection was associated with histological subtype: 97% 
(30 out of 31) of lung squamous cell carcinomas (LUSCs) and 71%  
(5 out of 7) of other NSCLC subtypes were ctDNA-positive, compared 
with 19% (11 out of 58) of lung adenocarcinomas (LUADs) (Fig. 2a). 
ctDNA was detected in 94% (16 out of 17) of stage I LUSCs compared 
with 13% (5 out of 39) of stage I LUADs (Extended Data Fig. 3a). 
Passive release of ctDNA into the circulation may be associated with 
necrosis11. As expected, LUSCs were significantly more necrotic than 
LUADs12 and ctDNA-positive LUADs formed a sub-group of more 
necrotic tumours compared with ctDNA-negative LUADs (Extended 
Data Fig. 3b). Necrosis, lymph-node involvement, lymphovascular  
invasion, pathologic tumour size, Ki67-labelling indices, non- 
adenocarcinoma histology and total cell-free DNA input predicted 
ctDNA detection in univariable analyses (Extended Data Fig. 3c). 
Multivariable analysis revealed non-adenocarcinoma histology, the 

The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of 
emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. 
The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA 
(ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of 
the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, 
including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) 
post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection 
limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and 
identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic 
ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for  
ctDNA-driven therapeutic studies.
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presence of lymphovascular invasion and a high Ki67 proliferation 
index as independent predictors of ctDNA detection (Extended Data 
Fig. 3c). Because 18F-fluoro-deoxyglucose (FDG) avidity on positron 
emission tomography (PET) scans correlates with proliferative indices 
in early-stage NSCLC13,14, we investigated tumour PET FDG avidity 
and ctDNA detection. PET FDG avidity predicted ctDNA detection 
(area under the curve =  0.84, P <  0.001, n =  92) (Extended Data  
Fig. 3d). Within LUADs, driver events in KRAS, EGFR or TP53 were 
not associated with ctDNA detection (Extended Data Fig. 3e).

We analysed the distribution of clonal and subclonal SNVs in  
ctDNA-positive patients. Clonal SNVs were detected in all 46 
 ctDNA-positive patients and a median of 94% (range, 11–100%) of 
clonal SNVs targeted by assay panels were detected in the ctDNA 
of these patients. Of 46 ctDNA-positive patients, 40 had subclonal 
SNVs targeted by the assay panels, and subclonal SNVs were detected 
in 27 (68%) of these patients. A median of 27% (range, 0–91%) of 
subclonal SNVs within individual assay panels were detected in 
ctDNA-positive patients (Fig. 2b). The mean plasma variant allele  
frequency (VAF) of clonal SNVs was higher than that of subclonal 
SNVs (Extended Data Fig. 4a, within patient comparison, Wilcoxon 
signed-rank test, P <  0.001, n =  27, Supplementary Table 2), supporting  
the use of clonal alterations as a more sensitive method of ctDNA detec-
tion than subclonal alterations10,15.

In ctDNA-positive patients, pathologic tumour size correlated with 
the mean plasma VAF of clonal SNVs (Spearman’s ρ =  0.405, P =  0.005, 
n =  46, Extended Data Fig. 4b). Computed tomography (CT) scan 
volumetric analyses were evaluated in 37 out of 46 ctDNA-positive 
patients (see Extended Data Fig. 4c). Tumour volume from CT analyses  
correlated with mean clonal plasma VAF (Spearman’s ρ =  0.63, P <  0.001, 
n =  37, Fig. 3a). A linear relationship between log-transformed  
volume and log- transformed mean clonal VAF values was observed  
(Fig. 3a). The line of best fit applied to the data was consistent with 
the line fitted to NSCLC volumetric data and ctDNA plasma VAFs 
that have been reported previously16 (Extended Data Fig. 4d). Linear 
 modelling based on the TRACERx data predicted that a primary 
tumour burden of 10 cm3 would result in a mean clonal plasma VAF 
of 0.1% (95% confidence interval, 0.06–0.18%) (Fig. 3b). Tumour purity 
was multiplied by tumour volume to control for stromal contamina-
tion, to determine the relationship between cancer cell volume and 
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Figure 1 | Phylogenetic ctDNA tracking. Overview of the study 
methodology. Multi-region sequencing of NSCLC was performed as part 
of the TRACERx study. PCR assay panels were designed on the basis of 
the phylogenetic analysis, targeting clonal and subclonal SNVs to facilitate 
non-invasive tracking of the patient-specific tumour phylogeny. Assay 
panels were combined into multiplex assay pools containing primers 
from up to 10 patients. Cell-free DNA (cfDNA) was extracted from pre- 
and postoperative plasma samples and multiplex-PCR was performed, 
followed by sequencing of the amplicons. Findings were integrated with 
M-seq exome data to track tumour evolution.
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clonal plasma VAF (Extended Data Fig. 4e). On the assumption that 
a cancer cell volume of 1 cm3 contains 9.4 ×  107 cells17, a plasma VAF 
of 0.1% would correspond to a primary NSCLC malignant burden of  
302 million tumour cells (Fig. 3b and Extended Data Fig. 4f).

To investigate predictors of subclone detection, detected subclonal 
SNVs were mapped back to M-seq-derived tumour phylogenetic trees. 
Of 57 shared subclones (identified in more than one tumour region 
through M-seq analysis), 35 (61%) were identified in ctDNA, com-
pared with 26 out of 80 (33%) private subclones (detected in only a 
single tumour region) (Extended Data Fig. 4g). This suggested that 
subclone volume influences subclonal ctDNA detection. Subclone  
volume was estimated on the basis of mean regional subclone  
cancer cell fraction and cancer cell volume. Detected subclonal SNVs 
mapped to subclones with significantly higher estimated volumes than 
did subclones containing undetected SNVs (Wilcoxon rank-sum test, 
P <  0.001, n =  272, Fig. 3c) and subclone volume significantly corre-
lated with subclonal SNV plasma VAF (Spearman’s ρ =  0.53, P <  0.001, 
n =  109, Fig. 3d).

Detecting and characterizing NSCLC relapse
The longitudinal phase of the study aimed to determine whether 
ctDNA profiling with patient-specific assay panels could detect and 
characterize the branched subclone(s) seeding the NSCLC relapse. 
Pre- and post-surgical plasma ctDNA profiling was performed blinded 
to relapse status in a sub-group of 24 patients (cohort characteristics, 
Extended Data Table 1d, e). This included relapse-free patients who 
had been followed up for a median of 775 days (range, 688–945 days; 
n =  10) and confirmed NSCLC-relapse cases (n =  14) (cohort design, 

Extended Data Fig. 2c). Assay panels were redesigned in this phase 
of the study to target additional clonal SNVs in LUADs to attempt to 
improve ctDNA detection. A median of 18.5 SNVs (range, 12–20) were 
targeted by the LUSC assay panels, comprising a median of 8.5 clonal 
SNVs (range, 3–18) and a median of 9.5 subclonal SNVs (range, 2–17) 
(Extended Data Fig. 2d, e). A median of 28 SNVs (range, 25–30) were 
targeted by the LUAD assay panels, comprising a median of 20.5 clonal 
SNVs (range, 13–26) and a median of 6 subclonal SNVs (range, 0–13) 
(Extended Data Fig. 2d, e).

Patients were followed up every three months for the first two years  
following study enrolment and every six months thereafter with clinical 
assessment and chest radiographs. At least two SNVs were detected in 
13 out of 14 (93%) patients with confirmed NSCLC relapse before, or 
at, clinical relapse (Fig. 4a–g and Extended Data Fig. 5). At least two 
SNVs were detected in 1 out of 10 (10%) patients (CRUK0013) with no 
clinical evidence of NSCLC relapse (Fig. 4h and Extended Data Fig. 6). 
Excluding a single case where no postoperative plasma was taken before 
clinical relapse (CRUK0041), the median interval between ctDNA 
detection and NSCLC relapse that was confirmed by CT imaging  
indicated by clinical and chest radiograph follow-up (lead time) was 
70 days (range, 10–346 days). Of the 13 relapse cases, 4 exhibited lead 
times of more than six months (Fig. 4a–d). In two cases ctDNA detection  
preceded CT imaging inconclusive for NSCLC relapse by 157 days 
(CRUK0004, Fig. 4b) and 163 days (CRUK0045, Fig. 4d). ctDNA 
profiling reflected adjuvant chemotherapy resistance; CRUK0080, 
CRUK0004 and CRUK0062 had detectable ctDNA in plasma within 30 
days of surgery. The number of detectable SNVs increased in all three 
cases despite adjuvant chemotherapy, with disease recurring within 
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Figure 4 | Postoperative ctDNA detection predicts and characterizes 
NSCLC relapse. a–h, Longitudinal cell-free DNA profiling of indicated 
patients. ctDNA detection in plasma was defined as the detection of two 
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specific assay panel are plotted on graphs coloured by M-seq-derived 
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one year after surgery (Fig. 4a–c). In contrast, CRUK0013 had 20 SNVs 
 detectable in ctDNA 72 h after surgery and 13 SNVs detectable before 
adjuvant chemoradiotherapy; 51 days after completion of adjuvant treat-
ment and at postoperative days 457 and 667, no SNVs were  detectable 
and the patient remains relapse-free 688 days post-surgery (Fig. 4h).  
ctDNA profiling detected relapse from the central nervous system; 
CRUK0029 had a PET scan performed 50 days before surgery demon-
strating normal cerebral appearances. ctDNA remained detectable 
following surgery; 54 days postoperatively the patient was diagnosed 
with intracerebral metastasis; no extracranial disease was evident on 
CT imaging (Fig. 4e).

In cases where subclonal SNVs were detected in ctDNA postopera-
tively, we predicted subclonal clusters involved in the relapse process by 
mapping SNVs detected in plasma back to primary M-seq data (Fig. 4  
and Extended Data Fig. 5b, c). Subclonal SNVs displaying plasma 
VAFs similar to those of clonal SNVs from clusters confined to a  
single phylogenetic branch were detected postoperatively in the ctDNA 
of four patients who suffered NSCLC relapse (CRUK0004, CRUK0063, 
CRUK0065 and CRUK0044) (Fig. 4b, f, g and Extended Data Fig. 5b). 
This suggested a relapse process dominated by one subclone repre-
sented in our assay panel. The subclone implicated by ctDNA as driv-
ing the relapse in the case of CRUK0004 contained an ERBB2 (also 
known as HER2) amplification event (more than 15 copies, triploid 
background), which may be targetable in NSCLC18 (Fig. 4b). Relapses 
involving subclones from more than one phylogenetic branch were 
evident in patients CRUK0080, CRUK0062 (Fig. 4a, c) and CRUK0041 
(Extended Data Fig. 5c).

Validation of phylogenetic characterization
To validate subclonal ctDNA analyses, data acquired from sequencing  
metastatic tissue at recurrence were integrated with M-seq pri-
mary tumour data (for biopsy details, see Supplementary Table 3). 
Patient CRUK0063 suffered para-vertebral relapse of their NSCLC. 
Postoperative ctDNA analysis revealed the detection of the same sub-
clonal SNV (OR5D18) on four consecutive occasions over a 231-day 
period (Extended Data Fig. 7a). The OR5D18 SNV traced back to a 
subclonal cluster private to primary tumour region three (Fig. 5a). 
CT-guided biopsy tissue was acquired from the para-vertebral meta-
stasis at postoperative day 467. Exome sequencing of the relapse tissue 
revealed that the subclonal cluster in the primary tumour containing the 
OR5D18 SNV probably gave rise to the metastatic subclone (Fig. 5a),  
consistent with ctDNA phylogenetic characterization of the relapse. 
The para-vertebral biopsy contained 88 SNVs not called as present 
in the primary tumour, including an ARID1A stop-gain driver SNV. 
Re-examination of primary tumour region M-seq data with a lower 
SNV calling threshold revealed that 16 out of 88 SNVs, including 
ARID1A, were detectable in primary tumour region three, compared 
with a maximum of 2 out of 88 in other tumour regions (Extended 
Data Fig. 7b). These data suggest that ctDNA profiling can resolve the  
primary tumour region from which a low-frequency metastatic sub-
clone derives. CRUK0035 developed one adrenal and two liver metas-
tases (Fig. 5b). Sequencing of the metastatic liver deposit revealed that 
only 109 out of 149 SNVs classed as clonal in the primary tumour 
were detectable in the metastasis. This was suggestive of an ancestral 
 branching event that had not been resolved through the primary M-seq 
analysis (Fig. 5b). Postoperative ctDNA profiling not only identified 
clonal SNVs present in the liver metastasis biopsy, but also revealed 
SNVs representing a subclone from the primary tumour (Extended 
Data Fig. 7c). This subclone was not present in the metastatic liver 
deposit (Fig. 5b). These data may reflect ctDNA identified from the 
non-biopsied metastases, suggesting multiple metastatic events. 
CRUK0044 suffered a vertebral and right hilar relapse. Postoperatively, 
the same subclonal SNV (OR10K1) was detected in ctDNA on two 
occasions that were 85 days apart (Extended Data Fig. 7d). This SNV 
was represented in a single subclone detected through sequencing of 
the hilar lymph node metastatic tissue, supporting the ctDNA findings 
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(Fig. 5c). CRUK0041 suffered an intracerebral, hilar and subcarinal 
lymph node relapse. Four subclonal SNVs representing both branches 
of the tumour phylogenetic tree were detectable in the ctDNA at 
relapse. Consistent with these data, sequencing of subcarinal meta-
static tissue revealed the presence of subclonal SNVs mapping to both 
phylogenetic branches (Fig. 5d and Extended Data Fig. 7e). Patient 
CRUK0013 had 20 SNVs detectable in ctDNA at day 3 postoperatively 
and 13 SNVs detectable at day 38. Following adjuvant chemoradio-
therapy for lymph node metastases identified in the pathological speci-
men, ctDNA levels became undetectable (Fig. 4h). Two lymph nodes 
involved were sampled for exome analysis together with M-seq of the 
primary tumour. Four subclonal SNVs detected in the ctDNA post-
operatively mapped to an ancestral subclone (describing a subclone 
that existed during the tumour’s evolution) (Extended Data Fig. 7f). 
This ancestral subclone contained a KRAS amplification (more than 
15 copies, triploid background) and was identified as present in the 
primary tumour and sampled lymph nodes by M-seq (Fig. 5e). These 
data provide phylogenetic characterization of postoperative residual 
disease that responded to adjuvant chemoradiotherapy (Fig. 4h).

ctDNA profiling in the metastatic setting
Patient CRUK0063 was examined through the PEACE post-mortem 
study 24 h after death. M-seq data from the six post- mortem tumour 
regions (para-aortic, para-vertebral and lung meta stases, day 857), 
the para-vertebral relapse biopsy (day 467) and five primary tumour 
regions (day 0) were combined to infer the phylogenetic structure of 
this patient’s NSCLC (Fig. 6a). All seven metastatic tumour regions 
arose from a single ancestral subclone represented by phylogenetic clus-
ter 8. Six metastatic regions shared a later phylogenetic origin, cluster 
12 (Fig. 6b). The single tumour region not containing phylogenetic 
cluster 12 was sampled from the para-aortic metastasis at autopsy  
and contained a private subclone represented by phylogenetic cluster 9  
(Fig. 6b).

We designed a bespoke ctDNA assay panel to retrospectively track 
metastatic subclonal burden. Twenty clonal SNVs and a median of 8 

subclonal SNVs (range, 4–15) in each of 9 metastatic subclonal  clusters 
were targeted by the assay panel (Extended Data Fig. 8). Because 103 
variants per time point were profiled, SNV detection thresholds were 
increased to maintain platform specificity (see Methods). This resulted 
in a predicted false-positive rate of 0.0011, translating to a 10.7% risk 
of a single false-positive SNV at each time point, and a 0.5% risk of two 
false-positive SNVs at each time point when testing 103 SNVs.

Two clonal SNVs were detected by the 103-SNV assay panel 151 
days after surgery (Fig. 6c and Extended Data Fig. 8); 189 days before 
the time point at which ctDNA was detected using the 19-SNV assay 
panel in Fig. 4f. At day 242 a single subclonal SNV was detected from 
phylogenetic  cluster 8 (Fig. 6c and Extended Data Fig. 8); in the con-
text of a 10.7% false-positive risk, a single SNV call could represent a 
type I error. At day 466, following clinical relapse at the thoracic para- 
vertebral site, 18 out of 20 SNVs mapping to phylogenetic clusters (8, 11 
and 12) were detected in ctDNA; these subclonal clusters were shared 
between six out of seven metastatic sites (Fig. 6b, c and Extended Data 
Fig. 8). Single SNVs from two private subclones (phylogenetic clusters 
5 and 9) were also detectable in ctDNA at day 466 (Fig. 6c and Extended 
Data Fig. 8). These subclones were not identified in the CT-guided 
para-vertebral biopsy taken at day 467 (Fig. 6b). The mean plasma 
VAF of the SNVs detected in phylogenetic clusters 11, 8, 12, 9 and 5 
mirrored their proximity to the clonal cluster (light blue) in the M-seq-
derived phylogenetic tree (Fig. 6a, c). This suggested a tiered burden 
of subclonal disease concordant with M-seq phylogenetic inferences. 
The mean clonal VAF decreased in response to palliative radiotherapy 
and chemotherapy, but increased at day 767 (Fig. 6c). Single SNVs 
mapping to phylogenetic clusters 5 and 9 and two SNVs mapping to 
phylogenetic cluster 2 were now detectable in ctDNA 90 days before 
death (Fig. 6a–c and Extended Data Fig. 8). These three phylogenetic 
clusters represented subclones private to the para-aortic metastases 
(Fig. 6a, b). Consistent with these data, significant para-aortic progres-
sion was observed post-mortem compared with the most recent CT 
imaging performed 112 days before death, which showed no evidence 
of para-aortic disease.
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Discussion
In summary, we find predictors of ctDNA detection in early-stage 
NSCLC characterized by non-adenocarcinoma histology, necrosis, 
increased proliferative indices and lymphovascular invasion. Triple-
negative breast cancers display necrosis19 and high proliferative  
indices20,21, and are associated with increased ctDNA levels compared 
with other breast cancer subtypes6, suggesting the possibility of extend-
ing these observations beyond NSCLC.

Tumour volume correlated with the mean plasma VAF of clonal 
SNVs in ctDNA-positive NSCLCs (Fig. 3a). A primary NSCLC tumour 
volume of 10 cm3 predicted a ctDNA plasma VAF of 0.1%. The sen-
sitivity of the multiplex-PCR NGS platform was in excess of 99% at 
VAFs of 0.1% and above, suggesting optimum platform sensitivity with 
tumour burdens in excess of 10 cm3. Low-dose CT lung screening can 
identify lung nodules with diameters from 4 mm (ref. 22). Assuming a 
spherical nodule this would translate to a tumour volume of 0.034 cm3. 
On the basis of the relationship between tumour volume and ctDNA 
plasma VAF observed in this study, a tumour volume of 0.034 cm3 
would equate to a plasma VAF of 1.8 ×  10−4% (95% confidence inter-
val, 9.8 ×  10−6–0.0033%), which is at the extreme of detection limits 
of current ctDNA platforms23. Therefore, using current technologies, 
the sensitivity of clonal-SNV ctDNA-directed early-NSCLC screening 
may be constrained by tumour size.

A limitation to targeted ctDNA profiling is cost, which is estimated 
at US$1,750 per patient for sequencing of a single tumour region,  
synthesis of a patient-specific assay panel and profiling of five plasma 
samples. Adjuvant platinum-based chemotherapy in NSCLC improves 
cure rates after surgery in only 5% of patients, and 20% of patients 
receiving chemotherapy experience acute toxicities3. There is a need 
to increase the efficacy of adjuvant therapy and better target its use. 
Bespoke ctDNA profiling can characterize the subclonal dynamics of 
relapsing NSCLC and identify adjuvant chemotherapy resistance. These 
findings indicate that drug development guided by ctDNA platforms 
to identify residual  disease, define adjuvant treatment response and 
target emerging subclones before clinical recurrence in NSCLC is now 
feasible.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METhOdS
Patients and samples. The cohort of 100 patients evaluated within this study  
comprises the first 100 patients prospectively analysed by the lung TRACERx study 
(https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent 
Research Ethics Committee, 13/LO/1546) and mirrors the prospective 100 patient 
cohort described in ref. 9.

Multi-region tumour sampling was performed as previously described9. 
Relapse  tissue samples, excess to diagnostic requirements, were acquired via clin-
ical  procedures detailed in Supplementary Table 3. For patient CRUK0063 post- 
mortem  examination was performed through the PEACE study 24 h after death  
(https://clinicaltrials.gov/ct2/show/NCT03004755, approved by an independent 
Research Ethics Committee, 13/LO/0972). Informed consent was obtained from 
all  subjects for procedures conducted in these studies. The experiments were not 
randomized.
Tissue microarray creation and Ki67 immunohistochemistry. Tissue micro arrays 
were created for 100 NSCLC cases for Ki67+ immunohistochemistry. Representative 
primary tumour areas were defined by examination of sections stained with hae-
matoxylin and eosin from TRACERx cases. Two 2-mm cores were selected from 
different regions within each specimen and re-embedded in recipient blocks. This 
resulted in a tissue microarray of 200 cores with four normal lung cores as negative 
control. 2–5 μ m sections from tissue microarrays containing tumours were cut. 
Immunohistochemistry with anti-Ki67 monoclonal antibody (dilution, 1:100; clone 
MIB-1; DAKO Agilent Technologies LDA) was performed using BenchMark Ultra 
(Ventana/Roche). The percentage of Ki67+ cells was  averaged across two tumour 
sections for each case. Detection was  performed using the peroxidase-based detec-
tion reagent conjugate (OptiView DAB IHC Detection kit; Ventana).
Central histopathological review. Digital images of diagnostic tumour sections 
from all cases were reviewed in detail centrally by at least one pathologist, and in 
cases of uncertainty, by two. Histological subtype, percentage of necrosis and the pres-
ence of lymphovascular invasion were all evaluated on digital images from scanned 
diagnostic slides blinded to the ctDNA detection status of the patient in question.
Central radiology review and volume estimation. 92 out of 96 anonymized 
 diagnostic PET–CT scans were reviewed by a nuclear medicine physician, 
blinded to the initial PET–CT reports. Scan images were not available in three 
cases (CRUK0025, CRUK0039 and CRUK0023) and in one case a preoperative 
PET–CT was not performed (CRUK0082). CT and PET images were matched 
and fused into transaxial, coronal and sagittal images and reviewed on a dedicated 
PET–CT software visualizer (AW 4.1/4.2 GE medical systems). The semiquan-
titative  parameter standardized uptake value (SUV) maximum for the primary 
tumour mass was calculated and recorded along with the SUVmax of mediastinal 
background uptake. The tumour-to-background ratio (TBR) was calculated on 
the basis of the SUVmax of the tumour divided by the mediastinal background 
uptake24,25. Tumour volume was determined on the basis of tumour CT scans. 
CT slices of the primary tumour were measured with 3D Slicer applying the ‘lung 
 algorithm window’ settings, tumour contours were segmented on each axial CT 
slice. These steps were performed by an experienced resident (W.L.B.), and all 
contours were confirmed and edited where necessary, by a radiologist with 14 
years of  experience in cancer imaging (F.M.F.). Cancer cell volume was defined as 
tumour  volume multiplied by the mean purity of the tumour on the basis of the 
M-seq results, purity estimates derived from the ASCAT analysis as previously 
described9. Effective subclone size was defined as the mean cancer cell fraction 
(CCF) across the regions of the mutation cluster multiplied by tumour volume 
and mean tumour purity.
Tissue-exome sequencing and processing. Whole-exome sequencing was 
 performed on DNA purified from tumour tissue and normal blood as previously 
described9, with the exception of CRUK0063_BR_T1-R1. This capture was per-
formed  according to the manufacturer’s 200 ng DNA protocol (Agilent). Annotated 
SNV calls from primary tumours are available in ref. 9. For this study, metastatic 
 tissue biopsies from each of four patients (CRUK0035, CRUK0041, CRUK0044 and 
CRUK0063) and six metastatic samples acquired at post-mortem examination of 
CRUK0063 were obtained. Genomic DNA was purified from all tissue samples, and 
processed through the TRACERx bioinformatics pipeline as previously described9. 
Annotated SNV calls are available in Supplementary Table 4.
cfDNA extraction and quantification. Blood samples were collected in K2-EDTA 
tubes. Samples were processed within 2 h of collection by double centrifugation of 
the blood, first for 10 min at 1,000g, then the plasma for 10 min at 2000g. Plasma 
was stored in 1 ml aliquots at − 80 °C. Up to 5 ml of plasma per case was available 
for this study (range, 1–5 ml; median 5 ml). The entire volume of plasma was used 
for cfDNA extraction. cfDNA was extracted using the QIAamp Circulating Nucleic 
Acid kit (Qiagen) and eluted into 50 μ l DNA Suspension Buffer (Sigma). Every 
cfDNA sample was analysed on the Bioanalyzer High Sensitivity (Agilent) and 

quantified by interpolation of the mononucleosomal peak height on a calibration 
curve prepared from a pure cfDNA sample that was quantified previously.
cfDNA library preparation. Subsequently, 40 μ l of cfDNA from each plasma 
sample, which is present as fragments of mononucleosomal and polynucleosomal 
length, was used as input into Library Prep using the Natera Library Prep kit; in 
two samples with extremely high cfDNA amounts, input was restricted to approxi-
mately 50,000 genome equivalents (165 ng). cfDNA was end-repaired and A-tailed. 
Natera custom adapters were ligated. The libraries were amplified for 15 cycles 
to plateau and then purified using Ampure beads following the manufacturer’s 
protocol. The purified libraries were run on the LabChip. Successful libraries had 
a single peak at around 250 bp.
SNV assay design and optimization. Natera’s standard assay design pipeline was 
used to generate forward and reverse PCR primers for somatic SNVs detected in 
tumour samples. For every pair of primers, the probability of forming a primer- 
dimer was calculated and assays were combined into pools such that any primer 
combination in a pool is not predicted to form primer-dimers. For each patient, 
assays were prioritized such that (1) assays covering driver SNVs had highest 
 priority and (2) there was uniform sampling of the phylogenetic tree. For the base-
line cohort, 10 balanced pools were created, each containing on average 18 assays 
for 10 patients’ SNVs. For the longitudinal cohort, up to 10 extra assays were 
generated for samples. For patient CRUK0063 post-mortem analysis, new assays 
were designed on the basis of the M-seq of the metastatic biopsy retrieved on day 
467 and of metastatic lesions collected post-mortem. A total of 103 new assays 
were designed compared with the 19 that were based on the primary tumour 
alone. Primer details are available in Supplementary Table 5 (baseline, preoper-
ative cohort), Supplementary Table 6 (longitudinal cohort) and Supplementary 
Table 7 (extended longitudinal assays for CRUK0063).

SNV assays were ordered from IDT. Each pool was optimized by running the 
multiplex-PCR and sequencing protocol using one plasma cfDNA library from 
a healthy subject. For optimization, PCR parameters (primer concentration 
and annealing temperature) that yielded the best percentage of on-target reads, 
depth-of-read uniformity (measured as the ratio of the 80th percentile to the 20th 
 percentile), and number of drop-out assays (defined as assays with < 1,000 reads) 
were determined by sequencing. The PCR conditions that yield the best percentage 
of on- target reads, depth-of-read uniformity, and the lowest number of drop-outs  
were determined. For all pools, the optimal conditions were 10 nM primers  
and 60 °C or 62.5 °C annealing temperatures. Primer pairs contributing to dimer 
formation were removed from each final pool.
Analytical validation. Synthetic spikes representing twenty SNVs that were 
 randomly selected from primer assay pool 1 were designed and synthesized (IDT) 
as 160-bp oligos with the respective SNV placed in the middle (position 80). These 
synthetic spikes were mixed at equimolar ratios and used to prepare a library. This 
library was titrated into a library prepared from mononucleosomal DNA (10,000 
copies) from a normal cell line (AG16778 from Coriell). The library of 20 synthetic 
spikes was titrated into the mononucleosomal DNA library at 2.5%, 0.5%, 0.25%, 
0.1%, 0.05% and 0% (each in triplicate), and 0.01%, 0.005% and 0.001% (each 
in quadruplicate). Because preparing spiked samples at such low levels is either 
subject to sampling noise (0.01% spikes into 10,000 genomic copies background 
is equivalent to one mutant copy), or is not possible (at levels less than 0.01%), 
samples were mixed as libraries. Following library mixing and sequencing, data 
was analysed to detect all the targets in assay pool 1 using the same parameters as 
used for the patient samples.

The measured VAF of each spike for the samples with 2.5% nominal input was 
used to calculate an input correction factor (measured VAF/2.5%). This correction 
factor was applied to the other inputs of the corresponding spike titration series. 
The measured VAF differed from the nominal input most likely because the mon-
onucleosomal fragmentation pattern is not entirely random. Because of this, the 
actual input levels differ from the nominal input levels. Therefore, analytical sen-
sitivity and specificity were measured on the basis of the corrected input intervals 
(see Extended Data Fig. 1a).
Plasma SNV multiplex-PCR NGS workflow. The library material from each 
plasma sample was used as input into the multiplex-PCR (mPCR) using the 
 relevant assay pool and an optimized plasma mPCR protocol. Optimal mPCR con-
ditions were as previously described10. Each PCR assay pool was used to amplify 
the SNV targets from the 10 corresponding samples and 20 negative  control 
 samples (plasma libraries prepared from healthy subjects; BioMed IRB 601-01 
and E&I West Coast Board IRB00007807, study 13090-01A and 13090-04A). The 
mPCR products were barcoded in a separate PCR step. Each amplicon pool was 
sequenced on one Illumina HiSeq 2500 Rapid Run with 50 cycles paired-end reads 
using the Illumina Paired End v1 kit with an average target read depth of around 
40,000 per assay.
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Bioinformatics pipeline. All the paired-end reads were merged using Pear26. 
Merged reads were mapped to the hg19 reference genome with Novoalign  version 
2.3.4 (http://www.novocraft.com/) and sorted and indexed using SAMtools27. Bases 
that did not match in forward and reverse reads or that have Phred quality score 
< 20 were filtered out to minimize sequencing errors in subsequent steps. Merged 
reads with mapping quality > 30 and at most one mismatch under the sequence 
of the primers were marked as on-target. Targets with < 1,000 reads were con-
sidered to have failed and were filtered from further analyses. Quality control 
was  performed using an in-house program checking for a wide list of statistics 
per sample that included total numbers of reads, mapped reads, on-target reads, 
number of failed targets and average error rate.
Plasma SNV calling. For each target SNV a position-specific error model was built 
(see Methods section ‘SNV calling algorithm’). Samples with high plasma VAF 
(> 20%) among the putative negatives were considered to have possible germline 
mutations and were excluded from the error model. A confidence score was cal-
culated for each target SNV on the basis of the error model and a positive plasma 
SNV call was made if the confidence score passed a threshold of 95% for transitions 
and 98% for transversions. There was no difference in read depth between called 
and not called SNVs (Extended Data Fig. 1c).

Because the post-mortem analysis of CRUK0063 involved a larger number 
of target SNVs per time point being analysed (103 versus 19 targets in previous 
samples), updated calling thresholds were applied to control for false positives. 
The new updated thresholds were chosen such that the average number of false 
positives in the 30 negative samples in the run becomes around 1 per sample. All 
multiplex-PCR NGS ctDNA SNV assays with confidence score data are available 
in Supplementary Table 5 (baseline, preoperative cohort assays), Supplementary 
Table 6 (longitudinal assays), and Supplementary Table 7 (extended longitudinal 
assays for CRUK0063).
SNV calling algorithm. The PCR process was modelled as a stochastic process, 
estimating the error parameters using a set of 28–30 control plasma samples and 
making the final SNV calls on the target cancer samples. For each target SNV, 
we built a target-specific background-error model by estimating the following 
para meters from the control samples: PCR efficiency (p), probability that each 
molecule is replicated in a PCR cycle; error rate (pe), error rate per cycle for muta-
tion type e (for example, wild-type allele A to mutant allele G); initial number 
of molecules (X0).

The target-specific error propagation model was used to characterize the distri-
bution of error molecules. As a molecule is replicated over the course of the PCR 
process, more errors occur. If an error occurs in cycle i and there are Xi wild-type 
molecules in the system, that error molecule is duplicated in next cycle with prob-
ability p, and new error molecules are produced from the wild-type background 
molecules according to a binomial process, B(Xi, pe). Using a recursive relation, we 
computed the mean and variance of the number of total molecules Xn and number 
of error molecules En after n PCR cycles.

Algorithm steps are as follows. (1) Estimate the PCR efficiency and per-cycle 
error rate using the normal control samples. (2) Using the efficiency estimate, 
 compute the starting number of molecules in the test set. (3) Use the starting 
number of molecules and the prior efficiency distribution from the training set to 
estimate the PCR efficiency in the test sample. (4) For a range of potential real 
mutant fraction values θ between 0 and 1 (we used 0.15 as upper bound), estimate 
the mean and variance for the total number of molecules, background error 
 molecules and real mutation molecules using the described error propagation 
model and parameters estimated in steps (1)–(3). (5) Use the mean and variance 
estimated in step (4) to compute the likelihood L(θ) for each potential real mutant 
fraction, select the value of θ that maximizes this likelihood (denoted by θ̂MLE) and  
compute the confidence score as θ

θ+

L

L L

( ˆ )

(0) ( ˆ )
MLE

MLE
  . (6) Call a mutation positive if the  

confidence score passes a predefined threshold.
Cross-platform validation using generic PCR NGS panel section. Cross-platform 
validation was performed in 28 patients with M-seq-confirmed SNV(s) within 
one or more hotspots targeted by a generic multiplex PCR NGS panel (Extended 
Data Table 2a, b and Supplementary Table 8). 20 ng of isolated cfDNA was used 
for library preparation using the Oncomine Lung cfDNA assay (ThermoFisher 
Scientific), according to the manufacturer’s instructions. Automated template 
preparation and chip loading was conducted on the Ion Chef instrument using the 
Ion 520 & Ion 530 Kit-Chef (ThermoFisher Scientific). Ultimately, samples were 
sequenced on Ion 530 chips using the Ion S5 System (ThermoFisher Scientific). 
Sequencing data was accessed on the Torrent suite version 5.2.2. Reads were 
aligned against the human genome (hg19) using Alignment version 4.0-r77189, 
and variants were called using the coverage Analysis version 4.0-r77897 plugin. 
All 18 bespoke-panel ctDNA-negative patients had no tumour SNVs detectable 
in plasma preoperatively by the generic panel, supporting biological specificity 

of the bespoke targeted approach, 7 out of 10 bespoke-panel ctDNA-positive 
patients had tumour SNVs detected in plasma by the generic panel (Extended Data  
Table 2a, b). SNVs detected by the hotspot panel not identified by M-seq are 
 displayed in Extended Data Table 2c.
Processing and phylogenetic analysis of relapse and primary tumour  
multi-region whole-exome data. Biopsies from multiple regions from the  primary 
tumour (n =  327), metastatic biopsies (n =  4) and matching blood germline 
 samples (n =  100) were subjected to multi-region whole exome sequencing and 
analysis including estimation of copy number, purity and ploidy, and phyloge-
netic tree construction as previously described9. In brief, phylogenetic analysis 
was performed on the basis of the CCF determined for SNVs and clustered across 
tumour regions using a modified version of Pyclone9 into clusters with similar 
CCF values, filtered and processed as previously described9. Mutation clusters 
are assumed to represent tumour subclones, either current or ancestral, and are 
used as input for construction of the phylogenetic relationship. Phylogenetic trees 
were primarily constructed using the published tool CITUP (0.1.0)28. However, 
in a small number of cases, including all relapse/autopsy cases, manual tree 
construction was required and performed as previously described9. Complete 
details of primary tumour tree construction can be found in ref. 9. Relapse tree 
construction was performed as follows. CRUK0063: clustering was performed 
twice, once across five primary tumour regions and once across five primary, 
one relapse, and six autopsy regions. To ensure consistency, when deriving a 
phylogenetic tree based on all tumour regions, for CCF clusters based on clus-
tering, only the primary tumour regions were maintained for mutations not 
involved in metastatic relapse. A phylogenetic tree was constructed based on  
17 mutation clusters. CRUK0035: clustering primary tumour regions with the 
relapse region revealed one cluster private to the relapse, and one cluster shared 
with the relapse and all other regions. CRUK0044: clustering primary tumour 
regions with the relapse region revealed a cluster private to the relapse, descended 
from a cluster private to region 1 in the primary tumour. CRUK0041: clustering 
primary tumour regions with the relapse region revealed cluster 4 as private to the 
relapse. This cluster must have evolved from cluster 3 only found in the relapse 
and in region 4. A private cluster 6 in region 4 must have evolved from cluster 
4. However, this conflicts with clusters 2 and 5, found in the relapse and regions 
1–3, but not region 4. This can be reconciled by assuming a polyclonal relapse, 
seeded primarily from regions 1–3, but with some contribution from cluster 3, 
private to region 4. Cluster data are available in Supplementary Table 4 under 
‘PyClonePhyloCluster’.
Statistical data analysis. No statistical methods were used to predetermine sam-
ple size. Analysis was performed in the R statistical environment version 3.2.3 
and SPSS version 24. All statistical tests were two-sided, unless expressly stated. 
Multivariate logistic regression used detection of ctDNA (the dependent variable) 
classified as detection of two or more patient-specific variants in ctDNA and the 
covariates listed in Supplementary Table 1. All predictors were entered simulta-
neously into the regression. All continuous independent variables were found to 
be linearly related to the logit of the dependent variable (assessed using the Box–
Tidwell procedure). The logistic regression model was statistically significant, 
χ10

2  =  81.35, P <  0.001 and the Hosmer–Lemeshow P value was 0.9858, indicating 
that the model was not a poor fit. To determine the ability of PET TBR to predict 
whether or not tumour ctDNA was identified in plasma, PET TBR estimates were 
analysed by receiver operating characteristic (ROC) curve analysis against binary 
detection of ctDNA in plasma at baseline on the basis of at least two variants 
detected; significance was based on theWilcoxon rank-sum test. For analysis 
involving longitudinally detected variants (Fig. 4 and Extended Data Fig. 5), only 
subclonal variants from Pyclone clusters present in phylogenetic trees were  
displayed; this did not affect ctDNA detection status of any time points. In  
non- relapse cases presented in Extended Data Fig. 6 all detected subclonal SNVs 
were plotted. To determine the relationship between tumour volume and ctDNA 
VAF, ctDNA assays against clonal SNVs were selected. For each patient, the mean 
ctDNA VAF of the clonal SNVs was determined as baseline for 38 out of 46 
patients with at least two SNVs detected in plasma. As detailed in Extended Data 
Fig. 4c, 9 out of 46 patients were not included in the analysis: CRUK0036 had no 
preoperative CT scan available; CRUK0087 and CRUK0096 had a large cavity 
inside the primary cancer; CRUK0099 had a collapsed lung making volume 
assessment inaccurate; CRUK0100, CRUK0077 and CRUK0052 had a CT slice 
spacing of > 5 mm (CT slice spacing for all volumetric analyses detailed in 
Supplementary Table 1); and finally CRUK0088 and CRUK0091 had a total 
tumour volume of < 3.5 cm3. Linear regression was performed on log- 
transformed mean VAF and tumour volume. The log transformation was justi-
fied as it symmetrized the residuals in the model. An independent analysis was 
performed where tumour volume was multiplied with tumour purity to estimate 
the cancer cell volume. The same log transformation and analysis was applied to 
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data acquired from ref. 16, where ctDNA VAF was determined based on CAPP-
seq analysis with matched tumour volume data  available. To analyse clone size 
versus ctDNA VAF for subclonal SNVs, the mean CCF of the mutations within 
a subclonal mutation cluster was multiplied with tumour volume, and as a second 
independent analysis, with tumour purity.
Data availability. Sequence data has been deposited at the European Genome-
phenome Archive (EGA), which is hosted by the The European Bioinformatics 
Institute (EBI) and the Centre for Genomic Regulation (CRG), under accession 
numbers EGAS00001002247 (primary tumour data) and EGAS00001002415  
(metastatic tumour data). Further information about EGA can be found at 
https://ega-archive.org (the European Genome-phenome Archive of human data  
consented for biomedical research).
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Extended Data Figure 1 | Multiplex-PCR NGS platform analytical 
validation. a, Analytical validation of the multiplex-PCR NGS platform 
was performed by spiking synthetic SNVs into control cfDNA. Sensitivity 
and specificity of the platform at different spike concentrations was 
ascertained, 95% binomial confidence interval displayed as error bars. 
b, Specificity of ctDNA detection based on a one-SNV and two-SNV call 
threshold taking into account parallel testing of multiple SNVs. c, The 

median read depth across a position did not vary depending on whether 
an SNV position was called or not called using the platform error model. 
Wilcoxon rank-sum test, P =  0.786. Median read depth at uncalled 
positions, 45,777; range, 0–146,774; n =  3,745. Median read depth at called 
positions, 45,478; range, 1,354–152,974; n =  1,124. Whiskers represent 
1.5×  the interquartile range, two-sided test.
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Extended Data Figure 2 | Study construction and assay panel design. 
a, The preoperative study phase cohort consisted of 100 TRACERx 
patients present in the first 100 patient TRACERx cohort in April 2016. 
Preoperative plasma samples were profiled for 96 patients for the reasons 
listed. b, Contents of patient-specific assay panels designed in the 

preoperative study phase for LUSC, LUAD and other. c, The longitudinal 
study phase cohort consisted of patients with confirmed NSCLC relapse 
and patients without relapse. d, Contents of patient-specific assay panels 
designed in the longitudinal phases of this study. e, SNV type that was 
targeted.
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Extended Data Figure 3 | Clinicopathological predictors of ctDNA 
detection. a, 96 patients in the preoperative cohort stratified by 
pathological tumour, node and metastasis (TNM) stage. b, LUSCs and 
ctDNA-positive LUADs are significantly more necrotic that ctDNA-
negative LUADs. Significant differences in necrosis between groups: 
LUSCs (median necrosis, 40%; n =  31), ctDNA-positive LUADs (median 
necrosis, 15%; n =  11) and ctDNA-negative LUADs (median necrosis, 2%; 
n =  47), Kruskal–Wallis test, P <  0.001, two-sided pairwise comparisons 
were performed using Dunn’s procedure with Bonferroni correction.  
c, Univariate (left) and multivariate analyses (right) were performed, by 
logistic regression to determine significant predictors of ctDNA detection 

in early-stage NSCLC. ctDNA detection was defined as detection of 
two or more SNVs in preoperative plasma samples. Details regarding 
multivariable analysis methodology are in the Methods. d, Receiver 
operating characteristic (ROC) curve analysis of preoperative PET 
scan FDG avidity (normalized to tumour background ratio (TBR), see 
Methods), as a predictor of ctDNA detection (92 out of 96 PET scans 
were available for central review), determined by the area under the curve 
(AUC). Median PET TBR of detected tumours =  9.01, n =  45. Median PET 
TBR of undetected tumours =  3.64, n =  47. P value based on Wilcoxon 
rank-sum test. e, LUAD subtype analyses based on ctDNA detection and 
the presence of an EGFR, KRAS or TP53 driver mutation.
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Extended Data Figure 4 | Predictors of plasma VAF. a, Plasma VAFs of 
SNVs detected in plasma in 46 patients who were ctDNA-positive (two 
or more SNVs detected). Clonal (blue) and subclonal (red) VAFs are 
indicated, mean is shown as a horizontal line. Driver variants are shown 
as triangles. b, Mean clonal VAF correlated with maximum tumour size 
measured in a post-surgical specimen (pathologic size, n =  46). Grey 
vertical bars represent range of clonal VAF; shaded red background 
indicates the 95% confidence interval. c, Filtering steps taken to define 
a group of ctDNA-positive patients with volumetric data considered 
adequate to model tumour volume and plasma VAF. d, Scatter plot 
showing mean clonal VAF relative to tumour volume for TRACERx (blue 
dots and fitted blue line, n =  37) and VAF relative to volume for previously 
published data16 based on CAPP-seq analysis of ctDNA (orange dots 
and orange fitted line, n =  9). Orange shaded background indicates the 
95% confidence interval based on CAPP-seq data. e, Mean clonal VAF 

correlated with tumour volume ×  tumour purity (cancer cell volume), 
n =  37. Shaded red background indicates the 95% confidence interval.  
f, Association between the number of cancer cells and VAF of clonal SNVs 
in plasma based on linear modelling of Extended Data Fig. 4e and the 
assumption that a cancer cell volume of 1 cm3 contains 9.4 × 107 cells17.  
g, Detected subclonal SNVs were mapped back to M-seq-derived tumour 
phylogenetic trees (process illustrated in the key). Detected private 
subclones (subclones identified within only a single tumour region) are 
coloured red. Shared subclones (subclones detected in more than one 
tumour region) are light blue. Subclonal nodes were sized on the basis 
of the maximum recorded CCF. The top row of the phylogenetic trees 
represent subclonal nodes targeted by primers within that patient’s assay 
panel, the bottom row represent subclonal nodes detected in ctDNA, 
within this row grey subclonal nodes represent subclones that were not 
detected in ctDNA.
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Extended Data Figure 5 | Longitudinal ctDNA profiling, remaining 
relapse cases. a, Kaplan–Meier curve demonstrating relapse-free survival 
for patients in whom ctDNA was detected versus patients in whom 
ctDNA was not detected. b–h, Longitudinal cfDNA profiling. ctDNA 
detection in plasma was defined as the detection of two tumour-specific 
SNVs. Relapse was based on imaging-confirmed NSCLC relapse, imaging 
performed as clinically indicated. Detected clonal (circles, light blue) and 

subclonal (triangles, colours indicate different subclones) SNVs from 
each patient-specific assay panel are plotted coloured by M-seq-derived 
tumour phylogenetic nodes. Mean clonal (blue) and mean subclonal (red) 
VAFs are indicated on graphs. Preoperative and relapse M-seq-derived 
phylogenetic trees represented by ctDNA are illustrated above each graph 
in cases where subclonal SNVs were detected.
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from each patient-specific assay panel are plotted. Mean clonal (blue) and mean subclonal (red) VAFs are indicated.
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Extended Data Figure 7 | Heat maps illustrating detection of SNVs in 
bespoke panels at each sampled time point. a, c–f, Bespoke assay panels 
for CRUK0063 (a), CRUK0035 (c), CRUK0044 (d), CRUK0041 (e) and 
CRUK0013 (f). Colours indicate originating subclonal cluster based on 
the phylogenetic trees above the heat map. Light blue indicates clonal 
mutation cluster. Full panel with cluster colour is shown below each heat 
map. Filled squares indicate detection of a given variant in plasma ctDNA. 

The y axis shows day of sampling; y axis labels appended with [R] indicate 
day of clinical relapse. The x axis indicates SNVs targeted by the assay 
panel. b, Re-examination of primary tumour regions from CRUK0063 
with a lowered threshold to potentially identify SNVs private to the 
sequenced relapse biopsy. 16 out 88 variants were found at very low VAF in 
region 3, indicating that this region from the primary probably gave rise to 
the metastasis.
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Extended Data Figure 8 | Heat map illustrating the content of 
the metastatic bespoke panel designed for patient CRUK0063, 
demonstrating detection status of SNVs across all sampled time 
points. Colours indicate originating subclonal cluster based on patient 

CRUK0063’s phylogenetic tree above the heat map. Light blue indicates 
clonal mutation cluster. Full SNV panel with cluster colour shown below 
each heat map. Filled squares indicate detection of a given variant in 
plasma ctDNA. The y axis shows the postoperative day of sampling.
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Extended data Table 1 | Patient characteristics

Total
Age <60 19

≥60 77
Sex Male 60

Female 36
ECOG PS 0 49

1 47
Histology Adenocarcinoma 58

Squamous cell 
carcinoma 31

Carcinosarcoma 2

Large cell carcinoma 1

Adenosquamous 
carcinoma

Large cell 
neuroendocrine 1

TNM stage Ia 24
Ib 35

IIa 12

IIb 11

IIIa 13

IIIb 1

Lymph node 
metastasis

Yes 24

No 72

Pleural 
involvement

Yes 27

No 69

Vascular 
invasion

Yes 41

No 55

Resection
margin

R0 91

R1 5

Smoking 
status

Never smoked 11

Recent ex-smoker 30

Ex-smoker 48

Ethnicity

Clinical characteristics 
96 patient  pre-operative cohort

Characteristic

No adjuvant therapy Adjuvant therapy
TNM Stage Ia 24 0

Ib 31 4
IIa 3 9
IIb 4 7
IIIa 6 7
IIIb 0 1

a

b

Clinical characteristics 
24 patient  longitudinal sub-cohort

Total
Age <60 5

≥60 19
Sex Male 16

Female 8
ECOG PS 0 12

1 12
Histology Adenocarcinoma 16

Squamous cell 
carcinoma

8

TNM stage Ia 3

Ib 7

IIa 3

IIb 7

IIIa 3

IIIb 1

Lymph node 
metastasis

Yes

No

Pleural 
involvement

Yes 7

No 17

Vascular 
invasion

Yes 12

No 12

Resection
margin

R0 23

R1 1

Smoking 
status

Never smoked 1

Recent ex-smoker 5

Ex-smoker 16

21

2

Caribbean 1

Characteristic

No adjuvant therapy Adjuvant therapy
TNM Stage Ia

Ib
IIa
IIb
IIIa
IIIb

d

e

White-other

White BritishEthnicity

Current smoker 2

White British 85

White-other 4

White-Irish 4

Caribbean 3

Current smoker 7

1
2
5
3
1
03

6
0
2
1
0

9

15

carcinoma

3

Number Details
Less than 24 hours 91

2

c

Pre-surgery

24-72 hours
8 days

31 days
2
1

CRUK0073, 0096
CRUK0089

CRUK0051, 0003

Details regarding timing of pre-operative blood sample

a, Clinical characteristics of the preoperative cohort of 96 patients. b, Distribution of cancer stage and whether the patient received adjuvant chemotherapy. c, The time points at which preoperative 
plasma was acquired for patients within the cohort. d, Clinical characteristics of the longitudinal cohort of 24 patients. e, The distribution of cancer stage in the longitudinal cohort and whether the 
patient received adjuvant chemotherapy.
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Extended data Table 2 | Cross-platform validation using a generic approach to ctdNA profiling

a, 7 out of 10 (70%) of bespoke-panel ctDNA-positive patients had tumour SNVs detectable in plasma preoperatively by a generic hotspot PCR NGS lung panel (Lung Oncomine, Thermofisher). The 
three bespoke-panel ctDNA-positive patients undetected by the generic panel had mean clonal plasma VAFs lower than the 0.1% plasma VAF limit of detection reported for the generic panel (shaded 
yellow). b, On the basis of the CT volumetric assessment of each patient’s primary tumour we predicted plasma VAF corresponding to a tumour of that size (see Fig. 3 and Methods for details of the 
approach). This allowed us to infer platform sensitivities for each patient within the bespoke-panel non-detected cohort. Six LUADs (shaded green; CRUK0037, CRUK0051, CRUK0004, CRUK0039, 
CRUK0025 and CRUK0048) had tumour volumes approximating to a plasma VAF of more than 0.1%. This suggested that these tumours resided within the top platform sensitivity bracket of both the 
generic and bespoke-panel ctDNA platforms. No ctDNA was detected by either platform in these cases, suggesting biological specificity of the bespoke-panel. c, Hotspot SNVs not identified in tumour 
tissue through exome sequencing were identified in plasma of 9 out of 28 patients by the generic panel. This suggested a non-tumour origin of cfDNA, platform non-specificity or an evolving minor 
subclone or second primary. DOR, depth of read; ND, not detected. Combined exome VAF (unfiltered), VAF across all tumour regions analysed (without call filters).
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For 6 of the 96 patients included in this Article (patients CRUK0014, 
CRUK0030, CRUK0048, CRUK0059, CRUK0096 and CRUK0097) 
incorrect tumour volumetric data and positron emission tomography  
(PET) tumour background ratio (TBR) data were analysed. This 
error occurred because of the incorrect assignment of patient identi-
fiers  during the anonymization mandated by the independent review 
board of pre-operative computed tomography (CT) scans belonging 
to these patients. Data relating to this error were presented in Figs 2a 
and 3a and b, Extended Data Figs 3d and 4c–f, Extended Data Table 2b  
and Supplementary Table 1. The reanalysis of correctly anonymized 
scans does not influence the conclusions of this Article and correlation 
 coefficients improve following inclusion of the corrected data. These 

errors have been corrected online in the original Article. The authors 
apologize for any confusion these errors may have caused.

Quartiles for the heat map in Fig. 2a have been redefined after 
 including the correct data to reflect changes in quartiles for 3 (of 92) 
PET TBR values and 7 (of 95) volume parameters. The Source Data 
file supplied for Fig. 2 was not uploaded on publication; the corrected 
Source Data file for Fig. 2 is now available in the HTML version of the 
original Article.

The plot and legend for Fig. 3a have been corrected to reflect updated 
volumetric data for the two patients affected by the correction who were 
analysed in this figure (CRUK0096 and CRUK0097). CRUK0096 was 
excluded from the updated volumetric analysis based on a criterion 
applied to our original analysis (large cavity within primary tumour). 
Consequently, the sentence in the legend to Fig. 3a “n =  38, grey vertical 
lines represent range of clonal VAF, red shading indicates 95% confi-
dence intervals (CIs)” has been updated to read “n =  37” and in the 
Methods section ‘Statistical data analysis’ the line “8 out of 46 patients 
were not included in the analysis: CRUK0036 had no preoperative CT 
scan available; CRUK0087 had a large cavity inside the primary” has 
been updated to read “9 out of 46 patients were not included in the 
analysis: CRUK0036 had no preoperative CT scan available; CRUK0087 
and CRUK0096 had a large cavity inside the primary cancer”.

In Fig. 3b and the main text, the variant allele frequency (VAF) 
prediction values (based on tumour volume), confidence intervals 
and estimated malignant cell number contributing to a VAF of 0.1% 
have been updated. In the section ‘Determinants of ctDNA detection 
in NSCLC’, confidence intervals in the sentence “a primary tumour 
burden of 10 cm3 would result in a mean clonal plasma VAF of 0.1% 
(95% confidence interval, 0.05–0.17%)” have been altered to read “a 
primary tumour burden of 10 cm3 would result in a mean clonal VAF 
of 0.1% (95% confidence interval, 0.06–0.18%)” and the  sentence “a 
plasma VAF of 0.1% would correspond to a primary NSCLC  malignant 
burden of 326 million tumour cells” has been altered to read “a plasma 
VAF of 0.1% would correspond to a primary NSCLC malignant 
burden of 302 million tumour cells”. In the ‘Discussion’ section the 
sentence “on the basis of the relationship between tumour volume 
and ctDNA plasma VAF observed in this study, a tumour volume of 
0.034 cm3 would equate to a plasma VAF of 1.4 ×  10−4% (95% confi-
dence  interval, 6.4 ×  10−6–0.0031%)”, has been altered to read “on the 
basis of the  relationship between tumour volume and ctDNA plasma  
VAF observed in this study, a tumour volume of 0.034 cm3 
would equate to a VAF of 1.8 ×  10−4% (95% confidence interval, 
9.8 ×  10−6–0.0033%)”.

Further figure corrections pertaining to the six affected patients 
in Extended Data Figs 3d and 4c–f, Extended Data Table 2b and 
Supplementary Table 1 of the original Article are described and 
 corrected in the Supplementary Information of this Corrigendum, 
which also shows the original, wrong Figs 2a and 3a and b. The 
Supplementary Data (containing Supplementary Table 1) of the  original 
Article has been corrected.

Supplementary Information is available in the online version of this 
Corrigendum.
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