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Major international projects are underway that are aimed at creating
a comprehensive catalogue of all the genes responsible for the ini-
tiation and progression of cancer1–9. These studies involve the
sequencing of matched tumour–normal samples followed by math-
ematical analysis to identify those genes in which mutations occur
more frequently than expected by random chance. Here we describe
a fundamental problem with cancer genome studies: as the sample
size increases, the list of putatively significant genes produced by
current analytical methods burgeons into the hundreds. The list
includes many implausible genes (such as those encoding olfactory
receptors and the muscle protein titin), suggesting extensive false-
positive findings that overshadow true driver events. We show that
this problem stems largely from mutational heterogeneity and provide
a novel analytical methodology, MutSigCV, for resolving the problem.
We apply MutSigCV to exome sequences from 3,083 tumour–normal
pairs and discover extraordinary variation in mutation frequency
and spectrum within cancer types, which sheds light on mutational
processes and disease aetiology, and in mutation frequency across
the genome, which is strongly correlated with DNA replication
timing and also with transcriptional activity. By incorporating
mutational heterogeneity into the analyses, MutSigCV is able to
eliminate most of the apparent artefactual findings and enable the
identification of genes truly associated with cancer.

Recent cancer genome studies have led to the identification of scores
of cancer-associated genes in glioblastoma1, ovarian2, colorectal3, lung4,
head and neck5, multiple myeloma6, chronic lymphocytic leukaemia7,
diffuse large B-cell lymphoma (DLBCL)8,9 and many other cancers.
Studies are now underway through The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/) and the International Cancer Genome
Consortium (http://www.icgc.org/) to create a comprehensive cata-
logue of significantly mutated genes across all major cancer types.

The expectation has been that larger sample sizes will increase the
power both to detect true cancer driver genes (sensitivity) and to distin-
guish them from the background of random mutations (specificity).
Alarmingly, recent results seem to show the opposite phenomenon: with
large sample sizes, the list of apparently significant cancer-associated
genes grows rapidly and implausibly. For example, when we applied
current analytical methods to whole-exome sequence data from 178

tumour–normal pairs of lung squamous cell carcinoma10, a total of 450
genes (Supplementary Table 1 and Supplementary Methods 2) were
found to be mutated at a significant frequency (false-discovery rate
q , 0.1). Although the list contains some genes known to be associated
with cancer, many of the genes seem highly suspicious on the basis of
their biological function or genomic properties. Almost a quarter (101/
450) of the putative significant genes encode olfactory receptors. The
list is also highly enriched for genes encoding extremely large proteins,
including more than one-fifth of the 83 genes encoding proteins with
.4,000 amino acids (P , 10211, Fisher’s exact test). These include the
two longest human proteins, the muscle protein titin (36,800 amino
acids) and the membrane-associated mucin MUC16 (14,500 amino
acids), as well as another mucin (MUC4), cardiac ryanodine receptors
(RYR2, RYR3), cytoskeletal dyneins (DNAH5, DNAH11) and the neur-
onal synaptic vesicle protein piccolo (PCLO). The prominence of these
genes is not simply the consequence of their long coding regions,
because the statistical tests already account for the larger target size.
Furthermore, the list also contains genes with very long introns, includ-
ing one-sixth of the 73 genes spanning a genomic region of .1 mega-
base (Mb) (P , 1026), such as those encoding cub- and sushi-domain
proteins (CSMD1, CSMD3), and many neuronal proteins, such as the
neurexins NRXN1, NRXN4 (also known as CNTNAP2), CNTNAP4
and CNTNAP5, the neural adhesion molecule CNTN5, and the Parkinson’s
disease protein PARK2. When we performed similar analyses for several
other cancer types with many samples, we similarly obtained large lists
including many of the same genes (data not shown).

After recognizing the problem of apparent false-positive findings,
we reviewed the published literature and found that some of these
potentially spurious genes have already been nominated as cancer-associated
genes in recently published cancer genome studies: for example, LRP1B
in glioblastoma2 and lung adenocarcinoma1,4; CSMD3 in ovarian cancer2;
PCLO in DLBCL9; MUC16 in lung squamous carcinoma11, breast cancer12

and DLBCL8; MUC4 in melanoma13; olfactory receptor OR2L13 in glio-
blastoma14; and TTN in breast cancer12 and other tumour types15. We
therefore set out to understand the source of the problem.

Analytical approaches in wide use today1–9,13–16 identify as signifi-
cantly mutated those genes harbouring more mutations than expected
given the average background mutation frequency for the cancer type.
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These methods use a handful of parameters: an average overall mutation
frequency for a cancer type; and a few parameters about the relative
frequencies of different categories of mutations (small insertions/
deletions and transitions versus transversions at CpG dinucleotides,
other C:G base pairs and A:T base pairs). Average values of these
parameters are typically estimated from the samples under study.
Various efforts, by us and others, have recently began to incorporate
sample-specific mutation rates into the analysis3,9.

We proposed that the problem might be due to heterogeneity in the
mutational processes in cancer. Whereas it is obvious that assuming an
average mutation frequency that is too low will lead to spuriously
significant findings, it is less well appreciated that using the correct
average rate but failing to account for heterogeneity in the mutational
process can also lead to incorrect results. To illustrate this point, we
compared two simple scenarios both sharing the same average muta-
tion frequency: (1) a constant frequency of 10 mutations per Mb (10/
Mb) across all genes, versus (2) frequencies of 4/Mb, 8/Mb and 20/Mb
in 25%, 50% and 25% of genes, respectively (Supplementary Fig. 1). If
the second case is analysed under the erroneous assumption of a
constant rate, many of the highly mutable genes will falsely be declared
to be associated with cancer. Notably, the problem grows with sample
size: because the threshold for statistical significance decreases with
sample size, modest deviations due to an erroneous model are declared
significant. For the same reason, the problem is also more pronounced
in tumour types with higher mutation rates. Heterogeneity in mutation
frequencies across patients can also lead to inaccurate results, including
the potential to produce both false-positive, as described earlier, and
false-negative results if the baseline frequency is overestimated.

We therefore set out to study heterogeneity in mutation rates, using
a data set of 3,083 tumour–normal pairs across 27 tumour types, for
which the whole-exome sequence was available for 2,957 and the
whole-genome sequence was available for 126 (Supplementary Table 2).
Approximately 92% of the samples were sequenced at the Broad
Institute and thus were processed using a uniform experimental and
analytical pipeline (see Methods). In this data set, an average of 30 Mb

of coding sequence per sample was covered to adequate depth for
mutation detection, yielding a total of 373,909 non-silent coding muta-
tions or an average of 4.0/Mb per sample (median of 44 non-silent
coding mutations per sample, or 1.5/Mb).

We analysed three types of heterogeneity, with the aim of achieving
more accurate detection of cancer-associated genes. First, we analysed
heterogeneity across patients with a given cancer type. Analysis of the
27 cancer types revealed that the median frequency of non-synonymous
mutations varied by more than 1,000-fold across cancer types (Fig. 1).
About half of the variation in mutation frequencies (measured on a
logarithmic scale) can be explained by tissue type of origin. Paediatric
cancers showed frequencies as low as 0.1/Mb (approximately one
change across the entire exome), whereas at the opposite extreme,
melanoma and lung cancer exceeded 100/Mb. The highest mutation
frequencies are in some cases attributable to extensive exposure to well
known carcinogens, such as ultraviolet radiation in the case of mela-
noma and tobacco smoke in the case of lung cancers.

More surprisingly, mutation frequencies varied markedly across
patients within a cancer type. In melanoma and lung cancer, the fre-
quency ranged across 0.1–100/Mb. Despite the low median frequency
in acute myeloid leukaemia (AML; 0.37/Mb), the patient-specific fre-
quencies similarly spanned three orders of magnitude, from 0.01 to 10/
Mb. Variation may in some cases be due to key biological factors, such as
melanomas not attributed to ultraviolet exposure or on unexposed skin,
colon cancers with or without mismatch repair defects3, or head and
neck tumours with viral or non-viral origin5 (Supplementary Fig. 2).

Second, after analysing total mutation frequency, we analysed het-
erogeneity in the mutational spectrum of the tumours. Starting with all
96 possible mutations (12 mutations at a base times 16 possible flank-
ing bases, then collapsed by strand symmetry), we used non-negative
matrix factorization (NMF) to reduce the dimensionality, with each
spectrum represented as a linear combination of six basic spectra
(Methods). We represented the mutational spectrum of each tumour
on a circular plot, with distance from the origin representing total
mutation rate and angle representing the relative contribution of the
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C→T
C→A
C→G
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Figure 1 | Somatic mutation frequencies observed in exomes from 3,083
tumour–normal pairs. Each dot corresponds to a tumour–normal pair, with
vertical position indicating the total frequency of somatic mutations in the
exome. Tumour types are ordered by their median somatic mutation
frequency, with the lowest frequencies (left) found in haematological and
paediatric tumours, and the highest (right) in tumours induced by carcinogens

such as tobacco smoke and ultraviolet light. Mutation frequencies vary more
than 1,000-fold between lowest and highest across different cancers and also
within several tumour types. The bottom panel shows the relative proportions
of the six different possible base-pair substitutions, as indicated in the legend on
the left. See also Supplementary Table 2.
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six basic spectra (Fig. 2). This representation reveals natural groupings
with respect to mutational spectrum.

Lung cancers (Fig. 2, red cluster at 2 o’clock position), for example,
share a mutational spectrum dominated by CRA mutations, consistent
with their exposure to the polycyclic aromatic hydrocarbons in tobacco
smoke17. Melanoma (Fig. 2, black cluster at 12 o’clock) shows a distinct
pattern reflecting the frequent CRT mutations caused by misrepair of
ultraviolet-induced covalent bonds between adjacent pyrimidines18.
Gastrointenstinal tumours (oesophageal, colororectal and gastric;
Fig. 2, green cluster at 8 o’clock) show extremely high frequencies of
transition mutations at CpG dinucleotides, which may reflect higher
methylation levels in these tumour types3.

Interestingly, there is a multifarious cluster at the 10 o’clock position
in Fig. 2 corresponding to cervical, bladder and some head and neck
tumours, all sharing frequent mutations at Cs in the TpC context (that
is, Cs with a T on their 59 side) that change the C to either T or G or
(less often) A. This pattern is characteristic of mutations caused by the
APOBEC family of cytidine deaminases, innate immunity enzymes

restricting the propagation of retroviruses and retrotransposons19,20.
Some APOBECs can be induced by certain classes of viruses21. Cervical
cancer is known to be caused in over 90% of cases by the human
papillomavirus (HPV)22. Recent studies have also implicated HPV in
head and neck cancers5. The similar mutational spectrum in bladder
cancer may indicate a viral aetiology in a significant subset of this
tumour type; a potential role of HPV in bladder cancer is a subject
of active investigation23. This cluster also contains sporadic examples
of breast tumours (consistent with a recent report12), as well as some
tumours from lung and other tissues. Recent work19,20 has shown that
the TpC mutations tend to occur in proximity to one another, consistent
with the activity of APOBEC enzymes in damaged long single-strand
DNA regions. One last minor cluster (Fig. 2, 4 o’clock position) consists
of samples dominated by ART mutations in the TpA context. This
cluster contains mostly leukaemia samples (AML and chronic lym-
phocytic leukaemia (CLL)), as well as one breast cancer sample and one
neuroblastoma sample.

The rich variation in mutational spectrum across tumours under-
scores the problems with using an overly simplistic model of the average
mutational process for a tumour type and failing to account for hetero-
geneity within a tumour type.

Of all the kinds of heterogeneity in mutational processes, the most
important turns out to be the third kind we analysed: regional hetero-
geneity across the genome. By examining the whole-genome sequence
from 126 tumour–normal pairs across ten tumour types, we found marked
variation in mutation frequency across the genome, with differences
exceeding fivefold (Fig. 3a, b); the profile of the genomic variation was
similar across and within tumour types (Supplementary Fig. 3). Recent
studies have noted regional variation in cancer mutation rates and
begun to explore correlations with genomic features6,17,18,24.

We focused on two factors that were especially powerful in explain-
ing mutational heterogeneity. The first factor is gene expression level.
It is known that the germline mutation rate is somewhat lower in genes
that are highly expressed in the germ line18, owing to a process termed
transcription-coupled repair25. With the whole-genome and whole-
exome data analysed here, we found a strong correlation between
somatic mutation frequency in cancers and gene expression level
(averaged across many cell lines, with similar results for expression
in matched normal tissue) (Fig. 3a, b and Supplementary Fig. 3 and
Supplementary Tables 4, 5). The average mutation rate is ,2.9-fold
higher in the bottom expression level percentile than in the top one.
Although statistically highly significant, this effect is insufficient to
explain regional variation in mutation levels fully.

The second important factor is the replication time of a DNA region
during the cell cycle. Recent studies have reported that germline muta-
tion rates are correlated with DNA replication time26–28: late-replicating
regions have much higher mutation rates, possibly due to depletion of
the pool of free nucleotides26. With the whole-genome and whole-
exome data here, we see a marked correlation between somatic muta-
tion frequency in cancers and DNA replication timing (as measured in
HeLa cells27) (Fig. 3a, b), with similar results for blood cell lines28

(Supplementary Fig. 3). The average mutation rate is ,2.9-fold higher
in the latest- versus earliest-replicating percentile, and there is a ,2.1-
fold difference in mutation rate between the latest- and earliest-replicating
decile.

These two features explain most of the suspicious entries on the
putative cancer-associated gene lists. Olfactory receptor genes, for
example, have low expression (P , 102172, Kolmogorov–Smirnoff test;
Fig. 3e), are uniformly late in replication timing (P , 102109; Fig. 3f)
and have a high regional non-coding mutation rate (P , 10281), which
accounts for the high frequency of somatic mutations in their coding
regions. Large genes have similarly low expression and are late replic-
ating (Fig. 3e, f), including the genes cited in the lung cancer example
earlier, such as titin and the ryanodine receptors. Importantly, these
results undermine the evidence supporting several recent reports, such
as the suggestion that CSMD3 is associated with ovarian cancer2. As

Tp*A→T
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Tp*C→mut

*CpG→T

Misc
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Mutations/Mb

AML
Bladder
Breast
CLL
Colorectal
Carcinoid
Cervical
DLBCL
Oesophageal adenocarcinoma
Ewing sarcoma
Glioblastoma multiforme
Head and neck
Kidney clear cell
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Low-grade glioma
Lung adenocarcinoma
Lung squamous cell carcinoma
Multiple myeloma
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Prostate
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Figure 2 | Radial spectrum plot of the 2,892 tumour samples with at least 10
coding mutations. The angular space is compartmentalized into the six
different factors discovered by NMF (see Methods). The distance from the
centre represents the total mutation frequency. Different tumour types
segregate into different compartments based on their mutation spectra. Notable
examples are: lung adenocarcinoma and lung squamous carcinoma (red; 2
o’clock position); melanoma (black; 12 o’clock position); stomach, oesophageal
and colorectal cancer (various shades of green; 8 o’clock position); samples
harbouring mutations of the HPV or APOBEC signature (bladder, cervical and
head and neck cancer, marked in yellow, orange and blue, respectively; 10
o’clock position); and AML and CLL samples sharing the Tp*ART signature, 4
o’clock position. Misc, miscellaneous. See also Supplementary Table 3.
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an independent test, we confirmed that these two genomic features
correlated strongly with the overall frequency of silent substitutions in
coding regions and mutations in introns (Fig. 3c, d and Supplementary
Table 6). However, we note that silent substitutions alone provide
inadequate data to correct mutation frequencies on a gene-by-gene
basis in most tumour types and for most genes, owing to the sparsity
of the data and the resulting uncertainty in estimated rates.

Using the observations above, we developed a new integrated
approach to identify significantly mutated genes in cancer. The
method (MutSigCV) corrects for variation by using patient-specific
mutation frequency and spectrum, and gene-specific background
mutation rates incorporating expression level and replication time
(Supplementary Methods 3). MutSigCV is freely available for non-
commercial use (http://www.broadinstitute.org/cancer/cga/mutsig).

When we applied MutSigCV to the lung cancer example earlier, the
list of significantly mutated genes shrank from 450 to 11 genes. Most of
the genes in this shorter list have been previously reported to be
mutated in squamous cell lung cancer (TP53, KEAP1, NFE2L2,
CDKN2A, PIK3CA, PTEN, RB1; refs 11, 16) or in other tumour types
(MLL2 (also known as KMT2D), NOTCH1, FBXW7). An additional
novel gene in the list, HLA-A, suggests that mutations in immune-
related genes may help tumours evade immune surveillance, a finding
that requires follow-up experimental work. These significantly mutated

genes are discussed in the TCGA lung squamous publication10, in
which we applied our novel methodology.

With the ability to eliminate many obviously suspicious genes, it is
now feasible to start analysing large cancer collections, including com-
bined data sets across many cancer types.

We note that other forms of heterogeneity in tumours merit further
investigation. These include the co-occurrence of many mutations in
proximity to each other (‘kataegis’19 or ‘clustered mutations’20) (see
Supplementary Fig. 10) and transcription-coupled repair (see Sup-
plementary Fig. 11). In addition, it will be crucial to have a full under-
standing of heterogeneity across cancer cells within a tumour, reflecting
the evolutionary process of a tumour29.

Our results make clear that the accurate identification of new cancer-
associated genes will require accurate accounting of mutational pro-
cesses. Although MutSigCV resolves the most serious current problems,
the ultimate solution will probably involve using empirically observed
local mutation rates obtained from massive amounts of whole-genome
sequencing.

METHODS SUMMARY
All samples were obtained under Institutional Review Board approval and with
documented informed consent. A complete list of samples is given in Supplemen-
tary Table 2. Whole-exome capture libraries were constructed and sequenced on
Illumina HiSeq flowcells to an average coverage of 1183. Whole-genome sequen-
cing was done with the Illumina GA-II or Illumina HiSeq sequencer, achieving an
average of ,303 coverage depth. Reads were aligned to the reference human
genome build hg19 using an implementation of the Burrows-Wheeler Aligner,
and a BAM file was produced for each tumour and normal sample using the Picard
pipeline6. The Firehose pipeline was used to manage input and output files and
submit analyses for execution. The MuTect30 and Indelocator (A. Sivachenko et al.,
manuscript in preparation) algorithms were used to identify somatic single-nuc-
leotide variants and short somatic insertions and deletions, respectively. Mutation
spectra were analysed using NMF. Significantly mutated genes were identified
using MutSigCV, which estimates the background mutation rate for each gene–
patient–category combination based on the observed silent mutations in the gene
and non-coding mutations in the surrounding regions. Because in most cases these
data are too sparse to obtain accurate estimates, we increased accuracy by pooling
data from other genes with similar properties (for example, replication time,
expression level). Significance levels (P values) were determined by testing whether
the observed mutations in a gene significantly exceeded the expected counts based
on the background model. False-discovery rates (q values) were then calculated,
and genes with q # 0.1 were reported as significantly mutated. Full details on
methods used are listed in Supplementary Information.
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Figure 3 | Mutation rate varies widely across the genome and correlates with
DNA replication time and expression level. a, b, Mutation rate, replication
time and expression level plotted across selected regions of the genome. Red
shows total non-coding mutation rate calculated from whole-genome
sequences of 126 samples (excluding exons). Blue shows replication time27.
Green shows average expression level across 91 cell lines in the Cancer Cell Line
Encyclopedia determined by RNA sequencing. Note that low expression is at
the top of the scale and high expression at the bottom, in order to emphasize the
mutual correlations with the other variables. Panels show entire chromosome
14 (a) and portions of chromosomes 1 and 8 (b), with the locations of two
specific loci: a cluster of 16 olfactory receptors on chromosome (chr)1 and the
gene CSMD3 on chromosome 8. These two loci have very high mutation rates,
late replication times and low expression levels. The local mutation rate at
CSMD3 is even higher than predicted from replication time and expression,
suggesting contributions from additional factors, perhaps locally increased
DNA breakage—the locus is a known fragile site. c, d, Correlation of mutation
rate with expression level and replication time for all 100 Kb windows across the
genome. e, f, Cumulative distribution of various gene families as a function of
expression level and replication time. Olfactory receptor genes, genes encoding
long proteins (.4,000 amino acids (aa)) and genes spanning large genomic loci
(.1 Mb) are significantly enriched towards lower expression and later
replication. By contrast, known cancer-associated genes (as listed in the Cancer
Gene Census) trend towards slightly higher expression and earlier replication.
See also Supplementary Fig. 9 and Supplementary Tables 4, 5 and 6.
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