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Understanding the behavior of basic biomolecular components as
parts of larger systems is one of the goals of the developing field
of synthetic biology. A multidisciplinary approach, involving math-
ematical and computational modeling in parallel with experimen-
tation, is often crucial for gaining such insights and improving the
efficiency of artificial gene network design. Here we used such an
approach and developed a combinatorial promoter design strategy
to characterize how the position and multiplicity of tetO2 operator
sites within the GAL1 promoter affect gene expression levels and
gene expression noise in Saccharomyces cerevisiae. We observed
stronger transcriptional repression and higher gene expression
noise as a single operator site was moved closer to the TATA box,
whereas for multiple operator-containing promoters, we found
that the position and number of operator sites together deter-
mined the dose–response curve and gene expression noise. We
developed a generic computational model that captured the ex-
perimentally observed differences for each of the promoters, and
more detailed models to successively predict the behavior of
multiple operator-containing promoters from single operator-
containing promoters. Our results suggest that the independent
binding of single repressors is not sufficient to explain the more
complex behavior of the multiple operator-containing promoters.
Taken together, our findings highlight the importance of joint
experimental–computational efforts and some of the challenges of
using a bottom-up approach based on well characterized, isolated
biomolecular components for predicting the behavior of complex,
synthetic gene networks, e.g., the whole can be different from the
sum of its parts.

combinatorial design � mathematical modeling � promoter engineering �
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Designing and constructing novel biomolecular systems is a
fundamental goal of synthetic biology (1–21), which is often

challenging due to the inherent complexity of biological systems.
In contrast to electronics, where most components are relatively
simple and well characterized, allowing for reliable circuit design
through integration, only a limited number of biological ‘‘parts’’
are known in sufficient detail to allow for predictable behavior.
Even well studied, apparently simple biological systems can
exhibit surprisingly complex, context-dependent behavior when
they interact with each other. Therefore, it is crucial to charac-
terize the behavior of proteins, genes, promoters, and operator
sites not simply as isolated components, but also when they are
brought together as parts of a larger system.

Many promoters contain regulatory elements for multiple
transcription factors, and are responsible for biological compu-
tation and signal integration through gene regulation (22–29).
However, the combination of regulatory sites in a promoter
region can result in behavior that is not predictable from
studying the individual sites alone (27, 30). Therefore, to more
accurately use these natural regulatory components in synthetic
networks, it is crucial to understand how the combination and
multiplicity of regulatory sites affect gene expression.

Gene expression noise, which can be promoter-dependent (8,
31–35), can have important effects on survival, differentiation,

and information processing (36–44). As a consequence, it is
important for synthetic biologists to study the effect of stochastic
gene expression in engineered gene networks. Several studies
have focused on noise propagation (8, 17, 19) and the effect of
feedback on noise in gene circuits (3, 4, 10, 45, 46). Others have
shown that gene expression noise is influenced by diverse
biological factors and processes, including transitions between
active and inactive promoter states (8, 31, 47), transcription and
translation (5, 6, 8, 31, 32, 48–50), cell division (20, 32), and
general regulatory events such as environment-induced signaling
and chromatin remodeling (6, 31, 51). Individual promoter
components such as the TATA box have also been examined in
terms of their influence on gene expression noise (8, 31, 43).
However, the way in which the number and configuration of
operators within a single promoter affect gene expression noise
is still unknown.

Here, we study the effect of operator positions within the
GAL1 promoter from Saccharomyces cerevisiae, by building a
combinatorial set of seven synthetic promoters containing one,
two, and three tetO2 operator sites. We develop a generic
computational model to describe how dose–response curves and
gene expression noise depend on the location of the operator
within the promoter, and discuss how the description of single
operator-containing promoters can be used to characterize the
double and triple operator-containing promoters. Our results
suggest that the independent binding of individual repressors is
not sufficient to explain the more complex behavior of the
multiple operator-containing promoters. The predictability of
multiple operator-containing promoters decreases with the
number of inserted operator sites, which suggests that bottom-up
approaches, based on well characterized, isolated components,
may not always be useful for predicting the behavior of complex,
synthetic gene networks.

Results
Combinatorial Promoter Design. We built a combinatorial set of
seven synthetic promoters to investigate the effects of various
operator site combinations on different gene expression output
variables. A yeast integrative plasmid (8) served as the template
for engineering the complete set of TetR-repressible GAL1
promoters used in this study (Fig. 1A). After chromosomal
integration, TetR is constitutively expressed from the synthetic
PGAL10 when grown in the presence of galactose, and represses
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expression of yeast-enhanced green f luorescent protein
(yEGFP) from PGAL1* through its binding of tetO2 operator sites
inserted downstream from the PGAL1* TATA box (Fig. 1B). This
repression can be relieved by the addition of anhydrotetracycline
(ATc) to the growth medium. Upon the binding of two ATc
molecules, each TetR dimer undergoes a conformational change
(52), which prevents free dimers from binding operator sites and
causes the release of operator-bound dimers. Subsequent induc-
tion of PGAL1* can then be measured by yEGFP reporter
expression.

As a basis for combinatorial promoter design, we first con-
structed a set of three promoters (S1, S2, and S3), each con-
taining a single operator inserted at a different position between
the TATA box and transcription start site (Fig. 1C). Next, we
designed and constructed a set of double operator-containing
promoters (D12, D13, and D23), combining the operator of S1
with that of S2, S1 with S3, and S2 with S3, respectively (Fig. 1C).
Finally, we designed and constructed a triple operator-
containing promoter (T123), combining all operators of S1, S2,
and S3. The letter in each promoter name indicates the number
of operator sites (S, single; D, double; T, triple), whereas the
numbers 1, 2, and 3 indicate their positions as in promoters S1,
S2, and S3, respectively. The numbers also reflect the distance
between the operator site and TATA box, the operator in S1
being the closest and the operator in S3 being the farthest from
the TATA box (Fig. 1C). We used the wild-type (WT) GAL1
promoter as a control.

Repressor Binding Site Location Affects the Dose–Response Curves.
We first compared the basal expression levels (Pmin) of the single
operator-containing promoters S1, S2, and S3. We noted an
increase in basal expression levels (Pmin � 21.2 � 0.5, 50.8 � 2.0,
and 637.6 � 22.7, respectively, Fig. 2 B–D) as the operator site

was moved farther downstream from the TATA box toward the
transcription start site. We observed a similar dependence on
operator site location for the double operator-containing pro-
moters D12, D13, and D23 (Pmin � 6.3 � 0.01, 18.2 � 1.3, and
76.8 � 2.4, respectively, Fig. 2 E–G). Along these lines, the triple
operator-containing promoter T123 exhibited the lowest basal
expression level (Pmin � 3.6 � 0.1, Fig. 2H). These data indicate
that increasing the number of operator sites and/or their prox-
imity to the TATA box results in more efficient repression of the
GAL1 promoter.

We observed gene expression differences between the single
operator-containing promoters S1, S2, and S3 (Pmax � 1,462 �
22, 855 � 9 and 1,694 � 33, respectively, Fig. 2 B–D), as well as
between the multiple operator-containing promoters D12, D13,
D23, and T123 (Pmax � 1,039 � 64, 1,565 � 124, 1,235 � 68, and
1,357 � 29, respectively, Fig. 2 E–H) at full induction. To
determine whether these differences were due to the replace-
ment of native GAL1 promoter sequences with the tetO2 oper-
ators, we replaced the operator site in the S2 promoter (having
the largest decrease in expression) with two random sequences.
This caused even larger decreases in gene expression [see Fig. S7
in supporting information (SI) Appendix], indicating that the
GAL1 promoter sequence in this region plays a role in promoter
activity. These results are consistent with earlier observations
that tetO2 operators can affect promoter activity in a position-
dependent manner (53, 54). Additional controls involving a
premature stop codon in the tetR coding sequence ruled out the
possibility of the TetR protein somehow affecting the maximum
expression levels. We used the expression levels of all seven
promoters at full induction, together with the wild-type pro-
moter, to model and study computationally the effect of the
operator sites at the three different positions on preinitiation
events and gene expression; see SI Appendix for a discussion of
these analyses and results.
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Fig. 1. Diagram of synthetic constructs. (A) Yeast integrative plasmid pRS4D1 contains the bacterial ColE1 origin of replication and ampicilin resistance gene
as indicated. The TRP1 gene allows for selection in yeast. The tetR gene is under the control of the PGAL10 promoter, whereas yEGFP reporter gene expression
is under the control of PGAL1*. Transcriptional terminators (TCYC1 and TADH1) are also indicated. (B) Schematic depicting integrated PGAL1* transcriptional control.
The tetR gene is transcribed constitutively from PGAL10 in galactose-containing media. The TetR repressor protein binds inserted tetO2 operator(s) downstream
of the PGAL1* TATA box and inhibits transcription of yEGFP. Addition of anhydrotetracycline inhibits TetR binding of operator(s), allowing transcription from
PGAL1*. (C) Diagram of PGAL1* promoter constructs containing all seven tetO2 operator combinations. The TATA box and tetO2 operator locations are indicated
by base position number relative to transcription start site (TSS). The name of each promoter is indicated to its left in the diagram. Here, single, double, and triple
operator-containing promoters are designated by the letters S, D, and T, respectively. The numbers 1, 2, and 3 following these letters indicate the inclusion of
the corresponding operator site.
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Dose–response curves are widely used to characterize the
input-output characteristics of biological systems, and are often
approximated by the empirical Hill function

P�I� � Pmin � �Pmax � Pmin�
Ih

Hh � Ih . [1]

The parameters Pmin (basal response) and Pmax (response at full
induction) are usually determined by direct measurement,
whereas H (the induction threshold) and h (the steepness of
response or Hill coefficient) are estimated by fitting the Hill
function to the experimental data (17, 55). We attempted to
characterize the steady-state response of our seven engineered
promoters by this methodology, but found that empirical Hill
functions are insufficient to describe our experimental dose–
response curves, which seem to be less steep at low levels of
induction compared with high levels (see Fig. 2 and SI Appendix).

Therefore, to model gene expression from the seven promot-
ers, we developed a chemical reaction scheme that included
transitions between three promoter states [repressed (R), neutral
(N), and active (A)], as well as mRNA (M) and protein (P)
synthesis and degradation (Fig. 3). The promoter states were
defined based on TetR and TATA-binding protein (TBP) oc-
cupancy, corresponding to one or more TetR dimers bound (R),
neither TetR nor TBP bound (N), and TBP bound (A). We
included TBP occupancy to simulate transcriptional reinitiation,
which involves successive rounds of mRNA production upon a
stably bound, TBP-anchored intermediate preinitiation complex
(56, 57). In our model, mRNA can be synthesized either from
promoter state A through transcription, or from promoter state
R through promoter leakage (Fig. 3). Based on this chemical
reaction scheme, we calculated a theoretical dose–response

function, and characterized the data by three parameters (v, n,
and L) in addition to Pmin and Pmax

P�I� �
Pmax�vI�n�I2 � I � 1� � Pmin�1 � LI�

�vI�n�I2 � I � 1� � 1
. [2]

The parameter L accounts for the steepness of the dose–
response curve at low induction, whereas v and n determine the
induction threshold and steepness of the dose–response curve at
high induction. The function (Eq. 2) is more suitable to fit both
the single and multiple operator-containing promoters than the
empirical Hill function, because it accounts for inducer-
dependent promoter leakage from the repressed state, which
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Fig. 2. Gene expression from the set of PGAL1* promoters. Experimental (light blue crosses) and simulated (dark blue circles) dose–response curves of the
wild-type promoter (WT), single operator-containing promoters (S1, S2, and S3), double operator-containing promoters (D12, D13, and D23), and the triple
operator-containing promoter (T123) are shown. The error bars indicate standard deviations from 10 different stochastic simulations.
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Fig. 3. Reaction scheme used for modeling the set of PGAL1* promoters. The
letters R, N, and A indicate the repressed (TetR bound), neutral (neither TetR nor
TBP bound), and active (TBP bound) promoter states, respectively, based on
TetR/TBP binding. The letters M and P indicate mRNA and protein, respectively.
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causes a decrease in the steepness of the dose–response curves
for low levels of induction, as was observed experimentally.

We studied how the parameters v, n, and L change with the
position and multiplicity of operator sites in the various pro-
moters. We found that n drops as the distance between the
TATA box and operator site(s) increases for both single and
double operator-containing promoters. The other two parame-
ters (v and L) showed no systematic dependence on the location
or multiplicity of operator sites within the GAL1 promoter (see
Table S2 in SI Appendix).

Repressor Binding Site Location Affects Gene Expression Noise. We
used the coefficient of variation (CV, standard deviation/mean)
to characterize the effect of combinatorial promoter design on
gene expression noise. We found that noise levels, especially
peak noise, increased as the single operator site within the
promoter was moved closer to the TATA box (Fig. 4 B–D). Our
double operator-containing promoters show a similar relation-
ship with respect to noise levels (Fig. 4 E–G): promoter D12 has
the highest levels of peak noise in the double operator set,
followed by promoter D13 which has higher peak noise than
promoter D23, reflecting the distance of operator sites from the
TATA box (Fig. 1C).

We also observed differences in gene expression noise when
comparing promoters with different number of operators. The
triple operator-containing promoter T123 shows the highest level of
noise among the seven promoters (Fig. 4H, CV � 1.85). A general
trend of increasing noise with increasing number of operators can
be seen upon comparison of the triple, double and single operator-
containing promoters, with some exceptions (e.g., S1 versus D23).
This dependence of the noise on the multiplicity of operator sites
might reflect the higher repression efficiency of multiple operator-
containing promoters, which is exhibited in the basal expression
(Fig. 2). These differences in gene expression noise can also be
observed when analyzing CV as a function of mean expression.

Importantly, our seven synthetic promoters display significant
differences in CV at the same mean expression level, across a broad
range of values (see Fig. S12 in SI Appendix).

One advantage of the function P (Eq. 2) compared with the
empirical Hill function (1) is that the underlying chemical
reaction scheme (Fig. 3) can be used to estimate the noise
computationally for both single and multiple operator-
containing promoters. Because the parameters obtained from
fitting (i.e., v, n, and L) determine only the ratios r/� and a/� in
Fig. 3, and not the individual rates, we introduced two scaling
factors within these ratios, and estimated them using the exper-
imentally measured noise of the wild-type promoter WT and of
the single operator-containing promoter S1. Keeping these
scaling factors constant, we calculated the reaction rates from
the estimated parameters v, n, and L, and used the Gillespie
algorithm (58) to simulate the noise for each of the single and
multiple operator-containing promoters (Fig. 4). The good
agreement between the simulations and experimental data (Fig.
4) indicates the advantage of our simple chemical model com-
pared with a purely empirical function, such as the Hill function.

Computational Modeling of Promoter Repression by Single and Mul-
tiple TetR Molecules. We developed more detailed mathematical
models and reaction schemes for the multiple operator-
containing promoters to determine whether binding of repres-
sors to the single operator-containing promoters S1, S2, and S3
is predictive of the dose–response curves and gene expression
noise exhibited by the double and triple operator-containing
promoters (see SI Appendix).

We replaced the repressed promoter state R in Fig. 3 with three
states (Ri, Rj, and Rij, i, j � 1, 2, 3) for the double operator-
containing promoters, and with seven states (R1, R2, R3, R12, R13,
R23, R123) for the triple operator-containing promoter (see SI
Appendix). The superposition of independent TetR binding/
unbinding dynamics estimated from single operator-containing
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Fig. 4. Gene expression noise from the set of PGAL1* promoters. Experimental (magenta crosses) and simulated (dark red circles) coefficients of variation of the
wild-type promoter (WT), single operator-containing promoters (S1, S2, and S3), double operator-containing promoters (D12, D13, and D23), and the triple
operator-containing promoter (T123). The error bars indicate standard deviations from 10 different stochastic simulations.
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promoters was insufficient to explain the dose–response curves and
noise levels of the multiple operator-containing promoters. In
particular, this assumption gave a decreasing rate of inducer-
dependent leakage from the D12 promoter, and could not repro-
duce the dose–response curve and gene expression noise of the
T123 promoter (see Fig. S5 in SI Appendix). Therefore, we assumed
that TetR dimers can mutually affect each other’s binding dynamics
on the promoter, and calculated the parameters that describe this
potential interaction (see SI Appendix). Introducing a new constant
to account for the interactions between repressors improved the fit
to the experimental data (see Fig. S6 in SI Appendix). Interestingly,
the values obtained for these interaction constants suggest that
repressors bound to sites S1 and S2 tend to stabilize each other,
whereas the repressors bound to sites S1 and S3 or S2 and S3
destabilize each other on the DNA (59). Assuming that the
interaction parameters are not constants, but depend on the
inducer concentration, improved the quality of our fits even further
(see SI Appendix). In conclusion, we believe that additional inter-
actions are needed, besides independent repressor binding, to
explain the behavior of the multiple operator-containing promot-
ers. Spacing-dependent stabilization of DNA-bound repressor pro-
teins has been observed in yeast (60), and additional evidence
suggests that multiple TetR dimers can influence each other’s
operator binding dynamics (61). It will be interesting to explore
experimentally whether such interactions occur in the engineered
system.

Discussion
To fulfill the promise of synthetic biology, the basic building
blocks of engineered gene circuits need to be well characterized,
both individually and as components of integrated, complex
systems (62–67). With this aim in mind, we chose to study a set
of seven engineered promoters, built by inserting one, two, and
three TetR-repressible operator sites in the GAL1 promoter in
various configurations. For the single operator-containing pro-
moters, we found that the basal level of gene expression in-
creases, whereas the steepness of the dose–response curve at
high induction decreases as the operator site is moved farther
from the TATA box within the GAL1 promoter. We developed
a generic chemical reaction scheme to explain the observations
for all seven synthetic promoters. We also developed more
detailed models, trying to explain the behavior of the multiple
operator-containing promoters based on the single operator-
containing promoters. We found that the multiple operator-
containing promoters are predictable only after making addi-
tional assumptions, which indicates that their behavior cannot be
explained as a simple superposition of the dynamics of the
individual operator sites.

Our finding that the basal expression level increases with the
distance of the operator from the TATA box is in agreement with
previous studies on other promoters (68). In eukaryotic TetR-
repressible promoters, the typical strategy is to insert single or
multiple operators in the vicinity of the TATA box or near the
transcription start site, with the assumption that DNA-bound
TetR will interfere with the binding of general transcription
factors or RNA polymerase II (69). However, strategies for tetO2
operator placement within promoters are not universally appli-
cable, and different promoters from various eukaryotic species
require different operator locations for optimal repression (70).
For the GAL1 promoter of S. cerevisiae, we found that greater
repression by TetR occurs when operators are placed close to the
TATA box, rather than the transcription start site.

Increasing the number of operator sites is another common
strategy used to reduce basal expression in the design of TetR-
repressible promoters (71). We validated this design approach
with our set of promoters, as the triple operator-containing
promoter T123 showed lower basal expression than any double
or single operator-containing promoters. Still, positional effects

contribute strongly to the effectiveness of TetR-mediated re-
pression and can result in higher basal expression from multiple
operator-containing promoters compared with a single operator-
containing promoters (e.g., Fig. 2 B and G: S1 versus D23).

Our seven synthetic GAL1 promoters show large differences
in their levels of gene expression noise, which can have important
phenotypic consequences (36–43). Various factors and pro-
cesses have been shown to influence gene expression noise,
including gene positioning along the chromosome (72). We
reveal differences in noise levels caused by operator positioning
within a promoter sequence. Specifically, we found that gene
expression noise typically increases when the operator is moved
closer to the TATA box. This position-dependence of noise is
likely related to the basal expression level, which contributes to
the mean, causing a decrease in the coefficient of variation.

In synthetic gene networks, it is often necessary to reduce basal
expression to achieve optimal network performance (1, 2), and to
reduce gene expression noise to obtain greater consistency in signal
transduction. However, our results indicate that a decrease in the
basal expression level leads to an increase in noise and vice versa.
These findings may be useful for establishing a cost–benefit rela-
tionship between high levels of noise and low basal expression,
when designing operator configurations within a given promoter.
Specifically, our results show how a commonly used regulatory
component (tetO2) can be best used in the design of a gene
expression system to balance noise reduction with basal expression
levels. Importantly, our findings demonstrate how gene expression
noise can be engineered within the design of a given promoter and
provide a strategy for the examination of the effects of different
noise levels for a given mean value of expression (43); this will be
an important tool for future studies that address the biological
significance of intrinsic fluctuations.

Our results point to an important difference between elec-
tronic and biological circuit design. The integration of basic
electronic components into large circuits with predictable be-
havior is feasible because resistors, capacitors, diodes, etc., are
relatively simple and well characterized in their regimes of
operation. However, basic biomolecular components can exhibit
complex, context-dependent behavior when integrated into
larger systems. Due to this inherent complexity, the simple
superposition of the dynamics of the individual operator sites
was not sufficient to explain their behavior when brought
together into the GAL1 promoter.

Through computational modeling, we were able to augment
the experimental description of our biological system, and
suggest interactions that might explain the experimentally ob-
served characteristics of our seven promoters. As we show,
computational modeling can suggest new interactions between
the individual components, and provide possible insights into the
origin of complex system behavior. Our findings highlight the
utility of integrated computational–experimental approaches
for studying simple regulatory elements with the aim of design-
ing and constructing increasingly complex synthetic gene net-
works with predictable dynamics.

Materials and Methods
Strains and Media. S. cerevisiae strain YPH500 (�, ura3-52, lys2-801,
ade2-101, trp1�63, his3�200, leu2�1) (Stratagene, La Jolla, CA)
served as the host strain for all plasmid chromosomal integrations.
Yeast transformations were carried out by a modified lithium
acetate procedure (73). The TRP1 selectable marker gene within
the plasmids allowed for initial selection of yeast clones. Individual
positive clones were then screened for single integration at the
GAL1-10 promoter region of chromosome II by PCR of isolated
gDNA using Taq DNA polymerase (New England Biolabs, Ipswich,
MA), as well as measurement of yEGFP expression by flow
cytometry. Cultures of all strains were grown in synthetic drop-out
media without tryptophan (SD-TRP) as described (9).
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Plasmid Synthetic Promoter Construction. The previously described
yeast integrative plasmid pRS4D1 (8) served as the template for
creating a set of synthetic tet-repressible GAL1 promoters. The
plasmids used in this study differ with respect to pRS4D1 only
in the number and arrangement of tetO2 operator sites inserted
downstream of the GAL1 TATA box (Fig. 1).

The 19-bp tetO2 operator sites were inserted downstream of
the GAL1 TATA box by standard PCR techniques using Pfu
Turbo DNA polymerase (Stratagene) on a PTC-100 Program-
mable Thermal Controller (MJ Research, Waltham, MA) (see
Table S1 in SI Appendix for a complete list of primers used for
each promoter construct). Each inserted operator site replaced
the native promoter sequence at the corresponding positions,
thus maintaining constant distance between the TATA box and
transcription start site (TSS) in all promoter designs.

All plasmids used were transformed into Escherichia coli strain
XL-10 Gold (Stratagene). Competent bacterial cells were prepared,
transformed, and plated on LB agar plates containing ampicilin for
selection (all Fisher BioReagents). Plasmid DNA was recovered
from positive bacterial clones by the QIAprep Spin Miniprep kit
(Qiagen, Valencia, CA). Proper insertion of tetO2 sites into the
GAL1 promoter was then verified by sequencing (Agencourt,
Beverly, MA).

yEGFP Induction Experiments. Single yeast colonies for each strain
were picked from SD-TRP plates containing 2% glucose and

used to inoculate 3 ml SD-TRP media containing 2% galactose.
The selected colonies were then grown at 30°C with 300 rpm
orbital shaking until reaching an OD600 of 1.0–1.5. A triplicate
set of 3-ml SD-TRP cultures containing 2% galactose and
anhydrotetracycline (ACROS Organics, Geel, Belgium) at a
concentration range of 0–250 ng/ml was then inoculated by the
initial culture to an OD600 of 0.01 and incubated similarly
overnight. After 16–20 h, cultures reached an OD600 of 0.5 � 0.2
and were subsequently assayed for yEGFP expression by flow
cytometry.

Flow Cytometry and Data Analysis. Flow cytometry measurements
were carried out as described (9). Samples were run on a low flow
rate until 2,000 cells had been collected within a small forward and
side scatter gate, thus reducing extrinsic sources of variation and
allowing for examination of cells of similar size, shape, and point in
the cell cycle. Flow cytometry data files were then analyzed by using
Matlab (The MathWorks, Natick, MA). The original log-binned
fluorescense intensity values were linearized, and the mean and
standard deviation of these values were calculated for each sample.
The noise (coefficient of variation) was computed for each sample
as the standard deviation normalized by the mean.
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