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High-speed quantum random number generation
by measuring phase noise of a single-mode laser
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We present a high-speed random number generation scheme based on measuring the quantum phase noise
of a single-mode laser operating at a low intensity level near the lasing threshold. A delayed self-
heterodyning system has been developed to measure the random phase fluctuation. By actively stabilizing
the phase of the interferometer, a random number generation rate of 500 Mbit/s has been demonstrated and
the generated random numbers have passed all the DIEHARD tests. © 2010 Optical Society of America
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Random numbers have been widely used in many
branches of science and technology, such as statisti-
cal analysis, computer simulation [1], and cryptogra-
phy [2]. One recent example is quantum key distribu-
tion (QKD) [3], where truly random numbers are
needed for both quantum state preparation and
quantum state detection.

In practice, it is not easy to obtain high-quality
random numbers with proven randomness. Conven-
tional pseudorandom generators based on algorithms
or physical random generators based on the chaotic
behavior of complex systems are not suitable for cer-
tain applications owing to their deterministic nature.
On the other hand, the probabilistic nature of quan-
tum mechanics suggests that true random numbers
can be generated from fundamental quantum pro-
cesses [4].

To date, most quantum random number generators
(QRNGs) are based on performing single photon de-
tections [4,5], and the highest random number gen-
eration rate achieved is 16 Mbit/s [6]. Although there
is still some room for improvement, the ultimate
speed is limited by the performance of the single pho-
ton detector (SPD), especially its dead time.

We note that ultrahigh speed random number gen-
erators (RNGs) based on chaotic semiconductor la-
sers have been proposed, and random number gen-
eration rates above Gbit/s have been demonstrated
[7,8]. However, the observed noise is mainly due to
the chaotic behavior of the laser rather than funda-
mental quantum noise.

Here, we present a QRNG scheme based on mea-
suring the quantum phase noise of a single-mode
semiconductor laser [9]. The phase noise of a laser
originates from spontaneous emission [10]: each
spontaneous emitted photon has a random phase,
which in turn contributes a random phase fluctuation
to the total electric field and results in a linewidth
broadening. The spontaneous emission and the corre-
sponding phase noise are quantum mechanical in ori-
gin. We remark that a practical laser source also ex-
hibits additional classical noises. Fortunately, the

quantum phase noise (manifested as the fundamen-
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tal laser linewidth) is inversely proportional to the la-
ser output power [10]. By operating the laser at a low
intensity level near the lasing threshold, we mea-
sured a 32-fold broadening of its emission spectrum.
This ensures that the main contribution to the phase
noise is from spontaneous emission, rather than from
the chaotic evolution of the macroscopic field [7]. One
significant advantage of our scheme is the potential
high random number generation rate. In this Letter,
we demonstrate a 500 Mbit/s random number gen-
eration rate with commercial off-the-shelf compo-
nents.

The experimental setup is shown in Fig. 1. A
1.5 �m single-mode cw distributed-feedback (DFB)
diode laser (ILX Lightwave) is employed as the laser
source. Two symmetric fiber couplers are used to con-
struct a fiber Mach–Zehnder interferometer (MZI)
with a length imbalance of �L. The interference sig-
nals from the MZI are fed into two detection chan-
nels, Ch1, including a 5 GHz bandwidth InGaAs pho-
todetector (PD1 in Fig. 1) and a 1 GS/s data
acquisition (DAQ) card (DAQ1 in Fig. 1, implemented
with a 3 GHz bandwidth real time oscilloscope), is
used to generate random numbers; Ch2 (PD2 in Fig.
1), which has a bandwidth of 1 MHz, is used to moni-
tor the slow phase drift of the MZI due to tempera-
ture changes. The output from PD2 is sampled by a
slow DAQ card (DAQ2 in Fig. 1, NI PCI6115) at

Fig. 1. Experimental setup. L, 1550 nm DFB diode laser;
PC1, PC2, polarization controllers; PM, phase modulator;
C1, C2, fiber couplers; PD1, 5 GHz photodetector for ran-
dom number generation; PD2, 1 MHz photo receiver for
phase monitoring; DAQ1, 1 GS/s data acquisition card;
DAQ2, 1 MS/s data acquisition card; Comp, desktop com-
puter. The time delay difference resulting from the length

imbalance �L is 650±100 ps.
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1 MS/s, which in turn provides a feedback control sig-
nal to a phase modulator (PM) inside the MZI.

The electric field of a laser beam can be described
by

E�t� = E0 exp�i��0t + ��t���, �1�

where ��t� represents the random phase fluctuation
of the laser source.

After removing a constant background term, the
interference signal can be described by

S�t� � cos��0Td + ���t,Td��, �2�

where ���t ,Td����t�−��t+Td�.
In Eq. (2), Td=n�L /C is the time-delay difference

between the two arms of the MZI, n is the refractive
index of fiber, and C is the speed of light in vacuum.
The term �0Td represents a phase delay introduced
by the path-length difference, while the term
���t ,Td� represents the quantum phase noise of the
laser. ���t ,Td� can be treated as Gaussian white
noise with a variance of [11]

�����t,Td��2	 =
2Td

�c
. �3�

Here �c is the coherence time of the laser, which is re-
lated to its linewidth �f as �c
 1

��f [11].
Equation (3) shows that as long as Td��c, the re-

sulting Gaussian distribution can be treated as a uni-
form distribution in the range of �−� ,��. Under this
condition, the total phase �0Td+���t ,Td� is also uni-
formly distributed in the range of �−� ,�� regardless
of the actual value of �0Td. Thus we can generate bi-
nary random numbers from the sign of S�t�.

We define the response time TR1 of the photodetec-
tion system �PD1� as the reciprocal of its bandwidth.
The sampling period TS is defined as the reciprocal of
the sampling rate. The recommended conditions for
random number generation are summarized as (a)
Td��c (see above), (b) TS−Td	TR1 (to reduce the cor-
relation between adjacent samples due to the finite
response time TR1 and the length unbalance of the
MZI), and (c) �c	TR1 (to make sure that the random
phase fluctuation will not be averaged out within the
response time TR1). Obviously, the maximum sam-
pling rate (or the random number generation rate) is
determined by �c. Experimentally, by tuning the driv-
ing current of the laser, a coherence time of a few
nanoseconds has been achieved, corresponding to a
maximum sampling rate in the order of 100 MHz.

To go beyond the limitation imposed by �c, we have
introduced a phase stabilization technique. From Eq.
(2), by doing phase feedback control, the �0Td term in
the cosine function can be stabilized at 2m�+� /2
(where m is an integer). Thus, Eq. (2) can be further
simplified as S�t��sin����t ,Td��. Since the discrete
time series sample S̃�ti� has a symmetric distribution
around zero, we can generate binary random num-
bers from the sign of S̃�ti�. In principle, the sampling

rate is limited by TR1 but not �c. The recommended
conditions for random number generation with phase
stabilization are summarized as (a) TS−Td	TR1 and
(b) �c	TR1.

During the experiment, the driving current of the
DFB laser was set to I=12 mA, resulting a coherence
time �c of 10 ns. As a comparison, the same laser has
a coherence time of 320 ns at a higher driving current
of 50 mA. From Eq. (3), the variance of the phase
noise is proportional to 1/�c. Thus, the variance of
phase noise at I=12 mA is about 32 times larger than
that at I=50 mA. We consider this as the evidence
that the phase noise at I=12 mA is dominated by
spontaneous emissions.

We measured the noise spectrum of S�t� using a
spectrum analyzer (HP8564E). Measurements have
been performed with time-delay differences: Td1
=650±100 ps and Td2=250±100 ps. The experiential
results are shown in Fig. 2. The electrical noise of the
detection system has been measured by blocking the
laser output.

In Fig. 2, the electrical noise, which looks quite
random in time domain, presents a few dominant
spectral lines. These spikes could be due to the envi-
ronmental electromagnetic noises picked up by our
detection system. On the other hand, the phase noise
are broadband and much stronger than the electrical
noise.

Though the phase noise measured with the 250 ps
delay MZI has a flatter band, we chose to use the 650
ps delay MZI for QRNG, as the phase noise is much
brighter such that the power of the phase noise over-
whelms the power of electrical noise. The output of
PD1 was sampled at 1 GS/s rate. To generate binary
random numbers, we simply compare the sampling
results S̃�ti� with the mean value S0, the ith bit is as-
signed as either “1” if S̃�ti�	S0 or “0” if S̃�ti�
S0.

Two independent random number trains, Bin1 and
Bin2, have been generated. The data size for each
train is 108 bits. The degree of randomness of the raw

Fig. 2. (Color online) Spectral power density of electrical
and phase noise. The solid-line, dot-line, and circle-line
represent the spectral power densities of the detection sys-
tem, the phase noise with a long delay �Td=650±100 ps�,
and the phase noise with a short delay �Td=250±100 ps�,

correspondingly.
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data trains may be affected by the presence of the
spectral spikes (Fig. 2) owing to electromagnetic in-
terference from the environment. By performing a
bitwise exclusive OR (XOR) operation between Bin1
and Bin2, another random number train, Bin3, has
been generated. This XOR operation has been com-
monly used on improving randomness of an RNG
[12]. The equivalent generation rate of Bin3 is 500
Mbit/s.

Table 1. DIEHARD Test Results (500 MbitsÕs)

Statistical Test p Value Result

Birthday spacings 0.845968 (KSa) Success
Overlapping 5-permutation 0.551420 Success
Binary rank test for

31�31 matrices 0.642062 Success
Binary rank text for

32�32 matrices 0.461672 Success
Binary rank text for

6�8 matrices 0.607744 (KS) Success
Bitstream 0.98987 Success
OPSO 0.2373 Success
OQSO 0.1860 Success
DNA 0.1439 Success
Count-the-1’s test 0.919419 Success
Count-the-1’s test for

specific bytes 0.751492 Success
Parking lot 0.199468 (KS) Success
Minimum distance 0.721783 (KS) Success
3D spheres 0.405683 (KS) Success
Squeeze 0.305844 Success
Overlapping sums 0.246453 (KS) Success
Runs 0.829651 (KS) Success
Craps 0.838686 Success

Fig. 3. (Color online) Autocorrelations of the random num-
ber trains acquired at 1 Gbit/s. Note for Bin3, the equiva-
lent random number generation rate is 500 Mbit/s.
The autocorrelations of Bin1 and Bin3 are shown
in Fig. 3: the residual correlation of Bin3 is signifi-
cantly lower than that of Bin1. This suggests that the
XOR operation does improve the randomness. We re-
mark that residual correlation of any physical RNG
cannot reach zero due to the finite response time of
the detection system and other imperfections. One
future research direction is to design a “randomness
extractor” [13] to further suppress the residual corre-
lation.

We further test the randomness of Bin3 with the
DIEHARD test suite [14]. Most of the tests in DIE-
HARD return a p value, which should be uniform on
[0,1) if the input file contains truly independent ran-
dom bits. The significance level has been chosen to be
�=0.01, which means that tests with p values within
[0.01,0.99] pass the tests [5]. As shown in Table 1,
Bin3 passed all the tests.

In summary, we have demonstrated a high-speed
random number generation scheme based on measur-
ing the quantum phase noise of a DFB laser diode.
With off-the-shelf components, a random number
generation rate of 500 Mbit/s has been achieved.
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