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INTRODUCTION: Adisease is rarely a straight-
forward consequence of an abnormality in a
single gene, but rather reflects the interplay
of multiple molecular processes. The rela-
tionships among these processes are encoded
in the interactome, a network that integrates
all physical interactions within a cell, from
protein-protein to regulatory protein–DNA
and metabolic interactions. The documented
propensity of disease-associated proteins to
interact with each other suggests that they
tend to cluster in the same neighborhood of
the interactome, forming a disease module, a
connected subgraph that contains all molecu-
lar determinants of a disease. The accurate
identification of the corresponding disease
module represents the first step toward a sys-

tematic understanding of themolecularmech-
anisms underlying a complex disease. Here,
we present a network-based framework to iden-
tify the location of disease modules within the
interactome and use the overlap between the
modules to predict disease-disease relationships.

RATIONALE: Despite impressive advances
in high-throughput interactome mapping and
disease gene identification, both the interac-
tome and our knowledge of disease-associated
genes remain incomplete. This incomplete-
ness prompts us to ask to what extent the
current data are sufficient to map out the
disease modules, the first step toward an in-
tegrated approach toward human disease.
To make progress, we must formulate math-

ematically the impact of network incomplete-
ness on the identifiability of disease modules,
quantifying the predictive power and the lim-
itations of the current interactome.

RESULTS:Using the tools of network science,
we show that we can only uncover disease
modules for diseases whose number of asso-

ciated genes exceeds a crit-
ical threshold determined
by thenetwork incomplete-
ness.We find that disease
proteins associated with
226 diseases are clustered
in the samenetworkneigh-

borhood, displaying a statistically significant
tendency to form identifiable diseasemodules.
The higher the degree of agglomeration of the
disease proteins within the interactome, the
higher the biological and functional similar-
ity of the corresponding genes. These find-
ings indicate that many local neighborhoods
of the interactome represent the observable
part of the true, larger and denser disease
modules.
If two disease modules overlap, local per-

turbations causing one disease can disrupt
pathways of the other disease module as well,
resulting in shared clinical and pathobiolog-
ical characteristics. To test this hypothesis,
wemeasure the network-based separation of
each disease pair, observing a direct relation
between the pathobiological similarity of
diseases and their relative distance in the
interactome. We find that disease pairs with
overlapping diseasemodules display significant
molecular similarity, elevated coexpression of
their associated genes, and similar symptoms
and high comorbidity. At the same time, non-
overlapping disease pairs lack any detectable
pathobiological relationships. The proposed
network-based distance allows us to predict
the pathobiological relationship even for dis-
eases that do not share genes.

CONCLUSION: Despite its incompleteness,
the interactome has reached sufficient cov-
erage to allow the systematic investigation
of disease mechanisms and to help uncover
the molecular origins of the pathobiological
relationships between diseases. The intro-
duced network-based framework can be ex-
tended to address numerous questions at the
forefront of network medicine, from inter-
preting genome-wide association study data
to drug target identification and repurposing.▪
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Diseases within the interactome.The interactome collects all physical interactions between
a cell’s molecular components. Proteins associated with the same disease form connected
subgraphs, called disease modules, shown for multiple sclerosis (MS), peroxisomal disorders
(PD), and rheumatoid arthritis (RA). Disease pairs with overlapping modules (MS and RA)
have some phenotypic similarities and high comorbidity. Non-overlapping diseases, like MS
and PD, lack detectable clinical relationships.
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According to the diseasemodule hypothesis, the cellular components associatedwith a disease
segregate in the same neighborhood of the human interactome, themap of biologically relevant
molecular interactions.Yet, given the incompleteness of the interactome and the limited
knowledge of disease-associated genes, it is not obvious if the available data have sufficient
coverage to map out modules associated with each disease. Here we derive mathematical
conditions for the identifiability of disease modules and show that the network-based location
of each disease module determines its pathobiological relationship to other diseases. For
example, diseases with overlapping network modules show significant coexpression patterns,
symptom similarity, and comorbidity, whereas diseases residing in separated network
neighborhoods are phenotypically distinct.These tools represent an interactome-based
platform to predict molecular commonalities between phenotypically related diseases, even
if they do not share primary disease genes.

I
dentifying sequence variations associated with
specific phenotypes represents only the first
step of a systematic program toward under-
standing human disease. Indeed, most pheno-
types reflect the interplay of multiple molecular

components that interact with each other (1–6),
many of which do not carry disease-associated
variations.Hence, wemust viewdisease-associated
mutations in the context of the human inter-
actome, a comprehensive map of all biologically
relevant molecular interactions (6–12).
Yet, the predictive power of the current network-

based approaches to human disease is limited by
several conceptual and methodological issues.
First, high-throughput methods cover less than
20% of all potential pairwise protein interactions
in the human cell (11–16), which means that we
seek to discover disease mechanisms relying on
interactome maps that are 80% incomplete. Sec-
ond, the genetic roots of a disease are tradition-
ally captured by the list of disease genes whose
mutations have a causal effect on the respective
phenotype. The disease proteins (the products of
disease genes) are not scattered randomly in the
interactome, but tend to interact with each other,

forming one or several connected subgraphs that
we call the diseasemodule (Fig. 1A). This agglom-
eration of disease proteins is supported by a
range of biological and empirical evidence (7, 17, 18)
and has fueled the development of numerous tools
to identify new disease genes and prioritize path-
ways for disease relevance (8, 9, 19–28). Despite its
frequent use, however, the disease module hypoth-
esis lacks a solid mathematical basis. Third, the
relationships between distinct phenotypes are
currently uncovered by identifying shared com-
ponents like disease genes, single-nucleotide poly-
morphisms (SNPs), pathways, or differentially
expressed genes involved in both diseases. This
has resulted in the construction of “disease net-
works,” unveiling the common genetic origins of
many disease pairs (7, 29). Yet, shared genes offer
only limited information about the relationship
between two diseases. Indeed, mechanistic in-
sights are often carried by the molecular net-
works throughwhich the gene products associated
with the two diseases interact with each other.

The fragmentation of disease modules

We started by compiling 141,296 physical inter-
actions between 13,460 proteins experimentally
documented in human cells, including protein-
protein and regulatory interactions, metabolic
pathway interactions, and kinase-substrate inter-
actions [Fig. 1; see also figs. S1 and S2 and sup-
plementary materials (SM) section 1 for a detailed
discussion], representing a blueprint of the human
interactome (Fig. 1D).Wealso compiled a corpus of
all 299 diseases defined by the Medical Subject
Headings (MeSH) ontology that have at least 20
associated genes in the current Online Mendelian

Inheritance in Man (OMIM) and genome-wide
association study (GWAS) databases (30, 31), in-
volving 2436 disease-associated proteins (Fig. 1, B
and C, and SM section 1).
Despite the best curation efforts, both the in-

teractome and the disease gene list remain in-
complete (6, 11–16) andbiased towardmuch-studied
disease genes and disease mechanisms (32, 33).
The consequences of this incompleteness are il-
lustrated by multiple sclerosis: Of the 69 genes
associated with the disease, only 11 disease pro-
teins form a connected subgraph (observable
module, Fig. 1D); the remaining 58 proteins ap-
pear to be distributed randomly in the inter-
actome. This pattern holds for all 299 diseases,
their observable modules comprising on aver-
age only 20% of the respective disease genes
(Fig. 1C). Several factors contribute to this frag-
mentation (Fig. 1A), the main one being data in-
completeness: Missing links leave many disease
proteins isolated from their disease module
(Fig. 1A).
In percolation theory, if only a p fraction of

links is available, a connected subgraph (disease
module) of m nodes undergoes a phase tran-
sition under certain conditions (34, 35): If p is
above pm

c , some fraction of nodes continue to
form an observable module; if, however, p is
below pmc , the module becomes too fragmented
to be observable (Fig. 1E; see also fig. S14 and SM
section 6). To quantify this phenomenon, we cal-
culated the minimum network coverage pm

c re-
quired to observe a disease module of original
size m, finding that pm

c e 1=m, valid for an arbi-
trary degree distribution of the underlying inter-
actome. Figure 1F illustrates a signature of this
phenomenon in the interactome: The observable
disease module size Si versus the number of dis-
ease genes associated with each disease follows
the predicted percolation transition (purple line).
Hence, percolation theory predicts that for dis-
eases with fewer than Nc ≈ 25 genes, the module
is too fragmented to be observable in the cur-
rent interactome; only diseases withNd > Nc dis-
ease genes should have an observable disease
module.
To test whether the observed disease modules

represent nonrandomdisease gene aggregations,
for each disease we compared the size Si of its
observable module with the expected Si

rand if
the same number of disease proteins were placed
randomly on the interactome. For example, for
multiple sclerosis, the observed Si = 11 is sig-
nificantly larger than the random expectation
Si
rand = 2 T 1 (z score = 5.8, p value = 3.3 × 10−9,

Figs. 1D and 2A); hence, the observed multiple
sclerosis module cannot be attributed to a ran-
dom agglomeration of disease genes. We also
determined for each disease protein the network-
based distance ds to the closest other protein
associated with the same disease. Again, for mul-
tiple sclerosis, P(ds) is shifted toward smaller ds
compared to the random expectation Prand(ds)
(p value = 2.6 × 10−6, Fig. 2B), indicating that
the disconnected disease proteins agglomerate
in the neighborhood of the observable module.
Altogether, disease genes associated with 226
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of the 299 diseases show a statistically signifi-
cant tendency to form disease modules based on
both Si and P(ds) (fig. S4).

We also asked if there is a relationship be-
tween the tendency of disease proteins to agglom-
erate in the same interactome neighborhood

and their biological similarity (7, 36, 37). We
find that as the relative size si ≡ Si/Ni of the ob-
servable module increases from 0.1 to 0.8, a sign

1257601-2 20 FEBRUARY 2015 • VOL 347 ISSUE 6224 sciencemag.org SCIENCE

Fig. 1. From the hu-
man interactome to
disease modules. (A)
According to the dis-
ease module hypothe-
sis, a disease
represents a local per-
turbation of the
underlying disease-
associated subgraph.
Such perturbations
could represent the
removal of a protein
(e.g., by a nonsense
mutation), the disrup-
tion of a protein-
protein interaction, or
modifications in the
strength of an interac-
tion. The complete
disease module can be
identified only in a full
interactome map; the
disease module
observable to us
captures a subset of
this module, owing to
data incompleteness.
(B) Distribution of the
number of disease-
associated genes for
299 diseases. (C)
Distribution of the
fraction of disease
genes within the
observable disease
module. (D) A small
neighborhood of the
interactome showing
the biological nature of
each physical interac-
tion and the origin of
the disease-gene
associations used in
our study (see also SM
section 1). Genes
associated with
multiple sclerosis are
shown in red, the
shaded area indicating
their observable
module, a connected
subgraph consisting of
11 proteins. (E) Sche-
matic illustration of
the predicted size of
the observable disease
modules (subgraphs)
as a function of network completeness. Large modules should be observable even for low network coverage; to discover smaller modules, we need higher
network completeness. (F) Size of the observable module as a function of the total number of disease genes. The purple curve corresponds to the
percolation-based prediction (SM section 6), indicating that diseases with Nd < Nc ≈ 25 genes do not have an observable disease module in the current
interactome. Each gray point captures one of the 299 diseases.
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of increasing agglomeration of the disease genes,
the significance of the biological similarity in
Gene Ontology (GO) annotations (biological pro-
cesses, molecular function, and cellular compo-
nent) increases 10- to 100-fold (Fig. 2, C to E, and
fig. S3, a to c), an exceptionally strong effect (see
SM sect. 2 for statistical analysis). Similarly, as
the mean shortest distance between disease pro-
teins increases from 1 (agglomerated disease pro-
teins) to 3 (scattered disease proteins), we observe
a factor of 10 to 100 decrease in the significance of
GO termsimilarity (Fig. 2, F toH, and fig. S3, d to f).
Taken together, we find that genes associated

with the same disease tend to agglomerate in the
same neighborhood of the interactome. Indeed,
although ~80% of the disease proteins are dis-
connected from the observable module, these
isolates tend to be localized in its network vicin-
ity. This result offers quantitative support to the
hypothesis thatmany local neighborhoods of the
interactome represent the observable parts of
the true, larger and denser disease modules.

Relationship between diseases

If two disease modules overlap, local perturba-
tions leading to one disease will likely disrupt
pathways involved in the other disease module
as well, resulting in shared clinical characteristics.
To test the validity of this hypothesis, we introduce
the network-based separation of a disease pair, A
and B (Fig. 3A; see also figs. S5 to S7) using

sAB ≡ 〈dAB〉 −
〈dAA〉þ 〈dBB〉

2
ð1Þ

sAB compares the shortest distances between
proteins within each disease, 〈dAA〉 and 〈dBB〉, to
the shortest distances 〈dAB〉 between A-B protein
pairs. Proteins associated with both A and B have
dAB = 0. As discussed in SM section 3.3, the gen-
eralization of sAB to account for directed regulatory
and signaling interactions does not alter our sub-
sequent findings (fig. S8).
We find that only 7% of disease pairs have

overlapping disease neighborhoods with nega-
tive sAB (Fig. 3B); the remaining 93% have a po-
sitive sAB, indicating that their disease modules
are topologically separated (Fig. 3C). Because we
lack unambiguous true positive and true nega-
tive disease relationships that could be used as a
reference, we use two complementary null mod-
els to evaluate the statistical significance of each
disease pair compared to random expectation
(see SM section 2.2). At a global false discovery
level of 5%, we find that 75% of all disease pairs
exhibit significant sAB. To determine the degree
to which this network-based separation of two
diseases is predictive for pathobiological mani-
festations, we rely on four data sets:
1) Biological similarity: We find that the closer

two diseases are in the interactome, the higher
the GO annotation–based similarity of the pro-
teins associated with them (Fig. 3, D to F). The
effect is strong, resulting in a two-order-of-
magnitude decrease in GO term similarity as we
move from highly overlapping (sAB ≈ –2) to well-
separated disease pairs (sAB > 0).

SCIENCE sciencemag.org 20 FEBRUARY 2015 • VOL 347 ISSUE 6224 1257601-3

Fig. 2. Topological localization and biological similarity of disease genes. (A) The size of the largest
connected component S of proteins associated with the same disease shown for multiple sclerosis. The
observed module size, S = 11, is significantly larger than the random expectation Srand = 2 T 1. (B) The
distribution of the shortest distance of each disease protein to the next closest disease protein ds. For
multiple sclerosis, P(ds) is significantly shifted compared to the random expectation, indicating that
disease genes tend to agglomerate in each other’s network neighborhood. (C to H) The degree of the
network-based localization of a disease, as measured by the relative size of its observable module si =
Si/Nd and the mean shortest distance 〈ds〉, correlates strongly with the significance of the biological
similarity of the respective disease genes. Using the GO annotations, we determine for each disease how
similar its associated genes are in terms of their biological processes (C and F), molecular function (D
and G), and cellular component (E and H). Comparing the resulting values with random expectation, we
find that the more localized a disease is topologically (i.e., the larger si or the shorter 〈ds〉), the higher the
significance in the similarity of the associated genes.
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Fig. 3. Network separation and disease similarity. (A) A subnetwork of the
full interactome highlighting the network-based relationship between disease
genes associated with three diseases identified in the legend. (B and C)
Distance distributions for disease pairs that have topologically overlapping
modules (sAB < 0, B) or topologically separated modules (sAB > 0, C). The plots
show P(d) for the disease pairs shown in (A). (D to I) Topological separation
versus biomedical similarity. (D to F) GO term similarity; (G) gene coexpression;
(H) symptom similarity for all disease pairs in function of their topological
separation sAB. The region of overlapping disease pairs is highlighted in red
(sAB < 0); the region of the separated disease pairs is shown in blue (sAB > 0).
For symptom similarity, we show the cosine similarity (cAB = 0 if there are no
shared symptoms between diseases A and B and cAB = 1 for diseases with
identical symptoms). Comorbidity in (I) is measured by the relative risk RR
(40). Bars in (D) to (I) indicate random expectation (SM section 1): in (D) to
(G), the expected value for a randomly chosen protein pair is shown. In (H)
and (I), the mean value of all disease pairs is used. (J to M) The interplay

between gene-set overlap and the network-based relationships between disease
pairs. (J) The relationship between gene sets A and B is captured by the overlap
coefficient C = |A ∩ B|/min(|A|, |B|) and the Jaccard-index J = |A ∩ B|/|A ∪ B|.
More than half (59%) of the disease pairs do not share genes (J = C = 0); hence,
their relation cannot be uncovered based on shared genes. (K) Distribution of
sAB for disease pairs with no gene overlap.We find that despite having disjoint
gene sets, 717 diseases pairs have overlapping modules (sAB < 0). (L) The
distribution of sAB for disease pairs with complete gene overlap (C = 1) shows a
broad range of network-based relationships, including non-overlapping mod-
ules (sAB > 0). (M) Fold change of the number of shared genes compared to
random expectation versus sAB for all disease pairs. The 59% of all disease
pairs without shared genes are highlighted with red background. For 98% of all
disease pairs that share at least one gene, the gene-based overlap is larger
than expected by chance. Nevertheless, most (87%) of these disease pairs are
separated in the network (sAB > 0). Conversely, a considerable number of pairs
(717) without shared genes exhibit detectable network overlap (sAB < 0).

RESEARCH | RESEARCH ARTICLE



2) Coexpression:We find that the coexpression-
based correlation across 70 tissues (36) between
genes associated with overlapping diseases is
almost twice that of well-separated diseases
(Fig. 3G), falling to the random expectation for
sAB > 0.
3) Disease symptoms: We find that symptom

similarity, as captured by large-scale medical
bibliographic records (38), falls about an order of
magnitude as we move from overlapping (sAB <
0) to separated (sAB > 0) diseases (Fig. 3H). Non-
overlapping diseases share fewer symptoms than
expected by chance.
4) Comorbidity:We used the disease history of

30 million individuals aged 65 and older (U.S.
Medicare) to determine for each disease pair the
relative risk RR of disease comorbidity (39) (Fig.
3I), finding that the relative risk drops fromRR ≥
10 for sAB < 0 to the random expectation of RR ≈
1 for sAB > 0.
Thus, the network-based distance of two

diseases indicates their pathobiological and clin-
ical similarity. This result suggests a molecular
network model of human disease: Each disease
has a well-defined location and a diameter 〈dAA〉
that captures its network-based size (Fig. 3, A
to C). If two disease modules are topologically
separated (sAB > 0), then the diseases are patho-
biologically distinct. If the disease modules
topologically overlap (sAB < 0), the magnitude of
the overlap is indicative of their biological
relationship: The higher the overlap, the more
significant are the pathobiological similarities
between them.We, therefore, represent each dis-
ease by a sphere with diameter 〈dAA〉 in a three-
dimensional (3D) disease space such that the
physical distance rAB between diseases A and B
correlates with the observed network-based dis-
tance 〈dAB〉 (Fig. 4A; see also fig. S15 and SM
section 8). Disease modules that do not overlap
in Fig. 4A are predicted to be pathobiologically
distinct; for those that overlap, the degree of
overlap captures their common pathobiology and
phenotypic characteristics.
To test the predictive power of this model, we

grouped the disease pairs with sAB < 0 into the
“overlapping” disease category, and those with
sAB > 0 into the “non-overlapping” disease cate-
gory. As Fig. 4, B to G, indicates, all biological and
clinical characteristics show statistically highly
significant similarity for overlapping diseases,
whereas the effects vanish for the non-overlapping
disease pairs.
The disease separation allows us to identify

unexpected overlapping disease pairs, i.e., those
that lack overt pathobiological or clinical associ-
ation (see table S1 for 12 such examples). For exam-
ple, we find that asthma, a respiratory disease, and
celiac disease, an autoimmune disease of the small
intestine, are localized in overlapping neighbor-
hoods (sAB < 0, Fig. 4N), suggesting shared mo-
lecular roots despite their rather different
pathobiologies. A closer inspection reveals evi-
dence supporting this prediction: The two dis-
eases share three genes identified via genome-
wide associationswith genome-wide significance
(HLA-DQA1, IL18R1, IL1RL1), and, recently, SNP

rs1464510, previously associated with celiac dis-
ease, was also found to be associated with asthma
(40). Although the twodiseases have few common
phenotypic features, they exhibit a remarkably
high comorbidity (RR = 6.18) and statistically sig-
nificant coexpressionbetween their genes (r=0.32,
p value = 0.02). Furthermore, the top enriched
pathway in the combined gene set of the two
diseases is the immune network for immunoglo-
bulin A (IgA) production (p value = 5 × 10−15, Fig.
4O) with 48 genes, of which seven are associated
with asthma and five with celiac disease. Mea-
suring amounts of an IgA antibody subclass against
tissue transglutaminase (ATA) is widely used to
screen for and diagnose celiac disease (41). At the
same time, the IgA response to allergens in the
respiratory tract of asthma patients plays a path-
ogenic role through eosinophil activation (42).
To determine whether we could have arrived

at the same conclusion by identifying diseases
with shared genes (7), we quantified the predic-
tive power of gene overlap, finding that, indeed,
disease pairs with large gene overlap tend to be
localized in the same network neighborhood (Fig.
3, L and M). Nevertheless, 59% of disease pairs do
not share genes; hence, their relationship cannot
be resolved based on the shared gene hypothesis
(Fig. 3J; see also figs. S9 and S10). We, therefore,
repeated the analysis of Fig. 4, B toG, for all disease
pairs without common genes, finding that sAB
continues to predict accurately the biological sim-
ilarity (or distinctness) of these disease pairs (Fig. 4,
H to M, and SM section 3). Overall, we find 717
pairs with overlapping disease modules (sAB < 0,
Fig. 3K), relationships that cannot be predicted
based on gene overlap. For example, lymphoma, a
cancer, and myocardial infarction, a heart disease,
do not share disease genes. Yet, they have strongly
overlapping modules (sAB = –0.24), indicating that
they are located in the same neighborhood of the
interactome. Indeed, we find that SMARCA4, a
protein associated with myocardial infarction,
interacts with ALK,MYC, andNF-kB2, which are
lymphomadisease proteins. Cancer cells frequently
depend on chromatin regulatory activities tomain-
tain a malignant phenotype. It has been shown
that leukemia cells require the SWI/SNF chroma-
tin remodeling complex containing the SMARCA4
protein as the catalytic subunit for their survival
and aberrant self-renewal potential (43). The re-
latedness of the two diseases is further supported
by a high comorbidity [relative risk (RR) = 2.1] and
the clinical finding that intravascular large cell
lymphoma can affect andobstruct the small vessels
of the heart (44). Other disease pairs that lack
shared genes but are found in the same neighbor-
hood of the interactome include glioma and gout,
glioma and myocardial infarction, and myelo-
proliferative disorders and proteinuria, each pair
having high comorbidity (RR = 2.43, 6.3, and 2.0,
respectively). A detailed discussion of these and
other novel disease-disease relationships predicted
by our approach is offered in SM section 10.

Summary and discussion

A complete and accurate map of the interactome
could have tremendous impact on our ability to

understand the molecular underpinnings of hu-
man disease. Yet, such a map is at least a decade
away, which makes it currently impossible to
evaluate precisely how far a given disease mod-
ule is from completion. Yet, here we showed that
despite its incompleteness, the available inter-
actomehas sufficient coverage to pursue a system-
atic network-based approach to human diseases.
To be specific, we offer quantitative evidence for
the identifiability of some disease modules, while
showing that for other diseases the identifiabili-
ty condition is not yet satisfied at the current
level of incompleteness of the interactome. Most
important, we demonstrated that the relative
interactome-based position of two disease mod-
ules is a strong predictor of their biological and
phenotypic similarity. Throughout this paper, we
focused on the impact of network incompleteness,
ignoring another limitation of the interactome: It
is prone to notable investigative biases (12, 32, 33)
(see also fig. S13 and SM section 5). We, therefore,
repeated our analysis relying only on high-
throughput data from yeast two-hybrid screens
(12) (y2h, SM section 4), finding that the diam-
eter 〈dAA〉 of the observable modules, the dis-
tance 〈dAB〉 and separation sAB of all disease pairs
measured in the full and the unbiased inter-
actome show statistically highly significant corre-
lations. Similarly, OMIM is also prone to selection
and investigative biases; hence, we repeated
our measurements using only unbiased GWAS-
associated disease genes. Comparing gene sets
that include OMIM data and those that only
contain GWAS associations, we again find highly
significant correlations for 〈dAA〉, 〈dAB〉, and sAB
(figs. S11 and S12). Therefore, the diseasemodules
and the overlap between them can be reproduced
in the unbiased data as well, indicating that our
key findings cannot be attributed to investigative
biases. We estimate the minimal number of asso-
ciated genes that a disease needs to have in order
to be observable to be around 25 for the current
interactome.Unbiasedhigh-throughputdata alone
have not yet reached sufficient coverage to map
out putative modules for many diseases; For the
y2h network, being a subset of the interactome
with a much lower coverage, the respective min-
imal number is around 350 (Nc

y2h); hence, only a
fewdiseasemodules canbeobserved (see fig. S14f ).
However, this approach can provide valuable
insights into the properties of the complete in-
teractome (SM section 6). Indeed, as the current
y2h data are expected to represent a uniform
subset of the complete y2h network (12), we can
use it to derive the minimum coverage pm

c of the
latter. As the coverage of high-throughput maps
improves, they will allow us to use the full
power of unbiased approaches for disease mod-
ule identification.
The true value of the developed interactome-

based approach is its open-ended multipurpose
nature: It offers a platform that can address
numerous fundamental and practical issues
pertaining to our understanding of human dis-
ease. This platform can be used to improve the
interpretation of GWAS data (see fig. S16 and
SM section 10 for an application to type II
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Fig. 4. Network-basedmodel of disease-disease relationship. (A) To illustrate
the uncovered network-based relationship between diseases, we place each
disease in a 3D disease space, such that their physical distance to other
diseases is proportional to 〈dAB〉 predicted by the interactome-based analysis.
Diseases whose modules (spheres) overlap are predicted to have common
molecular underpinnings. The colors capture several broad disease classes,
indicating that typically diseases of the same class are located close to each
other.There are exceptions, such as cerebrovascular disease, which is separated
from other cardiovascular diseases, suggesting distinct molecular roots. (B to G)
Biological similarity shown separately for the predicted overlapping and non-
overlapping disease pairs (see Fig. 3, D to I, for interpretation). Error bars indicate
the SEM.Gray lines show random expectation, either for random protein pairs (B

to E, H to K) or for a random disease pair (F, G, L, M); p values denote the
significance of the difference of the means according to a Mann-Whitney U test.
(H to M) Biological similarity for disease pairs that do not share genes (control
set). (N) Three overlapping disease pairs in the disease space. Coronary artery
diseases and atherosclerosis, as well as hepatic cirrhosis and biliary tract dis-
eases, are diseases with common classification; hence, their disease modules
overlap. Our methodology also predicts several overlapping disease modules of
apparently unrelated disease pairs (table S1), illustrated by asthma and celiac
disease. (O) A network-level map of the overlapping asthma–celiac disease
network neighborhood; also shown is the IgA production pathway (yellow) that
plays a biological role in both diseases. We denote genes that are either shared
by the two diseases or by the pathway, or that interact across the modules.
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diabetes), help us uncover new uses for existing
drugs (repurposing) by identifying the disease
modules located in the vicinity of each drug tar-
get (45–47), and facilitate the discovery of the
molecular underpinnings of undiagnosed dis-
eases by exploiting the agglomeration ofmutations
and expression changes in network neighborhoods
associated with well-characterized diseases. In the
long run, network-based approaches, relying on
an increasingly accurate interactome, are poised
to become highly useful in interpreting disease-
associated genome variations.

Materials and methods

Interactome construction

We combine several sources of protein interac-
tions: (i) regulatory interactions derived from
transcription factors binding to regulatory elem-
ents; (ii) binary interactions from several yeast
two-hybrid high-throughput and literature-curated
data sets; (iii) literature-curated interactions de-
rived mostly from low-throughput experiments;
(iv) metabolic enzyme-coupled interactions; (v)
protein complexes; (vi) kinase-substrate pairs;
and (vii) signaling interactions. The union of all
interactions from (i) to (vii) yields a network of
13,460 proteins that are interconnected by 141,296
interactions. For more information on the individ-
ual data sets and general properties of the inter-
actome, see SM section 1.

Disease-gene associations

Weintegratedisease-geneannotations fromOnline
Mendelian Inheritance inMan (OMIM;www.ncbi.
nlm.nih.gov/omim) (48) and UniProtKB/Swiss-
Prot as compiled by (30) with GWAS data from
the Phenotype-Genotype Integrator database
(PheGenI; www.ncbi.nlm.nih.gov/gap/PheGenI)
(31), using a genome-wide significance cutoff of p
value≤ 5 × 10−8. To combine the different disease
nomenclatures of the two sources into a single
standard vocabulary, we use the Medical Subject
Headings ontology (MeSH; www.nlm.nih.gov/
mesh/) as described in SM section 1. After fil-
tering for diseases with at least 20 associated
genes and genes for which we have interaction
information, we obtain 299 diseases and 3173
associated genes.

Additional disease and gene
annotation data

For the analysis of the similarity between genes
and diseases, we use (i) Gene Ontology (GO) an-
notations (49); (ii) tissue-specific gene expression
data (36); (iii) symptom disease associations (38);
(iv) comorbidity data (39); and (v) pathway an-
notations from theMolecular Signatures Database
(MSigDB) (50). Full details on data sources, pro-
cessing, and analysis are provided in SM section 1.

Network localization

We use two complementary measures to quan-
tify the degree to which disease proteins agglom-
erate in specific interactome neighborhoods: (i)
observable module size S, representing the size
of the largest connected subgraph formed by

disease proteins; and (ii) shortest distance ds. For
each of theNd disease proteins, we determine the
distance ds to the next-closest protein associated
with the same disease. The average 〈ds〉 can be inter-
preted as the diameter of a disease on the inter-
actome. The network-based overlap between two
diseases A and B is measured by comparing the
diameters 〈dAA〉 and 〈dBB〉 of the respective diseases
to the mean shortest distance 〈dAB〉 between their
proteins: sAB = 〈dAB〉 – (〈dAA〉 + 〈dBB〉)/2. Positive sAB
indicates that the two disease modules are sep-
arated on the interactome,whereas negative values
correspond to overlapping modules. Details on the
analysis and the appropriate random controls are
presented in SM section 2.

Gene-based disease overlap

The overlap between two gene sets A and B is
measured by the overlap coefficient C = |A∩B|/
min(|A|,|B|) and the Jaccard-index J= |A∩B|/|A∪B|.
The values of bothmeasures lie in the range [0,1]
with J,C = 0 for no common genes. A Jaccard-
index J = 1 indicates two identical gene sets,
whereas the overlap coefficient C = 1 when one
set is a complete subset of the other. For a sta-
tistical evaluation of the observed overlaps, we
use a basic hypergeometric model with the null
hypothesis that disease-associated genes are
randomly drawn from the space of all N genes
in the network (see SM section 3 for full details).
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