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Induction of Ectopic Eyes by
Targeted Expression of

the eyeless Gene in Drosophila
Georg Halder,* Patrick Callaerts,* Walter J. Gehringt

The Drosophila gene eyeless (ey) encodes a transcription factor with both a paired domain
and a homeodomain. It is homologous to the mouse Small eye (Pax-6) gene and to the
Aniridia gene in humans. These genes share extensive sequence identity, the position of
three intron splice sites is conserved, and these genes are expressed similarly in the
developing nervous system and in the eye during morphogenesis. Loss-of-function mu-
tations in both the insect and in the mammalian genes have been shown to lead to a
reduction or absence of eye structures, which suggests that ey functions in eye mor-
phogenesis. By targeted expression of the ey complementary DNA in various imaginal disc
primordia of Drosophila, ectopic eye structures were induced on the wings, the legs, and
on the antennae. The ectopic eyes appeared morphologically normal and consisted of
groups of fully differentiated ommatidia with a complete set of photoreceptor cells. These
results support the proposition that ey is the master control gene for eye morphogenesis.
Because homologous genes are present in vertebrates, ascidians, insects, cephalopods,
and nemerteans, ey may function as a master control gene throughout the metazoa.

The eyeless (ey) mutation of Drosophila was

first described in 1915 (1) on the basis of its
characteristic phenotype, the partial or com-

plete absence of the compound eyes. The ey
alleles available today are recessive hypo-
morphs (weak alleles) and they lead to the
reduction or complete absence of the com-

pound eyes but do not affect the ocelli (sim-
ple eyes) on the head of the fly. Apparent
null alleles that are lethal when homozygous
have also been isolated (2), but they have
been lost, and a detailed analysis of their
phenotype is not available. Cloning and se-

quencing of the ey gene (3) have shown that
it encodes a transcription factor that con-

tains both a paired domain and a homeodo-
main. The ey gene is homologous to Small
eye (Sey = Pax-6) in the mouse and to
Aniridia in humans. The proteins encoded by
these genes share 94 percent sequence iden-
tity in the paired domain, and 90 percent
identity in the homeodomain and they con-

tain additional similarities in the flanking
sequences. Furthermore, two out of three
splice sites in the paired box and one out of
two splice sites in the homeobox are con-

served between the Drosophila and the mam-
malian genes, which indicates that these
genes are orthologous.

Both the mouse and the Drosophila gene
have similar expression patterns during de-
velopment. In the mouse, the expression of
Sey is observed in the spinal cord, in discrete
regions of the brain, and in the developing
eye. The Sey gene is expressed from the
earliest stages until the end of eye morpho-
genesis: first, in the optic sulcus, and subse-
quently in the eye vesicle, in the lens, in the
differentiating retina, and finally in the cor-

nea (4). In Drosophila, ey is first expressed in
the embryonic ventral nerve cord and in
defined regions of the brain. Later in embry-
ogenesis, ey is transcribed in the embryonic
primordia of the eye as soon as these cells
can be detected. In subsequent larval stages,
it continues to be expressed in the develop-
ing eye imaginal discs. During the third lar-
val stage, ey expression becomes largely re-

stricted to the part of the eye disc that is

anterior to the morphogenetic furrow. This
region consists of undifferentiated cells
whereas posterior to the furrow the differen-
tiating ommatidia are apparent (5). Because
mutations in the mouse and Drosophila genes
lead to a reduction or complete absence of all
eye structures, and because these genes are

similar in DNA sequence and in expression
pattern even at the earliest stage of eye de-
velopment, it has been suggested that ey and
Sey may be the master control genes in-
volved in eye morphogenesis (3). Further-
more, mutations in four other Drosophila
genes with similar phenotypes (eyes absent,
sine oculis, eye gone, and eyelisch) do not
affect the expression pattern of ey, which
indicates that ey acts upstream of these other
genes (6). These results are consistent with
its possible role as a gene that controls eye
morphogenesis, even though it may have
additional functions in the developing ner-

vous system. The cloning of the homologous
genes from ascidians, cephalopods, and nem-
erteans (ribbon worms) suggests that this
gene may be present in all metazoa (3).

Master control genes that act as develop-
mental switches can be detected on the basis
of their mutant phenotypes. Thus, homeotic
mutations have identified master control
genes that specify the body plan along the
antero-posterior axis. These genes, which are

characterized by a homeobox, are clustered
in the Antennapedia (Antp) and Bithorax
Complexes in Drosophila, and in the Hox
gene clusters of the mouse (7). Loss- and
gain-of-function mutations in these genes
lead to opposite homeotic transformations.
For example, in Antp, recessive loss-of-func-
tion mutations are lethal at the embryonic or

larval stage and lead to a transformation of
the second thoracic segment (T2) toward
the first thoracic segment (T2->T1). Dom-
inant gain-of-function mutations lead to a

transformation in the opposite direction,
that is from the anterior head and T1 seg-
ments toward T2 (H,T1->T2) (8). These
transformations can be explained by the
combinatorial interaction of several ho-
meotic genes in order to specify a given body
segment. These genes have partially overlap-
ping expression domains in several body seg-
ments and each segment is specified by a

combination of homeobox genes, that is by a

Hox code (9). By ubiquitous (ectopic) ex-

pression of Antp under the control of a heat-
shock promoter, we have changed the body
plan of Drosophila and induced the formation
of middle legs in place of the antennae, and
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genes indicate that there is competition be-
tween the ectopically expressed gene and the
genes normally expressed in a given segment
(11). This competition frequently leads to
epistasis of the posterior over the anterior
genes, and to segmental transformations that
are confined to the anterior body segments.

GAL 4

t~~~~~~~~~~~~~~~~~~~~~~~~~--00000-I eye/ess embryonic cDNA-
UAS

Transcription of eyeless in antennal,
leg and wing imaginal discs

Fig. 1. Targeted expression of ey. (A) Schematic representation of the ectopic induction of ey by means of
the GAL4 system. In (B) through (D), f3-galactosidase staining of third instar imaginal discs (28) shows the
activation of a UAS-lacZ reporter construct by the GAL4 enhancer-trap line E132. (B) Eye-antennal disc.
The antennal portion of the disc is on the top and the eye portion is on the bottom. 13-Galactosidase activity
is detected in parts of the antennal disc corresponding to several antennal segments and in the periphery
of the disc, which will give rise to head cuticle. The staining observed at the most posterior part of the eye
disc derives from the optic nerve. (C) Wing imaginal disc. 13-Galactosidase activity is detected in proximal
regions of the future wing blade, and in portions corresponding to the hinge regions and ventral pleura. (D)
Leg imaginal disc with lacZ expression in portions that correspond to the tibia and femur.

Fig. 2. GAL4 driven ectopic expression of ey in-
duces the formation of eye structures in variousm
tissues. The sites at which ectopic eyes form cor-
respond to the regions in the imaginal discs, in
which GAL4 is expressed as assayed by the acti-
vation of a lacZ reporter construct (Fig. 1, B, C,
and D). The ectopic eye structures show omma-

tidial arrays, interommatidial bristles, and red pig-

mentation (29). (A) Cuticle of an adult head in
which both antennae formed eye structures. (B)
Dissected wing with a large outgrowth of eye tis-

sue. The ectopic eye contains about 350 facets.
Many interommatidial bristles are also apparent.
The normal eye contains approximately 800 om-
matidia. The wing is reduced in size. The anterior
margin with its characteristic triple row of bristles
occupies most of the circumference, whereas the

more posterior structures are absent and re-
placed by eye tissue. The characteristic venation
pattern of the wing is disturbed by the formation of
the ectopic eye structures. (C) Dissected antenna
in which most of the third antennal segment is
replaced by eye structures. (D) Dissected middle
leg with an eye-outgrowth on the base of the tibia.

The ey gene, which also contains a ho-
meobox in addition to a paired box, differs
from Antp and the other antero-posterior
homeotic genes in that the hypomorphic
loss-of-function mutation leads to a loss of
the corresponding eye structures rather than
to their homeotic transformation. This phe-
notype does not necessarily imply that ey
acts as a developmental switch; it only shows
that ey function is required for eye develop-
ment. If, however, ey is the master control
gene for eye morphogenesis, the ectopic ex-
pression of ey should induce the formation of
ectopic eye structures in other parts of the
body similar to the transformations obtained
for Antp (10) and the other homeotic genes
(11). Therefore we used the GAL4 system
(12) and a heat-inducible expression vector
in order to express the ey gene ectopically.

Induction of ectopic eye structures. We
used the GAL4 system (12) to target ey
expression to various imaginal discs other
than the eye discs in which ey is normally
expressed. GAL4 is a yeast transcriptional
activator that can activate transcription of
any gene after introduction into Drosophila if
the gene is preceded by a GAL4 upstream
activating sequence (UAS) that consists of
five optimized GAL4 binding sites (12). The
GAL4 system is now widely used in conjunc-
tion with a method called enhancer detec-
tion (13), in which a reporter gene is pro-
vided with a weak promoter only and insert-
ed at random sites in the genome by trans-
position. If the detector has inserted close to
an enhancer, the reporter gene is expressed
differentially. By isolating a large number of
enhancer detection lines, a spectrum of dif-
ferent enhancers with specific temporal and
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also transformed the dorsal head capsule into
structures of the second thoracic segment
(H->T2). This phenotype is similar to that
observed in dominant gain-of-function muta-
tions (10). However, it proved to be difficult
to transform the more posterior body seg-
ments toward T2. Data for several homeotic

iAL

- Genomic enhancer-VGL4j-

Tissue-specific expression of GAL 4
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spatial patterns of control can be identified.
If GAL4 is used as a reporter gene, these
enhancer detection lines can be used for
targeted gene expression; the enhancer
drives the specific expression of GAL4,
which in turn can transactivate a target
gene, in our case ey provided with a UAS.
As indicated in Fig. 1A, the GAL4 enhancer
detection line was crossed to a UAS-ey stock
to generate transheterozygous flies that ex-
press ey in those cells that express GAL4.
We chose approximately 20 GAL4 lines, of
which only 3 gave viable adult flies to ana-
lyze in more detail (14). The results are
illustrated for the GAL4 line E132. When
E132 is crossed with a stock containing a
UAS-lacZ construct, p-galactosidase stain-
ing reveals the activation of the lacZ report-
er gene by GAL4 and thus the expression
pattern of GAL4 in the imaginal discs. E132
expresses GAL4 in discrete regions of the
wing and haltere discs, all three pairs of leg
discs, and in the antennal imaginal discs
(Fig. 1, B through D), which are the primor-
dia for the respective adult structures. When
the GAL4 expressing line E132 is crossed
with a stock carrying an ey embryonic com-
plementary DNA (cDNA) (15) under a
GAL4-UAS control element, transhet-
erozygous flies can be generated, and the
expression of ey can be targeted into the
imaginal discs as mentioned above (Fig. 1,
B, C, and D for lacZ). In the wild-type
controls ey is only expressed in the eye discs.

As a consequence of ectopic ey expres-
sion in line E132, ectopic eye structures were
induced in the wings (Fig. 2A), all six legs
(Fig. 2B, for mesothoracic legs), the anten-
nae (Fig. 2C), and the halteres. When the
flies were raised at 25°C, at which tempera-
ture the cold-sensitive GAL4 is properly ac-
tive, 100 percent of the transheterozygotes
produced ectopic eye structures. We ob-
served that the eye structures in the adult
cuticles bulged out of the tissue in which
they were induced. This phenomenon is il-
lustrated for the wing in scanning electron
micrographs (Fig. 3, B and D), and could
represent sorting out of heterotypic cells in
order to minimize the contact surface be-
tween the two tissue types (16). In some
cases, the development of the ectopic eyes
interfered with pattern formation in the sur-
rounding imaginal disc tissue and resulted in
pattern duplications. In the GAL4 line
MS941, all of the flies expressed ey in the
wing discs and produced eye facets on both
wings. In line p339, which expressed GAL4
in a small spot in the wings in low amounts,
only red pigment was formed, but again with
100 percent penetrance. We also used a
heat-inducible promotor to express ey ubiq-
uitously at various times during develop-
ment. However, heat shocks during embry-
onic and most larval stages lead to develop-
mental arrest. To circumvent this lethality,
1790
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Fig. 3. Scanning electron of ectopic eyes (30). (A) Scanning electron micrograph of an ectopic eye
(arrowhead) in the head region formed by the antennal disc. (B) Overview of a fly with an ectopic eye under
the wing (arrow) and on the antenna (arrowhead). (C) Higher magnification of (A). The ectopic eye (to the left)
contains hexagonal ommatidia and interommatidial bristles. The organization of the facets in the ectopic eye
is very similar to the pattern in the normal eye (to the right). Some facets, however, are fused and some
irregularities in the form of the facets are observed. (D) Higher magnification of the ectopic eye under the
wing shown in (B) (arrow). The ectopic eye protrudes out of the thoracic body wall (ventral pleura). The
organization of the facets and interommatidial bristles are similar to that of the ectopic eye shown in (C).

heat-shocks were applied after 80 hours dur-
ing the middle of the third larval stage.
Ectopic eye structures including complete
ommatidia were induced. However, targeted
ey expression by the GAL4 system was more
effective.

The fine structure of the ectopic eyes was
analyzed by scanning electron microscopy.
Well-developed ectopic eyes were most fre-
quently observed on structures derived from
the antennal and wing discs (Fig. 3, A and
B). Distinct ommatidia with lenses and in-
terommatidial bristles were seen (Fig. 3, C
and D). The array of facets and bristles were
largely normal. However, we also observed
fusion of facets and irregular spacing of bris-
tles in some cases. The eye structures in-
duced on the legs were on average smaller
than the ones on antennae or wings but
nevertheless appeared to have a relatively
normal organization.

Photoreceptors in the ectopic eyes. Mi-
croscopic analysis of sections of ectopic eye
structures indicated that the ectopic omma-
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tidia consisted of the full complement of the
different types of cells and structures (17). In
a longitudinal section of an antennal ectopic
eye, we were able to distinguish cornea,
pseudocone, cone cells, primary, secondary,
and tertiary pigment cells, and photorecep-
tors with rhabdomeres (Fig. 4, A and B). At
the base of the ommatidia, we observed the
feet of secondary and tertiary pigment cells
and a basal lamina that formed a structure
with features characteristic of the fenestrated
membrane of the retina. On a transverse
section, the normal trapezoidal array of
rhabdomeres was clearly visible (Fig. 4B, ar-
rowhead).
We also analyzed the neuronal differen-

tiation of photoreceptors by means of ELAV
antibodies (18). Clusters of photoreceptor
cells were clearly detected at ectopic sites in
the imaginal discs (Fig. 4, C and D), and the
sequence of neuronal differentiation ob-
served in the normal eye disc was retained in
the ectopic eye cells. A number of single
cells that expressed the neuronal marker
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Fig. 4. Histological structure and differentiation of photoreceptors in the ectopic eye. (A) Micrograph of a
section through an ectopic eye in the antenna (to the left) and the normal eye (to the right) stained with Azur
II and methylene blue (15). (B) Phase contrast micrograph of a section through an ectopic eye on the
antenna. The normal number and trapezoidal arrangement of the rhabdomeres of photoreceptors is
observed in the different ommatidia (arrowhead). (C) Micrograph of an eye-antennal disc stained with an
antibody against the neuronal marker ELAV and a secondary fluorescein-labeled antibody. In the normal
eye portion (to the right), regularly spaced ommatidial clusters of differentiating photoreceptors are detect-
ed. In the antennal part of the disc (on the left), extensive cell proliferation has led to a doubling in size. In this
portion, a large domain of ectopically induced photoreceptors is seen. (D) and (E) are higher magnification
views of (C), which shows the photoreceptor clusters in the ectopic eye (D) and in the normal eye (E),
respectively. An essentially normal cluster formation and cluster array is observed in the ectopic eye.

were seen at one side of an ectopic photore-
ceptor cluster. This expression most likely
corresponds to the formation of Rs photore-
ceptor cells. Subsequently, groups of three,
five, seven, and eight cells were detected
that expressed the ELAV epitope. This series
of events probably corresponds to what is
observed in a normal eye disc upon passage
of the morphogenetic furrow. Thus, these
observations suggest that morphogenesis of
the ectopic eyes is normal and that it prob-
ably involves the formation of an ectopic
morphogenetic furrow. In summary, the data
presented above show that ey can induce the
formation of complete and morphologically
normal ectopic eyes. It is unknown whether
these ectopic eyes are functional, and wheth-
er the axons of the photoreceptors innervate
the correct domains of the brain, that is, the
lamina and the dorsal deuterocerebrum, re-
spectively (19). Initial evidence suggests that
the photoreceptors in the ectopic eyes are
electrically active upon illumination (20).

Role of eyeless in eye morphogenesis.
The reported findings indicate that ey is the
master control gene for eye morphogenesis,
because it can induce ectopic eye structures
in at least the imaginal discs of the head and
thoracic segments. The expression of ey

switches on the eye developmental pathway
that involves several thousand genes. The
number of genes required for eye morpho-
genesis can roughly be estimated on the basis
of the frequency of enhancer detection lines
that show reporter gene expression in the
eye imaginal discs posterior to the morpho-
genetic furrow during eye differentiation. Be-
cause approximately 15 percent of a large
sample of enhancer detector lines fall into
this category (21), and assuming that the
Drosophila genome contains at least 17,000
genes (22), we estimate that more than 2500
genes are involved in eye morphogenesis.
Our results suggest that all of these genes are
under the direct or indirect control of ey,
which is at the top of the regulatory cascade
or hierarchy. The ey gene is expressed first
and controls a set of subordinate regulatory
genes, including sine oculis, another ho-
meobox-containing gene (23). Subsequent-
ly, genes that influence cell-cell interactions
and signal transduction must be regulated
and, finally, the structural genes like rhodop-
sin, crystallin, and transducin must be ex-
pressed. The lower part of this cascade, in-
cluding signal transduction pathways, has
been elucidated to a large extent (24), but
the upper part, and which of these interac-

Fig 5. The ectopic expression of mouse Pax-6
cDNA under the control of GAL4 induces the for-
mation of ectopic eyes (26). The scanning electron
micrograph shows a close-up of induced eye fac-
ets on a leg. Ommatidial arrays and interomma-
tidial bristles very similar to the ectopic eye struc-
tures induced by the Drosophila gene (Fig. 3) were
formed (30). In both cases the same GAL4 line
E132 was used.

tions are direct, remain to be determined.
However, ey may not only control the initial
steps of eye morphogenesis, but also, as sug-
gested from the expression pattern, it may
control later steps. Thus, the same transcrip-
tional regulator may be used at consecutive
steps of morphogenesis. This could be the
consequence of the conservative mode of
evolution whereby the same master control
gene is used repeatedly to integrate new tar-
get genes into the eye developmental path-
way. In addition to eye morphogenesis, ey
controls other functions in the developing
nervous system, because null mutations are
lethal, and the loss of eye structures alone is
not the cause of lethality.

The induction of ectopic eyes in Drosoph-
ila is reminiscent of the classical experiments
of Spemann (25) in which he induced ec-
topic eyes by transplanting the primordia of
the optic cup to ectopic sites in amphibian
embryos. Our experiments extend these ob-
servations and identify the gene that is nec-
essary and sufficient to induce ectopic eyes at
least in imaginal discs. In the mouse, Sey is
expressed at each step of the induction pro-
cess; first in the optic cup, then in the lens,
and finally in the cornea, which implies that
Sey may be the master control gene in the
mouse eye induction process (4).

The transformation of antennal, leg, and
wing tissue into eye structures by ey induc-
tion indicates that ey is a homeotic gene. In
contrast to the classic homeotic genes of the
Antennapedia and Bithorax Complexes, hy-
pomorphic loss-of-function mutations in ey
do not lead to homeotic transformation, but
rather, they result in the loss of eye struc-
tures. However, targeted ectopic ey expres-
sion induces homeotic transformations sim-
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ilar to those observed in gain-of-function
mutations of classic homeotic genes, like
Antp. Therefore, ey represents a class of ho-
meotic master control genes different from
Antp. Gain-of-function mutants with pheno-
types corresponding to those obtained in our
targeted gene expression experiments have
not been discovered previously.

The high degree of sequence conserva-
tion between the human, the mouse, and the
Drosophila genes, the similarity of the phe-
notypes of Aniridia, Sey, and ey, and the
similarity of the expression patterns suggest-
ed to us that ey might be a master control
gene for eye morphogenesis that is shared by
vertebrates and invertebrates (3). Because
we also found homologous genes in ascid-
ians, cephalopods, and nemerteans we pro-
pose that ey function is universal among
metazoa. In order to test whether the mouse
gene can substitute for the Drosophila gene,
we also used the mouse Sey gene for targeted
expression in Drosophila. Similar to the re-
sults obtained for the Drosophila ey gene, the
mouse gene Sey can also induce the forma-
tion of ectopic eye structures (Fig. 5) (26).
As expected, the ectopic eye structures
formed contain Drosophila-type ommatidia
and not mouse eye structures.

Previously, the function of other mouse
homeobox genes has been demonstrated in
Drosophila with the use of heat inducible
vectors (27). In the case of HoxB6, Dro-
sophila legs were induced in place of the
antennae (27). Obviously, the responses,
but not the transcriptional regulator, are
species-specific.

The observation that mammals and in-
sects, which have evolved separately for
more than 500 million years, share the same
master control gene for eye morphogenesis
indicates that the genetic control mecha-
nisms of development are much more uni-
versal than anticipated. It will be informa-
tive to compare the regulatory cascade re-
quired to form a Drosophila compound eye
with that of a mouse eye, to find out what
the differences are, and to determine how
many new genes have been recruited into
these developmental pathways in the course
of evolution.
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