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Most life scientists single-mindedly focus 

their careers on a particular organism or 

disease—even just a specific molecular 

pathway. After all, it can often take months 

of training to master growing a particular 

cell type or learn a new laboratory technique. 

Atul Butte, however, wanders from topic 

to topic—and reaps scientific successes

along the way. Though only 44 years old,

he has earned tenure at Stanford Uni-

versity’s School of Medicine in Palo Alto, 

California, based on advances in diabetes, 

obesity, transplant rejection, and the dis-

covery of new drugs for lung cancer and 

other diseases. 

Butte’s lab is different, too. It isn’t crowded 

with cell cultures and reagents. His tools look 

like those of an engineer or software devel-

oper: Most often, he’s simply working on a 

Sony laptop, although at times he does turn to 

a large computer cluster at Stanford and super-

computers elsewhere when in need of massive 

processing power. Instead of growing cells 

and sequencing DNA, Butte, his students, 

and postdocs sift through massive databases 

full of freely available information, such as 

human genome sequences, cancer genome 

readouts, brain imaging scans, and bio-

markers for specifi c diseases such as diabetes 

and Alzheimer’s. 

Many call this type of research “dry lab 

biology,” to contrast it with the more hands-on 

“wet” traditional style of research. Although 

statistics on the number of dry lab biologists 

are hard to come by, these data hunters believe 

they are a growing minority. Butte is one of 

its top practitioners. Using publicly available 

data, for example, 2 years ago Butte and his 

colleagues surveyed the activity of large sets 

of genes in people affected by 100 different 

diseases and in cultured human cells exposed 

to 164 drugs already on the market. By com-

paring patterns of genes fl ipped on or off by 

the diseases and by the drugs, the team drew 

unexpected connections. They found clues 

Biology’s Dry Future
The explosion of publicly available databases housing sequences, 

structures, and images allows life scientists to make fundamental 

discoveries without ever getting their hands “wet” at the lab bench
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that a drug now prescribed for ulcers might 
also be a useful lung cancer treatment, for 
example, and that an antiepileptic compound 
would fi ght two forms of infl ammatory bowel 
disease (see chart, p. 188). Subsequent lab 
studies of animals offered support for both 
inferences. And last month, Butte’s group 
reported in Cancer Discovery that a similar 
approach suggested that the antidepressant 
drug imipramine would be effec-
tive against small-cell lung cancers 
resistant to standard chemotherapy
—a f inding that has already 
prompted the launch of a clinical 
trial. “This is an exciting time to be 
doing biological research on a dry 
bench,” Butte says.

And not just for Butte. The 
growth of publicly accessible 
data troves on genome sequences, 
gene activity, and protein struc-
tures and interactions has opened 
new territory for biologists. Seiz-
ing on advances in computational 
power, data storage, and soft-
ware algorithms able to separate 
the wheat from the chaff, dry lab 
researchers are making fundamen-
tal discoveries without ever fi lling 
a pipette, staining a cell, or dissect-
ing an animal. Thanks to a National 
Science Foundation–funded initia-
tive called the iPlant Collaborative, 
for example, there’s an emerging genera-
tion of data-analyzing “plant biologists” 
who have never gotten their hands dirty 
digging in soil or watering seeds. And the 
National Institutes of Health (NIH) recently 
announced plans to sink $96 million into 
boosting analysis of big data. “There is a 
transformation happening in biology,” says 
Daniel Geschwind, a neurogeneticist at the 
University of California, Los Angeles. 

“You basically don’t need a wet lab to 
explore biology,” agrees David Heckerman, 
a computational scientist at Microsoft 
Research in Los Angeles. None of these dry 
lab biologists believe that advances in data 
sciences will replace the traditional approach. 
Rather, they argue that the two dovetail 
with one another like never before, each pro-
pelling the other forward. “I’m like a kid in a 
candy store,” Butte says. “There is so much 
we can do.” 

Data for all

Big data is certainly nothing new to science. 
(Science had a special package on the topic 
in the 11 February 2011 issue.) The Large 
Hadron Collider at CERN generates 15 peta-
bytes (1015) of data every year it’s in opera-
tion. Astronomy’s Sloan Digital Sky Survey 
contributes terabytes (1012) yearly as well. Big 
data isn’t even all that new to biology. As of the 
end of August, for example, NIH’s 31-year-old 
gene sequence database, GenBank, held some 
167 million gene sequences containing more 
than 154 billion nucleotide bases.

Nor is the marriage of computational sci-
ence and biology novel on its own. Research-
ers have amassed large-scale basic biology 

data sets for years—unimaginatively dubbed 
genomics, proteomics, metabolomics, and 
so on—and combed them in search of novel 
insights into complex biological pathways 
and disease. 

But many of these early efforts were run by 
large consortia of researchers, who often had 
rights to fi rst mine the data before releasing 
them to the public. So much of that informa-
tion is now public, however, that it’s opened 
the door for researchers who never partici-
pated in those consortia. “Now it’s possible to 
ask big-data questions with data that is extant 
in the public domain,” says Ed Buckler, a 
research geneticist who specializes in maize 
genetics at the U.S. Department of Agricul-
ture’s Agricultural Research Service in Ithaca, 
New York, and Cornell University.

Asking those questions requires spe-
cialized algorithms and software, capable 
of handling massive data sets, and those 

are improving even as the data proliferate. 
Heckerman and his Microsoft Research col-
leagues, for example, made a splash recently 
with a software advance that eases large-
scale searches within genetic databases, such 
as those used to compare entire genomes in 
what are known as genome-wide association 
studies (GWAS). These efforts examine DNA 
of large numbers of ill people and healthy 
controls, looking for genetic fingerprints 
linked to disease. Those fi ngerprints can be 
subtle, because most diseases are unlike the 
simple traits of classical genetics—the col-
ors of Mendel’s peas, for example—in which 
each trait maps to a single gene. “When 
people f irst started doing GWAS they 

thought this would be really easy,” 
Heckerman says. “The problem is 
that Mendel’s peas are the excep-
tion not the rule.” 

Instead, the genetics behind 
most traits and diseases, such as 
diabetes and prostate cancer, is 
far more complex, with small 
contributions from many genetic 
changes having an additive effect. 
“To uncover these weak signals 
you need tons of data. You need 
tens of thousands or hundreds of 
thousands of people,” Heckerman 
says. “But there is a catch. When 
you analyze lots of data, there is 
hidden structure,” in which sepa-
rate individuals share a multitude 
of genetic similarities. But in many 
cases, these similarities are due to 
two individuals being more closely 
related than others, instead of shar-
ing common disease genes. “That 
wreaks havoc with data. You get 

tons of what looks like signals. But when you 
look closer it evaporates.” 

One way around this has been to use a 
data analysis approach called a linear mixed 
model. The approach’s mathematical rigor 
helps reduce false positives, but the comput-
ing power needed for it grows as a cube of the 
number of subjects being analyzed. That’s no 
problem when analyzing a few dozen people 
or so, but if you want to comb through tens of 
thousands of genome samples, “forget about 
it,” Heckerman says. 

After grappling with the problem for some 
time, Heckerman and his colleagues came up 
with what he calls simple “algebraic tricks” to 
convert the problem to one that scales linearly 
with the number of subjects, making it trac-
table to crunch large data sets. The result, an 
algorithm dubbed FaST-LMM, reduces con-
founding results, increases the size of the 
samples that can be processed, and thereby 

New miners. New database construction and anal-
ysis tools from the iPlant Collaborative (left) allow 
digging through plant and microbial genomes, 
helping plant biologists around the world improve 
their understanding of basic biology and advance 
crop breeding. 

“I’m like a kid in a candy store. 

There is so much we can do.”

 —Atul Butte, Stanford University School of Medicine

Published by AAAS
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increases the chance of seeing small 

signals hidden within large data 

sets. Last year, Heckerman’s team 

used this FaST-LMM algorithm 

on Microsoft’s cloud-based super-

computer known as Azure to com-

pare the genomes of thousands of 

individuals in a database run by 

the Wellcome Trust, a biomedical 

research charity in the United King-

dom. They analyzed 63,524,915,020 

pairs of genetic markers in total, fi nd-

ing a host of new associations that 

may serve as markers for bipolar dis-

order, coronary artery disease, hyper-

tension, infl ammatory bowel disease, 

rheumatoid arthritis, and type 1 and 

type 2 diabetes, as they announced 

in Scientifi c Reports on 22 January. 

These associations themselves have 

been made freely available on the 

Windows Azure Marketplace so that 

independent researchers can explore 

them further. 

Butte cautions that such would-

be links often fade away upon closer 

inspection, but he is delighted that 

software engineers are tackling hur-

dles in biology. “This is what we have 

been hoping for,” Butte says. 

Dry lab biology’s impact on bio-

medicine extends 

we l l  b e y o n d 

GWAS studies. 

Researchers led 

by Asa Abeliov-

ich at Columbia 

University, for 

example, report-

ed in Nature on 

1 August that 

they used a big-

data approach to 

discover new molecular actors 

that influence whether patients 

with a common variant of a gene 

known as APOE4 come down with 

Alzheimer’s. In this case, they used 

publicly available gene expression 

data sets from brain tissue of humans 

with and without a late-onset version 

of Alzheimer’s. They found that two 

genes, called SV2A and RNF219, 

have abnormally low activity in peo-

ple who develop the disease. 

Combined with other clues to the 

genes’ functions, the fi nding suggests 

that they act as previously undiscov-

ered players in the molecular network 

that regulates intracellular accumu-

lation of amyloid precursor protein. 

Amyloid collects in dense plaques in 

patients’ brains and may play a causal 

role in the disease. Abeliovich’s team 

confi rmed the result in lab studies of 

mice, and then moved on to people—

still in a dry lab. The team analyzed 

publicly available neuroimaging data 

of Alzheimer’s patients and showed 

that variations in RNF219 are corre-

lated with the amount of amyloid that 

accumulates in their brains. 

The work not only raises hopes of 

new drug targets for fi ghting demen-

tia, but it may also help doctors strat-

ify patients into groups that may one 

day benefi t from different Alzheimer’s 

treatment programs, as they do today 

for patients with several types of can-

cer. The experiment, Geschwind notes, 

was impressive because of the combi-

nation of database mining, lab vali-

dation, and imaging analysis of now 

standardized brain scans. “Five years 

ago they would never have been able 

to do this,” he says.  

Beyond biomedicine
The rapid rise in the number of plants 

that have had their whole genomes 

sequenced and made public has 

enabled plant biologists to produce 

their own dry lab discoveries. Buckler 

and his colleagues, for example, have 

been exploring disease resistance 

across the many species of maize, or 

corn. In one recent paper, they com-

pared the genomes of 103 different 

maize species, analyzing 1000 differ-

ent regions of DNA both within genes 

and nongene regions of the chromo-

somes. They linked certain traits, 

such as variation in disease resis-

tance and in when the plant fl owers, 

to specifi c patterns of the noncoding 

DNA. Now, Buckler says, his group 

and others are helping plant breeding 

programs improve disease resistance 

and other traits by singling out which 

offspring have nongene coding DNA 

signatures that promote desired traits. 

“Big data is already having a day-to-

day effect on how people are breeding 

crops,” Buckler says. 

cular actors
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Drug hit. By analyzing public data on gene 
expression patterns produced by drugs and 
diseases, Atul Butte’s team identifi ed drugs 
that might exacerbate diseases (purple) and 
those that might be therapeutic (yellow). 
Follow-up studies confi rmed that the anti-
epilepsy drug topiramate, for example, may 
treat Crohn’s disease or ulcerative colitis.
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It’s also helping answer more esoteric 
questions about plants. David Sankoff, a 
mathematician at the University of Ottawa, 
has tapped the whole genome sequences 
of some 30 fl owering plant species to try to 
reconstruct the general genome architecture
—not the specific DNA sequence—of the 
common ancestor of 
all flowering plants that 
lived some 120 million 
years ago. They recently 
reported a big step in that 
direction. By analyzing 
and comparing the pres-
ence of duplicate and 
triplicate copies of genes 
found within modern 
eudicots, one key branch 
of flowering plants, 
Sankoff’s team concluded 
that the common ancestor 
had seven chromosomes 
and between 20,000 and 
30,000 genes, making it 
a signif icantly smaller 
genome than many mod-
ern plants. Although such 
discoveries aren’t likely 
to impact plant breed-
ing or other commercial 
interests, “it’s a really fun 
aspect of genetics work,” says Eric Lyons, a 
plant geneticist at the University of Arizona 
in Tucson, who developed a comparative 
genomics database and software infrastruc-
ture used by Sankoff and his colleagues. 

Playing well together
Dry lab biology still faces plenty of growing 
pains. Among the most challenging is gaining 
access to other people’s data. In many cases, 
researchers who have spent their careers gen-
erating powerful data sets are reluctant to 
share. They may be hoping to mine it them-
selves before others make discoveries based 
on their work. Or the data may be raw and in 
need of further analyses or annotation. “These 
are really hard problems,” Butte says. “We 
need better systems to reward people that 
share their data.”

A lack of common standards also handi-
caps the fi eld. Not only do research groups fi le 
their data using different software tools and 
fi le formats, but also in many cases the design 
of the experiments—and therefore precisely 
what is being measured—can differ. Butte and 
others argue that dealing with multiple fi le 
formats is somewhat cumbersome but that the 
problem is surmountable. But it can be harder 
to account for differences in experimental 
design when comparing large data sets. 

 Years of work to standardize experiments, 
analysis, and interpretation of experiments 
involving tools such as DNA and RNA micro-
arrays and proteomic mass spectrometry are 
beginning to pay off, Butte says. Heckerman 
agrees. Biological data, he says, are becoming 
“very standardized.”

As the volume of publicly available data 
grows, so do concerns about genetic privacy. 
Geneticists have shown that even anonymous 
data can be “reidentified”—and any leaks 
can reveal not only the medical conditions of 
patients themselves, but also genetic predis-
positions to disease that other family mem-
bers may share. In this case, however, at least 
one potential solution is already in place. In 
order to get access to the National Center 
for Biotechnology Information’s database of 
genotypes and phenotypes (dbGaP), which 
archives studies such as GWAS associations 
and molecular diagnostic assays that attempt 
to link genes to traits, researchers must reg-
ister and ask for approval. Furthermore, all 
such requests are made public, so that it’s 
transparent who is attempting to gain access 
to the data and for what purpose.

To address these challenges—as well as 
take advantage of the scientific opportuni-
ties at the crossroads between big data and 
biomedical research—NIH announced this 
summer that it was launching a new project 
called Big Data to Knowledge (BD2K). With 
an initial funding of $96 million over 4 years, 
BD2K has dual aims. It will establish a series 
of centers to push the development of novel 
algorithms and other methodology to make 
discoveries, and it will also create a series 

of working groups across NIH’s institutes to 
deal with the trouble spots of data standards, 
access, and privacy. Other efforts to grapple 
with these tough issues exist as well, including 
a global alliance of more than 70 institutions 
in 40 countries that was launched in June 2013 
to make more digital data freely available.

Dry lab biology could 
receive a further boost 
from an upcoming U.S. 
requirement that databases 
be open to the community. 
On 22 February, a memo 
from John Holdren, the 
director of the U.S. Offi ce 
of Science and Technology 
Policy (OSTP), asked the 
heads of executive depart-
ments and agencies within 
the federal government to 
come up with new strate-
gies to encourage access 
to federally funded sci-
ence and data. The memo 
drew attention at the time 
for its call for increasing 
open access to scientific 
publications. But what 
went largely unnoticed is 
that the memo also called 
for digital data from fed-

erally funded unclassifi ed research projects 
to be stored in publicly available databases. 
OSTP offi cials say they have the agency rec-
ommendations now and are in the process of 
reviewing them. 

While a potential boon for biology’s data 
miners, access to unprecedented data sources 
will likely exacerbate problems with data 
standardization and issues of patient pri-
vacy, Butte says. It could also create new 
headaches for those required to submit their 
data. They will either have to take time them-
selves, or hire assistants, to manage the data 
sets and prepare them for deposition in a pub-
lic source. And that could take dollars and 
expertise away from actual research. Particu-
larly in small labs, this may be a signifi cant 
impact, says Peter Lyster, a program director 
in the Division of Biomedical Technology, 
Bioinformatics, and Computational Biology 
at the National Institute of General Medical 
Sciences in Bethesda, Maryland. “At some 
point, it’s a zero-sum game.”

That’s only for the wet labs that generate 
the data, he adds. For the new breed of dry 
lab biologists, the combination of new tools, 
new policies, and burgeoning databases holds 
nothing but opportunities. Says Heckerman: 
“I think we’re full steam ahead at this point.”

–ROBERT F. SERVICE

“You basically don’t need a wet lab to 

explore biology.”
                                 —David Heckerman, Microsoft Research

Published by AAAS


