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Abstract
Background: The Central Dogma of biology holds, in famously simplified terms, that DNA makes
RNA makes proteins, but there is considerable uncertainty regarding the general, genome-wide
correlation between levels of RNA and corresponding proteins. Therefore, to assess degrees of
this correlation we compared the RNA profiles (determined using both cDNA- and oligo-based
microarrays) and protein profiles (determined immunohistochemically in tissue microarrays) of
1066 gene products in 23 human cell lines.

Results: A high mean correlation coefficient (0.52) was obtained from the pairwise comparison of
RNA levels determined by the two platforms. Significant correlations, with correlation coefficients
exceeding 0.445, between protein and RNA levels were also obtained for a third of the specific
gene products. However, the correlation coefficients between levels of RNA and protein products
of specific genes varied widely, and the mean correlations between the protein and corresponding
RNA levels determined using the cDNA- and oligo-based microarrays were 0.25 and 0.20,
respectively.

Conclusion: Significant correlations were found in one third of the examined RNA species and
corresponding proteins. These results suggest that RNA profiling might provide indirect support
to antibodies' specificity, since whenever a evident correlation between the RNA and protein
profiles exists, this can sustain that the antibodies used in the immunoassay recognized their
cognate antigens.

Background
The Central Dogma of molecular biology, states that
"DNA makes RNA makes proteins" suggesting there is a
direct relationship between mRNA and protein levels.
This assumed relationship is the basis for numerous tran-
script-profiling experiments, often based on microarray

analysis to identify genes that are up- and down-regulated
under normal or disease conditions. The underlying
assumption is that differences in mRNA levels are mani-
fested in different phenotypes as a result of differences in
protein levels. Accordingly, correlations between the dif-
ferential expression of specific mRNAs and corresponding
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proteins have been found in numerous studies [1], many
of which have been shown to have clear biological rele-
vance [2,3]. Several studies have also found significant
general correlations between RNA levels and protein lev-
els [4-10], usually using data on RNA abundance acquired
from platforms such as microarrays and Serial Analysis of
Gene Expression (SAGE), in conjunction with data on the
abundance of corresponding proteins derived from mass
spectrometry (MS) analyses.

The major conclusions drawn from these studies have
been that there are significant general correlations
between levels of RNA species and corresponding protein
products, but also considerable variation in these correla-
tions. For instance, Lu et al found significant correlations
between RNA and protein levels of 0.66 and 0.48 in two
simple, unicellular organisms (yeast and Escherichia coli
[8]), but indications that the number of proteins per tran-
script vary widely. In the cited study MS data and a trained
classifier were used to obtain accurate estimates of protein
abundance in the complex samples, microarrays were
used to determine RNA levels, and products of 346 and
437 genes were used in the yeast and E. coli correlation
analyses, respectively. Further, in a study published in
1999, Gygi et al investigated 150 genes using SAGE, 2D-
gels and MS data, and found a correlation of 0.91 for all
analyzed genes, but when a few highly expressed RNA and
protein products were excluded the correlation decreased
to 0.36 [7].

Similarly, in an analysis of NCI-60 cell lines based on
RNA and reverse phase protein arrays, Shankavaram et al
found a significant mean correlation between RNA and
protein levels, and showed that the correlations were sub-
stantially stronger for some gene categories than others
[9]. They also found that the distribution of correlation
coefficients is bimodal; one group of gene products had a
mean correlation of 0.71, while another group had a
mean correlation of 0.28. Further, Gene Ontology theme
enrichment analysis indicated that the genes with high
correlations were mainly involved in the maintenance of
cellular processes and structural properties. Greenbaum et
al have also shown that gene products associated with cer-
tain characteristics, such as high Codon Adaptation Indi-
ces (CAI) and/or ribosomal occupancy, seem to have
significantly higher correlations with corresponding pro-
teins than the main population of gene products [11].

Thus, interesting data on the degrees of correlation
between mRNA and protein levels in various organisms
have been acquired, and intriguing variations in this
respect between different sets of genes have been detected.
However, although MS can provide quantitative data, it
has been a bottleneck in analyses of large numbers of gene
products. Hence, although several hundred gene products

were analyzed in some of the cited studies they still cov-
ered small proportions of the total analyzed genomes, so
the general conclusions should be treated with some cau-
tion. Thus, general patterns of correlation between mRNA
and protein levels have not yet been fully established, rais-
ing questions about the validity of large-scale comparative
mRNA and protein expression profiling, and true, global
patterns of relationships between levels of mRNAs and
proteins encoded by specific genes still remain to be elu-
cidated. Therefore, in an attempt to compare mRNA and
protein levels at a larger scale we have analyzed RNA and
protein expression profiles, using cDNA and oligo array
data in conjunction with immunohistochemical data, in
23 human cell lines

Results
Experimental design
Correlations between levels of RNA and corresponding
proteins across 23 cell lines (listed in Additional file 1)
were evaluated by comparing immunohistochemical pro-
tein expression profiles with transcriptomic data from
cDNA and oligo microarrays, as illustrated in Figure 1 and
outlined below. The proteomic data used in this large-
scale comparison were obtained from 4400 antibody pro-
files generated in the Human Protein Atlas (HPA) initia-
tive http://www.proteinatlas.org, by applying both
antibodies produced in the HPA initiative, and others
obtained from various commercial antibody (CAB) ven-
dors, to cell microarrays, and subsequent immunohisto-
chemical staining, following procedures that have been
shown to yield data with low intra- and inter-slide varia-
tion [12]. In order to further increase the robustness, the
immunohistochemical data were all quantified using
automated imaging software [13] to scan images of
stained glass slides, on each of which cells representing all
23 lines were present. The software quantifies the overall
abundance of detected proteins by estimating intensity
parameters using a fuzzy algorithm, which provides more
robust estimates of quantities of expressed proteins than
manual image analysis, since it does not rely on the expe-
rience or alertness of the interpreter [14,15]. In order to
obtain robust, valid comparative RNA expression values,
total RNA was extracted from the same batch of cell lines,
converted into Cy5-labeled cDNA, and hybridized in rep-
licates together with a common Cy3-labeled reference, to
both cDNA (30 k) and oligo (34 k) spotted microarrays.
As detailed in Additional file 1, the cell lines originate
from diverse human cancerous tissues, including lung,
male and female reproductive system, lymphoid, mye-
loid, brain, skin and breast tissues.

Examples of correlation coefficients
Gene-specific RNA and protein expression profiles were
compared, across the 23 cell lines, using Spearman corre-
lation coefficients. To illustrate the comparative profiles
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Outline of the experimental procedureFigure 1
Outline of the experimental procedure. RNA expression profiles were generated using cDNA and oligo microarrays, and 
protein expression levels were generated using immunohistochemical staining of cell microarrays with antibodies from the 
Human Protein Atlas initiative. The expression levels were measured in each assay in each of the 23 cell lines. For each of the 
1066 gene products for which data were obtained from all three platforms, the Spearman correlation coefficients between the 
RNA oligo-protein, RNA cDNA-protein and RNA oligo-RNA cDNA datasets were calculated. The equation of the Spearman correla-
tion calculation is shown in the Figure.
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Four examples of different correlation coefficients: 0.743, 0.498, 0.240 and 0.00 (from the top left to the bottom right) between expression levels of RNA and protein gene products with corresponding Ensembl IDs (ENSG00000106415, ENSG00000175305, ENSG00000130522 and ENSG00000072041, respectively)Figure 2
Four examples of different correlation coefficients: 0.743, 0.498, 0.240 and 0.00 (from the top left to the bot-
tom right) between expression levels of RNA and protein gene products with corresponding Ensembl IDs 
(ENSG00000106415, ENSG00000175305, ENSG00000130522 and ENSG00000072041, respectively). The two 
lines indicate RNA expression levels measured in oligo microarray (blue) and protein expression analyses (red), across 23 cell 
lines. The values shown have been adjusted to a comparable scale, by adding the absolute value of the lowest RNA oligo value 
(which is always negative) to all RNA oligo values. All values (RNA oligo and protein) have then been divided by the highest 
value for the RNA oligo data. This gives measurements on a comparable (0 – 1) scale and the correlation coefficient remains 
the same as before the adjustment.
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utilized in the analysis, examples of profiles with correla-
tion coefficients ranging between 0 – 0.75 are shown in
Figure 2. It should be noted that the assays used (see Meth-
ods for details) provide indications of relative rather than
quantitative levels of expression, but since expression pro-
files across multiple cell lines were examined, the correla-
tion coefficients can still be meaningfully compared.
Spearman's correlation coefficients were used since some
of the data compared in this study are linear but others are
logarithmic, so rank-based coefficients yield more robust
estimates of correlation than linear coefficients, such as
Pearson's coefficients, which could be strongly biased by
extreme values. Further, in cases where there is high vari-
ance, as illustrated in Figure 2d, the probability of stochas-
tic phenomena having similar effects on the relative
strength of expression of both transcripts and correspond-
ing proteins in assays with each of the 23 cell lines is very
low, so significant correlation coefficients are unlikely to
be obtained, using a rank-based approach, if the high var-
iability is due largely to stochastic effects. Examples of
profiles with intermediate correlation coefficients are
shown in Figure 2b and 2c, to illustrate the influence of
variations in the strength of expression of transcripts rela-
tive to that of corresponding proteins across the cell lines.

Selection of the analyzed genes
After strict quality filtering of the three expression datasets
(see Materials and methods for details), data on levels of
1066 gene products with unique Ensembl gene IDs pro-
vided by all three platforms remained. The effects of
applying different filtering criteria are illustrated by the
oligo array data shown in Additional file 2, which indi-
cates that the stringency of the filtration (in terms of per-
mitted numbers of missing data points for specific genes
and cell lines included in the analysis) has minor effects
on the mean correlation coefficient. However, the highest
mean correlation coefficients were obtained in all three
comparisons when no missing values were accepted, so
only profiles for which data from all cell lines were avail-
able from each of the platforms were used. Other tested
options were to include average expression values for gene
products that had more than one counterpart in the data
yielded from another platform across all the cell lines, or
the best matched pairs, based on either sequence similar-
ities or correlation coefficients. However, the distributions
of correlation coefficients obtained with these approaches
did not significantly differ from those yielded by averag-
ing the expression values obtained with multiple probes.

High proportions of the 1066 gene products for which
data were available in all three of the filtered datasets were
detected by a single probe or antibody (75%, 55% and
39% in the Protein, Oligo and cDNA datasets, respec-
tively). Two or more representatives of the remaining gene

products were detected, i.e. replicates resulting in multiple
data points (Additional file 3).

Correlations between RNA and protein levels
In order to calculate pairwise correlation coefficients
between gene product pairs across all cell lines, three
matrices of 1066 gene product pairs and 23 cell lines were
constructed using data on all of the gene products that
were quantified by all three platforms. The mean Spear-
man correlation coefficients for the 1066 comparisons in
the oligo microarray versus protein, cDNA microarray ver-
sus protein and oligo microarray versus cDNA microarray
profile comparisons were 0.25, 0.20 and 0.52, respec-
tively, while the corresponding median values were 0.26,
0.19 and 0.60, respectively. Histograms of the Spearman
correlation coefficient distributions are displayed in Fig-
ure 3.

Genes with correlated RNA and protein expression levels
To identify transcripts and corresponding proteins with
significantly correlated expression profiles a correlation
coefficient cutoff of 0.455 was applied, based on the null
hypothesis that the mean correlation between given RNA
species and proteins with different Ensembl IDs is 0, and
applying a t-score threshold of 2.08 (corresponding to the
95% confidence interval). To validate this assumption the
mean correlation coefficient was calculated for 1000 ran-
domly selected Ensembl ID pairs, and found to be -0.001,
indicating that the Null assumption is valid. Further, since
multiple tests were applied, Benjamini-Hochberg multi-
ple testing adjustment was used. Hence, in subsequent
analyses a cut-off level of 0.445 was applied. The number
of gene product pairs for which correlations 0.455 were
found in the Oligo-Protein, cDNA-Protein and Oligo-
cDNA comparisons were 292, 238 and 678, respectively.
The Ensembl gene IDs corresponding to gene product
pairs with correlations exceeding 0.455 in each of these
comparisons were then used to construct a Venn diagram
illustrating the numbers shared in each comparison (Fig-
ure 4). The 169 genes (16%) meeting the criteria
described above in the datasets generated by all three plat-
forms are tabulated in Additional file 4. The proportions
of products detected by commercial antibodies (CAB) and
Human Protein Atlas antibodies (HPA) among the 169
Ensembl IDs were the same as those used to generate the
initial dataset (38% CAB, 62% HPA). The numbers of
Ensembl gene IDs in the oligo microarray versus cDNA
microarray comparison and gene products in the compar-
isons of either of the RNA and protein comparisons yield-
ing correlations > 0.455 were 678 (64%) and 354 (33%),
respectively. Hence, a third of the antibodies could be val-
idated based on a stringent comparison of correlations
between the RNA and protein levels across all cell lines.
Page 5 of 14
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Histograms of all correlation coefficients for each gene product obtained from each of the three comparisons, and one show-ing those of randomly picked Ensembl ID pairsFigure 3
Histograms of all correlation coefficients for each gene product obtained from each of the three comparisons, 
and one showing those of randomly picked Ensembl ID pairs. Figures 3a – 3c show the RNA oligo versus protein pro-
files, RNA cDNA versus protein profiles, and the RNA oligo versus RNA cDNA profiles, which yielded mean correlation coefficients 
of 0.25, 0.20 and 0.52, respectively. The distributions of correlation coefficients between RNA values obtained using both RNA 
platforms and the protein values have Gaussian shapes, but with some bimodal characteristics, in which most of the data points 
are centered at the respective mean, but shoulders can be seen at correlation coefficients of ~0.5 – 0.7. For the RNA assay 
correlations the distributions follow a beta distribution. The randomly picked pairs have a mean value close to zero, indicating 
that there is no apparent bias in the data set.
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Gene ontology analysis
Analysis of the cellular compartment and biological proc-
ess Gene Ontology (GO) themes [16] of the gene products
with correlation coefficients >0.445 identified in the three
RNA-RNA and RNA-protein comparisons described above
yielded varying results, and only a few significantly
enriched GO themes were detected (after adjustment for
multiple testing). It should be noted that since the dataset
is rather small for such hypergeometric statistical tests the
results are highly sensitive to relatively minor variations.
However, among the 169 common Ensembl gene IDs, sig-
nificant enrichment was found of genes associated with
the cytoskeleton and adherent junctions in the cellular
compartment ontology analysis, and of genes associated
with cellular motility and other maintenance-related cate-
gories in the biological function ontology analysis (Addi-
tional file 5 and 6).

To assess the possibility that the correlation coefficients
could be dependent on the RNA array signal intensity, lin-
ear regression was applied to the mean signal intensities
and correlation coefficients. Using all 1066 gene product
pairs a positive, but weak relationship was found (m =
0.034, p = 4.39e-05) in values obtained from the RNA
oligo assay, indicating that an increase in signal intensity
slightly increased the correlation. The corresponding rela-
tionship for the results from the cDNA assay was
extremely weak (m = 0.15e-05, p = 0.98), indicating that
variations in the signal intensity had virtually no effect on
correlations of the data provided by the cDNA arrays.
Hence, the oligo microarray analysis yielded larger differ-
ences in correlations obtained with high and low intensity
probes than the cDNA analysis.

Global expression profiling
To investigate the relationships of global expression pro-
files in the examined human cell lines, dendrograms were
generated for each of the RNA assay and protein datasets,
based on the similarity of the expression levels of the 169
gene products that were common to all comparisons
shown in the Venn diagram. The dendrograms, colored
according to their tissue of origin in Figure 5, indicate that
there were both similarities and variations in the expres-
sion patterns detected by the three assays. The two den-
drograms based on RNA data (Figure 5a and 5b) have
high similarity (cophenetic correlation = 0.84), but differ-
ent sub-clustering patterns compared with the protein
data. Another notable feature of the clusters is that the
adherent cells and the suspension-growing cells (all of
which have hematological origins, except the SCLC cell
line) are divided into different sub-clusters. The RNA-
based assays seem to separate the cell lines better than the
protein assays. The cophenetic correlations between the
oligo RNA and protein datasets, and the cDNA and pro-
tein datasets, are 0.32 and 0.22, respectively; in the same
range as the mean correlation coefficients. Dendrograms
created using the full data set of 1066 Ensembl IDs have
greater similarity (Additional file 7); the cophenetic corre-
lation coefficients for the cDNA versus Oligo, Oligo versus
Protein, cDNA versus Protein assays being 0.78, 0.45 and
0.32, respectively. The cophenetic correlation coefficients
between the dendrograms generated using the subset of
169 Ensembl IDs and the larger dataset with 1066
Ensembl IDs are 0.64, 0.71 and 0.78 for the cDNA, Oligo
and Protein datasets, respectively.

RNA assay validation using real time reverse transcription 
polymerase chain reactions
In order to validate the results from the two RNA microar-
ray assays, Real time reverse transcription polymerase
chain reaction (RT-PCR) analysis was applied, in which
products of 14 genes were measured in duplicates across
eight cell lines. The correlations obtained for all 14 genes

Venn diagram showing numbers of highly correlating gene products identified in the comparison of data obtained from each permutation of platformsFigure 4
Venn diagram showing numbers of highly correlating 
gene products identified in the comparison of data 
obtained from each permutation of platforms. The 
gene products that had correlations 0.445 in each compari-
son (RNAoligo-protein, RNAcDNA-protein and RNAoligo-
RNAcDNA) were compared with those identified in the other 
assays. 169 gene products with such correlations were iden-
tified in all three comparisons, equivalent to 63% and 82.5% 
of those found in the RNA oligo-protein and RNAcDNA-pro-
tein comparisons, respectively. The numbers of gene prod-
ucts with correlation coefficients 0.445 in the RNA oligo-
protein, RNAcDNA-protein and RNAoligo-RNA cDNA compari-
sons were 292, 238 and 678, respectively.
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Dendrograms of hierarchical clusterings based on 1 – Pearson correlation coefficient metricsFigure 5
Dendrograms of hierarchical clusterings based on 1 – Pearson correlation coefficient metrics. The expression 
levels of 169 Ensembl gene IDs with correlation coefficients >0.445 for which data were available in all three comparisons 
across 23 cell lines measured in each assay were utilized to cluster the data into three individual clusters. The cell lines are 
colored depending on their origins; red, deep-red, grey, green and blue indicate cells of: lymphoid; myeloid; melanoma, glioma 
and sarcoma; carcinoma and neuronal origins, respectively.

�� ���
�

� �
��
�

	 �
�

�

� �
�


�
�

��
�� �
��
�


� �
��
�
��

� � � � � � � � � � � � � � �

�  ! "
#$

a)

� �
��
�

�� ���
�

�% �
�

	 �
�

�

��
& ��

%�
� ��

��
�� �
��
�


� �
�


�
�

� �
��
�
��

' � ( ) � � � � � � � � � �

�  ! "
#$

b)

�� ���
�

� �
��
�
��

� �
�


�
�

��
�� �
��
�


	 �
�

�

� �
��
�

* � � + � � � � � � � � � � � � �

�  ! "
#$

c)



BMC Genomics 2009, 10:365 http://www.biomedcentral.com/1471-2164/10/365
in a subsequent RT-PCR-oligo RNA array comparison
(which ranged from -0.26 to 1) and for 10 genes in an RT-
PCR-cDNA comparison (which ranged from -0.6 to 0.97)
are shown in Additional file 8. In addition, the correlation
between 7 different genes and the corresponding protein
levels was calculated (Additional file 8), where the mean
correlation was 0.58. Further, for four genes per RNA assay
linear regression was applied to the correlation coeffi-
cients of the RNA array versus RT-PCR results, and the
RNA array versus protein data. The slope obtained from
the regression analysis was significantly positive (p-value
= 0.01), indicating that there was a significant relationship
between these correlations (Additional file 9).

Discussion
To assess the fundamentally important correlation
between levels of RNA species and corresponding proteins
accurately, reliable estimates of their abundance are
clearly required. Equally clearly, quantitative methods
that yield highly accurate, absolute estimates of their lev-
els would ideally be applied, and currently the method of
choice for quantitative proteomics is mass spectrometry,
following several purification and separation steps. This
approach can provide high levels of accuracy, sensitivity
and specificity, but as yet it is not suitable for large-scale
analyses. Alternatively, as in this study, relative levels of
proteins across samples of multiple cell lines in tissue
microarrays can be determined immunohistochemically,
minimizing inter-experimental variation by simultane-
ously staining samples of all of the lines by each antibody.
In addition, various types of microarrays have been devel-
oped recently that are capable of providing reliable esti-
mates, in conjunction with various statistical models, of
absolute quantities of specific mRNA species in samples
from spot intensities [17].

Thus, use of relative techniques like two-color microarray
and immunohistochemistry allows levels of large num-
bers of gene products to be compared in multiple sam-
ples. However, it should be recognized that cell lines are
model systems that differ in various respects from cells in
the organisms from which they are derived, notably many
of the regulatory pathways are not present and the chro-
mosomal arrangements are beyond the normal patterns
in healthy tissues [18]. So, findings regarding correlations
between RNA and corresponding protein levels in them
should be interpreted with some caution. Furthermore,
since the abundance of RNA and protein is analyzed in
samples of cell lines containing several cells, the values
used in subsequent correlation analysis are based on aver-
ages for the cell line populations, which may be in varying
stages of the cell cycle.

Bearing in mind the above provisos, the distributions of
the correlation coefficients obtained in both the cDNA

and oligo microarray data comparisons with the protein
dataset are approximately normal distributed, although
when investigating the density function of the distribu-
tion there is a tendency towards a minor peak around a
mean value of 0.65–0.75, implying that the gene products
can may be divided into two major groups that have dif-
ferent degrees of correlation. Further, the minor peak is
enhanced when the correlations are based on Pearson cor-
relation coefficients. Shankavaram et al noticed a similar
pattern in their study of NCI-60 mammalian cell lines [9].
In contrast, the distribution of cDNA versus oligo micro-
array correlations had more of a beta shape, indicating
that data generated from many pairs of corresponding
probes in the two array systems strongly correlated, but
some pairs yielded results that correlated poorly, which
decreased the mean correlation coefficient. This may have
been due to poor sequence overlap, i.e. the probes yield-
ing poor correlations may have hybridized to different
parts of transcripts that mapped to the same genes accord-
ing to data in the Ensembl gene database. The degree of
correlation between the cDNA and oligo microarray data-
sets is consistent with the degrees found in previous anal-
yses [19], but further evaluation of variations between the
results of this and previous studies in this respect is
beyond the scope of this article. The oligo microarray
assay yielded higher correlation coefficients with the pro-
tein data than the cDNA microarray assay, probably
because the oligo probes had higher specificity, in accord-
ance with expectations due to the lower degree of cross
hybridization that generally occurs when shorter probes
are used.

The major and minor peaks in the in the histograms of the
correlation coefficients between the oligo microarray and
protein profiles may correspond to two groups of genes
that are regulated by different mechanisms. The genes
with high correlations may be regulated solely, or almost
solely, at the transcriptional level, in accordance with evi-
dence from the ontological analysis that high proportions
of these genes are involved in cellular processes and main-
tenance, for which there is likely to be little need for com-
plex regulation. In contrast, the weak correlations of the
other sets of genes may be due to the effects of complex
regulatory mechanisms and/or noise generated in the
assays masking subtle changes in mRNA transcripts and
protein levels, thereby weakening the correlations.

The weak correlations for gene products with correlation
coefficients lower than 0.445 probably have several
causes, including various post-transcriptional processes
that complicate attempts to obtain accurate estimates of
quantities of corresponding mRNAs across the cell lines
that are destined for translation. For instance, some
mRNAs are strongly retained in the nucleus, which may
lead to their levels being over-estimated relative to protein
Page 9 of 14
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levels. Technical noise generated by the respective plat-
forms (notably due to cross-hybridization in the DNA
microarray analyses and variations in the affinity and spe-
cificity of the antibodies used in the immunoassays) may
also weaken the correlations, and thus increase the pro-
portions of genes with correlation coefficients lower than
0.445. The reason that no correlation was found for cer-
tain genes is probably related to the complexity of their
regulatory mechanisms, which may weaken their correla-
tions to levels that are not detectable with current tech-
niques, while genes with strong correlations may be
regulated solely at the transcriptional level.

The concordance between estimates of RNA levels
obtained from the array analyses and the RT-PCR analyses
was found to be positively correlated to the correlations
found between the RNA and protein levels, but the quan-
tities of transcripts estimated by the RT-PCR assay was not
similarly related to the RNA-protein correlations. The
number of samples is too small to draw definitive conclu-
sions, but these results suggest that if the accuracy of RNA
estimations is increased (based on the correlation with the
RT-PCR assay), the correlation between RNA and protein
levels is more likely to be high (Additional file 9). In addi-
tion, the analysis of RNA levels estimated by RT-PCR
showed that the mean correlation is higher than the array
based platforms, albeit the number of samples in the anal-
ysis is also small. This implies that a more accurate esti-
mate of the RNA levels is likely to increase the overall
correlation, and that the cause of low correlation are
mainly caused by variable accuracy on the RNA level and
not the protein estimates.

We have shown here that the correlation coefficients
between RNA and protein profiles for 1066 gene products
across 23 cell lines vary widely. The mean correlation coef-
ficient is ~0.3, but the groups of genes represented by a
major peak at mean value ~0.3 and a minor peak at mean
value 0.65–0.75 have significantly different mean values,
which may reflect differences in their regulatory mecha-
nisms. Utilizing RNA data from two independent micro-
array formats, and immunohistochemical data obtained
using antibodies applied in the Human Protein Atlas ini-
tiative, we found significant correlations between the RNA
and protein profiles of 33% of the gene products.
Although transcriptional profiling cannot be considered a
high-throughput approach for the validation of affinity
reagents, when correlation measurements between RNA
and protein levels are available they provide additional
information regarding the performance of employed anti-
bodies. Further, when the RNA estimates are highly accu-
rate the correlation between RNA and protein levels has a
tendency to increase. However, while high correlation val-
ues might support antibody specificities, observed dis-
crepancies between RNA and protein levels do not

necessarily imply that the antibodies perform poorly,
since they could be due to various biological factors, such
as complex gene regulatory mechanisms.

Methods
RNA data
The data on gene expression at the RNA level were
acquired using microarray technology, as follows. RNA
from each of the 23 cell lines was hybridized to internally
produced oligo arrays and cDNA microarrays, spotted
onto UltraGAPS slides (Corning). The oligos were the
human 3.0 set from Operon (Array Express: A-MEXP-
706), containing ~37000 probes, representing ~24600
unique genes, while the cDNA microarrays contained
~30000 probes representing ~11800 unique genes (Array
Express: A-MEXP-250). The cell lines were hybridized on
duplicate (oligo) and duplicate/triplicate (cDNA) arrays.
Each cell line was hybridized with Stratagene universal
reference RNA, and for each sample 20 μg of RNA was
primed with 5 μg random hexamers (Invitrogen). The vol-
ume of each sample was adjusted to 18.4 μl using DEPC-
treated water. The RNA was denatured at 70°C for 10 min-
utes, and then renatured on ice for 5 minutes. Reverse-
transcription reaction mixture (Invitrogen) and 400 units
of Superscript III RT-polymerase were added to yield a
final volume of 30 μl containing 1× first-strand buffer
(Invitrogen), 0.01 mM DDT (Invitrogen) and 0.5 mM
dNTPs (Sigma-Aldrich). The ratio of aminoallyl-modified
dUTP to dTTP was 4:1 in the dNTP mixture. The samples
were incubated at 25°C for 10 minutes followed by 46°C
for 2 hours. The cDNA synthesis was halted by adding 3 μl
0.2 M EDTA (pH 8.0).

Template RNA was removed by adding 4.5 μl 1 M NaOH.
The samples were incubated at 70°C for 15 minutes, and
then chilled to room temperature, neutralized with 4.5 μl
1 M HCl and purified using the MinElute Reaction
Cleanup system (Qiagen), following the manufacturer's
recommendations, except that the wash and elution buff-
ers provided with the system were replaced by 80% etha-
nol and 100 mM NaHCO3 (pH 9.0), respectively. The
elution step from the column was repeated, generating an
eluate of 20 μl. This was mixed with a tenth of the con-
tents of a monofunctional NHS-ester Cy3 or Cy5 dye tube
(GE Healthcare), which had been dissolved in DMSO and
subsequently dried in a vacuum centrifuge. After 30 min-
utes incubation in darkness at room temperature, the
samples to be hybridized were purified using MinElute
columns as instructed by the manufacturer.

Hybridization of samples
The microarray slides were pre-hybridized for 30 minutes
at 42°C in a pre-hybridization solution consisting of 5×
SSC, 0.1% SDS (Sigma-Aldrich) and 1% BSA (Sigma-
Aldrich) to avoid unspecific hybridization to the glass sur-
Page 10 of 14
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face. The slides were subsequently washed in water and
isopropanol (Sigma-Aldrich), then dried using a slide cen-
trifuge. The labelled (Cy5) and reference (Cy3) samples
were pooled and denatured (3 minutes at 95°C) in a
hybridization mixture containing 25% formamide
(Sigma-Aldrich), 5× SSC and 0.1% SDS. The mixture was
introduced under a lifter-slip cover slip (Erie Scientific)
placed on top of the printed array and hybridized for 18–
24 hours at 42°C in a water bath. Following hybridization
the slides were washed with increasing stringency using 2×
SSC and 0.1% SDS at 42°C, followed by 0.1× SSC and
0.1% SDS at room temperature and finally by five
repeated washes with 0.1× SSC at room temperature.

Following hybridization the arrays were scanned at 10 μm
resolution using an Agilent G2565BA scanner (Agilent
Technologies, Santa Clara, CA, USA), with the photomul-
tiplier set to 100% for each laser. The acquired images
were analyzed using the irregular gridding algorithm in
GenePix Pro 5.1 (Molecular Devices), and the resulting
data were imported into the R environment for statistical
processing and visualization [20]. The intensities were
extracted from the median foreground intensity in the 532
nm and 635 nm channels. The features were filtered based
on the data from GenePix and manual inspection of the
slides, by removing spots that were either not found by
the image software or were marked as bad spots due to the
presence of dust particles or contact with adjacent spots
on the array.

The intensities of signals from features within each array
were normalized by print-tip Lowess normalization
[21,22]. The log2 values of the ratios of the two normal-
ized intensities (abbreviated M value, 1/2(log2(F635/
F532)) and the product of the intensities (abbreviated A
value, 1/2(log2(F532 * F635))) for all features were then
calculated. The intensities were also normalized across
arrays using a median absolute deviation scaling method
[22].

The DNA microarray data have been submitted to Array
Express.

Cell microarray production
The cell samples were assembled in a cell microarray
(CMA) as previously described by Andersson et al. [12].
Briefly, cells were fixed in formalin and dispersed in agar-
ose. The generated cell pellets were then histoprocessed
and embedded in paraffin, resulting in donor blocks for
CMA production. From each cell donor block duplicate
0.6 mm punches were taken and placed in one recipient
CMA.

Immunohistochemistry and image analysis
As previously described by Stromberg et al., antibodies
generated in the Human Protein Atlas project were used
for immunohistochemical staining of CMA sections [13].
All stained CMA sections were scanned using a Scanscope
T2 automated slide-scanning system (Aperio Technology)
and generated TIFF images representing separated cell
spots were analyzed using TMAx automated image analy-
sis software (Beecher Instruments). The software automat-
ically identifies cells and detects immunostaining,
generating an output file containing information about
staining intensity, fractions of positive cells, numbers of
cells present per spot etc.

Protein quantification
Protein quantification scores were calculated using TMAx
output parameters of staining intensity per unit area and
the number of cells present in each cell spot. Spots with
insufficient cells (<20) were excluded from further analy-
sis. Since the staining intensity reflects the amount of pro-
tein present in a cell, signals from areas in each cell with
weak, moderate and strong staining were summed,
weighting moderate and strong signals with arbitrary coef-
ficients of 2 and 3, respectively. The parameters used for
determining the cut-off levels for each staining category
were jointly determined by experienced pathologists and
the software developer. The summed values were then
divided by the number of cells present in the respective
spots, generating average values of protein expression
level per cell. In order to correct for bias introduced by the
correlation between cell size and the level of protein
expression, as described by Lundberg et al. [23], the pro-
tein expression levels obtained per cell were adjusted with
respect to cell size. Using image analysis data, the average
cross-sectional area for each cell line was calculated from
100 CMAs, and by setting the cell size of the largest cell to
1, a relative average size for each cell type was computed.
Finally, values of protein expression level were divided by
the relative average cell sizes, yielding apparent protein
concentration values.

Numerical analysis
In this study, datasets from two RNA platforms (oligo and
cDNA microarrays), and one protein (immunohisto-
chemical) dataset were obtained. To enable RNA and pro-
tein levels to be compared the gene products must have
corresponding identities. Therefore, matrices containing
the intensity data for corresponding gene products, based
on shared Ensembl Gene IDs, were compiled. In some
cases the overlap of the IDs was not 1:1, but instead one
Ensembl gene ID identified in the data obtained from one
platform had multiple counterparts in the data obtained
from another platform. In such cases values for the multi-
ple hits were averaged. In addition, an analysis was per-
formed in which only the most strongly correlating
Page 11 of 14
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Ensembl pairs, from a collection of pairs with multiple,
matching Ensembl IDs, were utilized. This analysis did
not yield any significant differences in overall mean corre-
lation coefficients compared to the method in which aver-
ages were used. For the respective platform, the intensity
values were measured, more specifically, log 2 ratios (M-
values) of the intensity values from the cDNA and oligo
microarray datasets, and the intensities quantified by the
TMAx software for the immunohistochemical data, were
used in the correlation analysis

Data filtration
All datasets were filtered based on Non Available values
(NAs), in which each Ensembl gene ID had to have repre-
sentative values for each cell line, or else it was discarded
in the subsequent analysis. The effect of the filtering is
illustrated in Additional file 2.

Hence, three matrices were constructed with data for 1066
Ensembl gene IDs in 23 cell lines that were present in the
datasets obtained from all three platforms. The Spear-
man's Rho correlation was then calculated for each
Ensembl gene ID pair between the RNAcDNA-RNAoligo,
RNAcDNA -protein and RNAcDNA -protein datasets.

Bootstrapping
To investigate whether there were artifacts in the data, or
if the different cell lines differed in overall expression lev-
els, randomly sampled gene products were picked to
check their correlation coefficients. The mean correlation
coefficient was zero, indicating that the dataset was
robust.

Hierarchical clustering
Using the three datasets, a subset of 169 gene products for
which data were available from all three platforms were
chosen that had higher correlation coefficients than 0.5 in
all comparisons to construct three dendrograms, by
applying a 1 – Spearman correlation metric and a top-
down hierarchical method with average agglomeration.

RT-PCR
Expression levels for 14 mRNA gene products were ana-
lyzed in eight selected cell lines by quantitative real-time
PCR using a BioRad iCycler (BioRad Laboratories, Her-
cules, CA, USA) and SYBR Green-labeling of amplicons.
Pairs of genes were analyzed simultaneously, and for each
gene a nontemplate control was added. For each run, a
general set-up was used consisting of three independent
dilution series of a gene-specific plasmid template with
known copy number to construct a standard curve as well
as triplicates of cell line cDNA templates for quantitative
analysis. The standard curve was generated using iCycler
software (Optical System Software Version 3.0a), in which
the obtained threshold cycles values (Ct) were plotted

against the logarithmic copy numbers of the plasmid dilu-
tion series. The Ct values of the cell lines were fitted to this
plot and thus the copy numbers were determined.

The specificity of the priming and amplification was veri-
fied with a melt curve for every amplicon. The quantitative
real-time PCR was performed in duplicates, and copy
number results were averaged, resulting in eight mean
copy numbers for each cell line.
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Additional file 2
Effect of missing values on the mean correlation coefficient. Effects on 
the mean correlation coefficient of applying different filtration criteria, i.e. 
the number of allowed missing values (0 – 23) in the RNA oligo assay 
data. The x-axis indicates the number of missing values and the y-axis the 
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0.214 to 0.237.
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[http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 3
Number of replicate probes and antibodies. Histograms of gene product 
probes/antibodies replicates used to measure expression levels of the 
Ensembl gene ID products identified by each platform. The values are 
averaged across the cell lines whenever replicate hits are found.
Click here for file
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Additional file 4
Summary of correlation coefficients. Details of the 169 Ensembl gene 
IDs for which strong correlations were found in comparisons of data 
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obtained.
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Additional file 8
Summary of the array versus RT-PCR results. (A) Correlations between 
Oligo array and RT-PCR data (middle column) and the array and protein 
data (right column). (B) Correlations between cDNA array and RT-PCR 
data (middle column) and the array and protein data (right column. (C) 
Correlation between RT-PCR data and the immunoassay data. A "-" sign 
correspond to a missing value.
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Additional file 9
Linear relationship between correlation coefficients from array and 
RT-PCR intensity signals. Linear regression of the correlations between 
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data (x-axis). The slope is significantly positive (p-value 0.01).
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