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Proteogenomic characterization of
human colon and rectal cancer
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Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to
cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previ-
ously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed
reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict
protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two
of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype,
but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although
copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the
protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was
associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q
candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane
34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional
context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.

TCGA has characterized the genomic features of human cancers1–6

and this has presented a new challenge of explaining how genomic al-
terations drive cancers7. As proteins link genotypes to phenotypes, the
Clinical Proteomic Tumour Analysis Consortium (CPTAC) is perform-
ing proteomic analyses of TCGA tumour specimens for selected cancer
types. Here we present the first integrated proteogenomic character-
ization of human cancer with an analysis of the TCGA colorectal cancer
(CRC) specimens6.

The TCGA study affirmed well-established genomic features of CRC
and described three transcriptional subtypes, 17 chromosomal regions
of significant focal amplification and 28 regions of significant focal dele-
tion, and linked genomic features of CRC to critical signalling pathways.
The drivers underlying copy number alterations (CNAs) and transcrip-
tional subtypes are largely unknown, and an integrative analysis of both
genomic and proteomic data may provide a more comprehensive under-
standing of the information flow from DNA to protein to phenotype.

Peptide and protein identification
We performed liquid chromatography–tandem mass spectrometry (LC-
MS/MS)-based shotgun proteomic analyses on 95 TCGA tumour sam-
ples (Extended Data Fig. 1 and Methods), the clinical and pathological
characteristics and TCGA data sets for which are summarized in Sup-
plementary Table 1. Benchmark quality control samples from one basal
and one luminal human breast tumour xenograft were analysed in alter-
nating order after every five CRC samples (Methods).

We identified a total of 124,823 distinct peptides among the 95 sam-
ples, corresponding to 6,299,756 spectra in an assembly of 7,526 protein
groups with a protein-level false discovery rate (FDR) of 2.64% (Methods
and Extended Data Fig. 2). To facilitate integration between genomic
and proteomic data, a gene-level assembly of the peptides identified
7,211 genes.

A fundamental question in proteogenomics is which protein coding
alterations are expressed at the protein level. As standard database search
approaches cannot identify variant peptides from MS/MS data, we also
performed database searches with customized sequence databases from
matched RNA sequencing (RNA-seq) data for individual samples8,9

(Methods and Extended Data Fig. 3).
We identified 796 single amino acid variants (SAAVs) across all 86

tumours for which matched RNA-seq data were available (Fig. 1a, b and
Supplementary Tables 2 and 3), among which 64 corresponded to somatic
variants reported by TCGA and 101 were reported in the COSMIC data-
base (that is, COSMIC-supported variants). Of the remaining SAAVs,
526 were listed in the Single Nucleotide Polymorphism database (dbSNP)
(that is, dbSNP-supported variants) and are likely to be germline variants.
The 162 previously unreported SAAVs might be explained by novel
somatic or germline variants, RNA editing, or, in some cases, false discovery.

The identified somatic variants were clearly enriched in the hyper-
mutated samples, whereas the germline variants showed no association
with hypermutation (Fig. 1a). Although 58% of the germline variants
occurred in two or more samples, almost all somatic variants occurred
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in only one sample (Fig. 1c). The low identification rate for somatic
variants may reflect relatively low sequence coverage in shotgun pro-
teomics; however, somatic variants also might negatively impact pro-
tein abundance, possibly by reducing translational efficiency or protein
stability10. Using the protein abundance quantification method described
below and detailed in the Methods, we found that somatic variants exerted
a significantly stronger negative impact on protein abundance than did
dbSNP-supported variants (P , 2.2 3 10216, Kolmogorov–Smirnov test;
Fig. 1d and Methods). The percentage of variants with an impact score
of less than 22 was doubled for somatic variants compared to dbSNP-
supported variants (P , 2.2 3 10216, Chi-squared test; Fig. 1d).

Cancer-related variant proteins may serve as candidate protein bio-
markers or therapeutic targets. The 108 somatic or COSMIC-supported
protein variants mapped to 105 genes, including known cancer genes
in the Cancer Gene Census database such as KRAS, CTNNB1, SF3B1,
ALDH2 and FH. The list also included 14 targets of FDA-approved
drugs or drugs in clinical trials4, such as ALDH2, HSD17B4, PARP1,
P4HB, TST, GAK, SLC25A24 and SUPT16H. A subset of variant peptide
sequences, including KRAS(Gly12Asp) were verified by targeted ana-
lyses of tumour lysates spiked with synthetic, isotope-labelled peptide
standards (Methods). One example is shown in Extended Data Fig. 4.

Quantification of protein abundance
To quantify protein abundance, we used spectral counts, which are the
total number of MS/MS spectra acquired for peptides from a given
protein11 (Methods and Supplementary Table 4). Analysis of data from
benchmark quality control samples demonstrated platform reproduci-
bility throughout the analyses and enabled evaluation of data normali-
zation methods (Extended Data Fig. 5a, b). Based on the minimal spectral
count requirement established using the quality control data set (Extended
Data Fig. 5c), 3,899 genes with a protein-level FDR of 0.43% were used
to compare relative protein abundance across tumour samples.

mRNA versus protein abundance
The matched proteomic and RNA-seq measurements from the TCGA
CRC tumours enabled the first global analysis of transcript–protein
relationships in a large human tumour cohort (Methods). First, we com-
pared the steady state mRNA and protein abundance for each gene within
individual samples (Methods and Extended Data Fig. 6a). All samples
showed significant positive mRNA–protein correlation (multiple-test
adjusted P , 0.01, Spearman’s correlation coefficient) and the average
correlation between steady state mRNA and protein abundance in indi-
vidual samples was 0.47 (Fig. 2a), which is comparable to previous reports
in multi-cellular organisms12.

Next, we examined the concordance between mRNA and protein
variation of individual genes across the 87 tumours for which 3,764 genes
had both mRNA and protein measurements suitable for relative abund-
ance comparison (Methods). Although 89% of the genes showed a posi-
tive mRNA–protein correlation, only 32% had statistically significant
correlations (Fig. 2b). The average Spearman’s correlation between
mRNA and protein variation was 0.23, which was comparable to reported
values for yeast, mouse and human cell lines13–15.

To test whether the concordance between protein and mRNA vari-
ation is related to the biological function of the gene product, we per-
formed KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment
analysis (Methods and Supplementary Table 5). Genes involved in several
metabolic processes showed concordant mRNA and protein variation,
whereas other gene classes showed low or even negative concordance in
mRNA and protein variation (Fig. 2c). We also found that genes with
stable mRNA and stable protein tend to have higher mRNA–protein cor-
relation than those with unstable mRNA and unstable protein (P 5 5.27
3 1026, two-sided Wilcoxon rank-sum test, Methods, Extended Data
Fig. 6b). Thus, mRNA measurements are poor predictors of protein abun-
dance variations and both biological functions of the gene products and
mRNA and protein stability may govern mRNA–protein correlation.
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Figure 1 | Summary of detected single amino acid variants (SAAVs) and
the impact of single nucleotide variants (SNVs) on protein abundance.
a, The number of different types of SAAVs (TCGA-reported somatic variants,
COSMIC-supported variants, dbSNP-supported variants and new variants)
in individual tumour samples. The samples are ordered by the number of
detected somatic variants, then COSMIC-supported variants, and then
dbSNP-supported variants. The MSI and hypermutation (Hyper) status are
labelled below the bar charts for each sample (red, MSI-high; orange, MSI-low;
yellow, microsatellite stable; blue, hypermutated; light blue, non-hypermutated;
grey, no data). The number of somatic variants and COSMIC-supported
variants were significantly higher in MSI-high and hypermutated tumours,
whereas the other two types of SAAVs were randomly distributed across the
data set. b, The total numbers for different types of SAAVs and their
overlapping relations. All 796 detected SAAVs were annotated based on
previous reports in dbSNP (left circle), COSMIC (middle circle) or
TCGA-reported somatic variants (right circle), and their overlapping relations

are shown in the Venn diagram. There are 162 SAAVs that have not been
reported previously in these databases (new). c, Distribution of the frequency
of occurrence for different types of SAAVs. Border colours of the pie charts
correspond to different SAAV types using the same colour scheme as in
a. Whereas 58% of dbSNP-supported variants occurred in two or more
samples, almost all somatic variants occurred in only one sample each. d, SNVs
detected in RNA-seq data were separated into three categories (dbSNP-
supported, COSMIC-supported and TCGA-somatic). The impact of individual
SNVs on protein abundance was calculated (see Methods) and the impact
scores for different categories of SNVs were plotted as cumulative fraction
curves with two-sided P values from the Kolmogorov–Smirnov test labelled.
The percentage of SNVs with an absolute impact score greater than 2 was also
plotted as an inset, with P values from the Chi-squared test. Sample size for the
dbSNP-supported, COSMIC-supported and TCGA-somatic variants were
1,2184, 7,492 and 3,302, respectively.
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Impact of copy number alterations
The study by TCGA identified 17 regions of significant focal amplifi-
cation and 28 regions of significant focal deletion. We examined the im-
pact of CNAs on mRNA and protein abundance, including both cis-effects
on the abundance of genes in the same loci and trans-effects on the
abundance of genes at other loci in the genome (Methods).

For all 23,125 genes with a CNA measurement in the TCGA data set,
we calculated Spearman’s correlation with mRNA and protein abundance,
respectively for the 3,764 genes with both mRNA and protein measure-
ments (Methods). Examination of the matrix visualizing significant CNA–
mRNA correlations (multiple-test adjusted P , 0.01) revealed strong
positive correlations along the diagonal (Fig. 3a), suggesting strong cis-
effects of CNAs on mRNA abundance. Most of the diagonal signals cor-
responded to previously reported arm-level changes6. In contrast, the
diagonal pattern was much weaker for CNA–protein correlations (Fig. 3b).

To investigate further the cis-effects of CNAs, we separated all genes
with CNA, mRNA and protein measurements into those in focal amp-
lification regions, focal deletion regions and non-focal regions (that is,
chromosomal regions without focal amplification or deletion). As shown
in Extended Data Fig. 7, CNA–mRNA correlations were significantly
higher than CNA–protein correlations for genes in all three groups
(P , 1.0 3 10210, Kolmogorov–Smirnov test). Moreover, genes in the
focal amplification regions showed significantly higher CNA–mRNA
and CNA–protein correlations than genes in the non-focal regions
(P 5 4.4 3 1024 and 0.02, respectively, Kolmogorov–Smirnov test).
However, the same trend was not observed for genes in the focal dele-
tion regions. Therefore, focal amplifications have the strongest cis-effects
on both mRNA and protein abundance, suggesting that selection for
high protein abundance may drive CNA in regions of focal amplifica-
tion. However, many CNA-driven mRNA level increases do not trans-
late into increased abundance of the corresponding proteins.

Figure 3a, b also revealed multiple trans-acting CNA hot spots, defined
as chromosomal loci whose alteration is significantly associated with
abundance changes of many transcripts or proteins at other loci. Chro-
mosomes 20q, 18, 16, 13 and 7 contained the five strongest hot spots
driving global mRNA abundance variation. These hot spots also were
strongest at the protein level. Most hot-spot-related transcript changes
did not propagate to the protein level, presumably reflecting buffering
of protein abundance by post-transcriptional regulation16,17. Notably,
many hot-spot-associated protein-level alterations occurred in the
absence of corresponding mRNA alterations, suggesting that the same
trans-acting hot spot may exert independent effects at both the tran-
scriptome and proteome levels.

The 20q amplification was associated with the largest global changes
in both mRNA and protein levels in this univariate analysis. The same
conclusion was reached with a regularized multivariate regression analy-
sis method, remMap18 (Methods and Supplementary Tables 6–9). These
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Figure 3 | Effects of copy number alterations on mRNA and protein
abundance. a, b, The top panels show copy-number-abundance correlation
matrices for mRNA abundance (a) and protein abundance (b) with significant
positive and negative correlations (multiple-test adjusted P , 0.01, Spearman’s
correlation coefficient) indicated by red and green, respectively, and genes
ordered by chromosomal location on both x and y axes. The bottom panels
show the frequency of mRNAs and proteins associated with a particular copy
number alteration, where blue and black bars represent associations specific to
mRNA and protein or common to both mRNA and protein, respectively.
c–e, HNF4A (c), TOMM34 (d) and SRC (e) showed significant CNA–mRNA,
mRNA–protein, and CNA–protein correlations (Spearman’s correlation
coefficient). The colour grade from light yellow to red indicates relatively
low-level (yellow) to high-level (red) of copy number, mRNA abundance, or
relative protein abundance among the 85 samples, which were ordered by copy
number data.
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data highlight the importance of 20q amplification in CRC, which has
not been well documented in previous studies. Among the 79 genes in
the 20q region with quantifiable protein measurements, 67 (85%) showed
significant CNA–mRNA correlation, but only 40 (51%) showed signifi-
cant CNA–protein correlation (multiple-test adjusted P , 0.01, Spearman’s
correlation coefficient, Supplementary Table 10).

As significant CNA–protein correlations identify amplified sequences
that translate to high protein abundance, proteomic measurements can
help prioritize genes in amplified regions for further examination. Of
particular interest among the 40 genes is HNF4A (Fig. 3c), a candidate
driver gene nominated by TCGA for the 20q13.12 focal amplification
peak6. HNF4a is a transcription factor with a key role in normal gastro-
intestinal development19 and is increasingly being linked to CRC20.
However, there are contradictory reports on whether HNF4a acts as
an oncogene or a tumour suppressor gene in CRC20. Upon reanalysis of
the HNF4A short hairpin RNA (shRNA) knockdown data for CRC cell
lines from the Achilles project21, we found that the dependency of CRC

cells on HNF4a correlated significantly with the amplification level of
HNF4A (Methods and Extended Data Fig. 8), which may partially
explain the contradictory roles reported for HNF4a in CRC. Other
interesting candidates included TOMM34 (Fig. 3d), which is overex-
pressed frequently in CRC tumours and is involved in the growth of
CRC cells22, and SRC (Fig. 3e), which encodes a non-receptor tyrosine
kinase implicated in several human cancers including CRC23.

Proteomic subtypes of CRC
The TCGA study reported three transcriptomic subtypes of CRC, desig-
nated ‘microsatellite instability/CpG island methylator phenotype’ (MSI/
CIMP), ‘invasive’, and ‘chromosomal instability’ (CIN). Given the lim-
ited correlation between mRNA and protein levels, we asked whether
CRC subtypes can be better represented with proteomics data. Using the
consensus clustering24 method (Methods and Extended Data Fig. 9), we
identified five major proteomic subtypes in this tumour cohort, with 15,
9, 25, 11 and 19 cases in subtypes A to E, respectively (Fig. 4a).

We tested the association between the subtype classification and
established genomic and epigenomic features of CRC using Fisher’s
exact test (Fig. 4b and Supplementary Table 11). Almost all hypermutated
and MSI-high tumours were included in subtypes B and C, as well as
tumours with POLE and BRAF mutations. However, statistically significant
association with these features was only observed for subtype B (multiple-
test adjusted P , 0.05). Moreover, subtype B was significantly associated
with the TCGA CIMP -high methylation subtype, whereas subtype C was
significantly associated with a non-CIMP subtype (cluster 4). Another
unique feature of subtype B was the lack of TP53 mutations and chro-
mosome 18q loss. These results clearly established the association between
proteomic subtype B and MSI-high and CIMP, but suggest that sub-
type C may have different biological underpinnings.

The remaining three subtypes were associated with CIN, another
well-accepted genetic property of CRC. In particular, subtype E was
significantly associated with both TP53 mutations and 18q loss, geno-
mic features frequently associated with CIN tumours25. Interestingly,
subtype E was also associated with HNF4A amplification and relatively
higher abundance of HNF4a protein (Fig. 4c). HNF4a abundance was
significantly higher in subtype E tumours compared to normal colon
samples (multiple-test adjusted P 5 1.09 3 1026, two-sided Wilcoxon
rank-sum test); however, significant upregulation of HNF4a was not
observed for other subtypes (Methods). This result, together with our
reanalysis of shRNA knockdown data from the Achilles project (Extended
Data Fig. 8), suggests that HNF4adependency may be particularly asso-
ciated with the subset of tumours or cells with HNF4A amplification.
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We also examined the association between the subtype classification
and clinical features and found only that stage II tumours were signifi-
cantly enriched in subtype C (multiple-test adjusted P , 0.05; Supplemen-
tary Table 11). Supervised statistical analyses at the individual protein
level for 13 clinical and genomic features also identified few, if any, sig-
nificant protein effects of these features, except for hypermutation sta-
tus, MSI status and 18q loss (Supplementary Table 12), suggesting that
the proteomic subtypes identified by the unsupervised clustering ana-
lysis captured the major proteome variations across the tumours.

Next, we compared the proteomic subtype classification with the TCGA
transcriptional subtype classification for the 62 samples that had both
subtype labels. Proteomic subtypes B and C both showed significant
association with the TCGA subtype MSI/CIMP (Fig. 4b and Supplemen-
tary Table 11); however, they differ considerably at genomic, epigenomic
and proteomic levels (Fig. 4a, b). We also examined alternative classifi-
cations of the TCGA samples based on two recently published transcrip-
tomic subtype classifiers26,27. Proteomic subtype C, but not subtype B,
showed enriched overlap with the ‘stem-like’ subtype described in ref. 27
and the colon cancer subtype 3 (CCS3) subtype described in ref. 26. Inter-
estingly, tumours with stem-like and CCS3 classifications both have poor
prognosis, which suggests that proteome subtype C also may be assoc-
iated with poor prognosis. Therefore, the ability to distinguish subtype
B from C through proteomics data are important, because MSI-high
tumours typically have better prognosis25.

Signatures for proteomic subtypes
To better understand the biology underlying the proteomic subtypes,
we identified protein signatures for each subtype by supervised com-
parison of protein abundance in that subtype against all others; we also
required signature proteins for a subtype to be significantly different in
abundance compared to normal colon samples from 30 individuals ana-
lysed on the same proteome analysis platform (Methods and Supplementary
Tables 13 and 14). As shown in Extended Data Fig. 10a, all CRC sub-
types displayed more than 2,000 (.60%) significant protein abund-
ance differences compared to normal colon. Although a full validation
of the proteomic subtypes and protein signatures for the subtypes will
require proteomic profiling data from an independent tumour cohort,
a low cross-validation error rate of 3.8% demonstrated good general-
izability of the subtypes and their signature proteins (Methods).

We performed Gene Ontology enrichment analysis for the subtype
signatures using WebGestalt28 (Methods and Supplementary Table 15).
Genes involved in ‘response to wounding’ were significantly enriched
in the up-signature of subtype C (multiple-test adjusted P , 2.2 3 10216,
Fisher’s exact test). The wound-response gene signature is a powerful
predictor of poor clinical outcome in patients with early stage breast
cancers29. This result further links our subtype C to poor prognosis.

To understand better the functional networks underlying this sub-
type with potential clinical importance, we uploaded the up and down
signatures of subtype C to NetGestalt30 for enriched protein–protein
interaction network module analysis. Four network modules were en-
riched with genes in the up signature for subtype C, whereas two modules
were enriched with genes in the down signature (multiple-test adjusted
P , 0.01, Fisher’s exact test; Extended Data Fig. 10b). Notably, the down-
signature-enriched module (III) included the E-cadherin (CDH1)-b-
catenin (CTNNB1)-a-catenin (CTNNA1) complex (Extended Data
Fig. 10c, e). E-cadherin, the most under-expressed protein in the sub-
network, suppresses invasion in lobular breast carcinoma31 and is a switch
for the epithelial-to-mesenchymal transition (EMT), which is associated
with poor prognosis in colon cancer32. Other components of the mod-
ule were desmosomal proteins (PKP2, JUP and DSG2) and cytokeratins
(KRT18, KRT6A and KRT8). Reduction in both desmosome formation
and cytokeratin expression is associated with EMT33. Moreover, pro-
teins in the most significantly upregulated network module (Extended
Data Fig. 10d, f) included collagens (COL1A1 and COL3A1) and extra-
cellular matrix glycoproteins (FN1, BGN, FBN1 and FBN2) that also

are markers of EMT34,35. These data strengthen the association of sub-
type C with poor prognosis and relate it to EMT activation.

Discussion
Our proteomic characterization of the genomically annotated TCGA
colon tumours illustrates the power of integrated proteogenomic ana-
lysis. The data demonstrate that protein abundance cannot be reliably
predicted from DNA- or RNA-level measurements. mRNA and protein
levels were modestly correlated, as earlier cell and animal model studies
suggested36, but over two-thirds of these correlations were not statisti-
cally significant in the TCGA tumour set. Although most CNAs in CRC
drive mRNA abundance changes, relatively few translated to consistent
changes in protein abundance.

Genomic and proteomic technologies provide reinforcing data. RNA-
seq data facilitate the discovery of variant proteins, which could serve as
possible biomarker candidates or therapeutic targets. Combined mRNA
and protein profiling data can identify potentially relevant genes in am-
plified chromosomal regions. This approach, which revealed the impor-
tance of chromosome 20q amplification and provided new insights into
the role of HNF4a in CRC, can be broadly extended to understand roles
of CNAs in other cancers. Proteomics identified CRC subtypes similar
to those detectable by transcriptome profiles, but further captured fea-
tures not detectable in transcript profiles. The separation of the TCGA
MSI/CIMP subtype into distinct proteotypes illustrates the unique poten-
tial of proteomics-based subtyping. After validation in independent cohorts,
protein subtype signatures could be directly translated into laboratory
tests for tumour classification. Integrated proteogenomic analysis, as
demonstrated in this study, will enable new advances in cancer biology,
diagnostics and therapeutics.

METHODS SUMMARY
All tumour samples for the current study were obtained through the TCGA Bio-
specimen Core Resource (BCR) as described previously6. No other selection cri-
teria other than availability were applied for this study. Patient-derived xenograft
tumours from established basal and luminal B breast cancer intrinsic subtypes37,38

were raised subcutaneously in 8-week-old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
mice (Jackson Laboratories, Bar Harbour, Maine) as described previously39,40. Normal
colon biopsies were obtained from screening colonoscopies performed between
July 2006 and October 2010 under Vanderbilt University Institutional Review
Board (IRB) approval no. 061096.

Tissue proteins were extracted and tryptic peptide digests were analysed by
multidimensional liquid chromatography-tandem mass spectrometry. Xenograft
quality control samples were run after every five colorectal tumour samples. Raw
data were processed for peptide identification by database and spectral library
searching and identified peptides were assembled as proteins and mapped to gene
identifiers for proteogenomic comparisons. Quantitative proteomic comparisons
were based on spectral count data. Detailed descriptions of the samples, LC-MS/
MS analysis, and data analysis methods can be found in the Methods. All of the
primary mass spectrometry data on TCGA tumour samples are deposited at the
CPTAC Data Coordinating Center as raw and mzML files and complete protein
assembly data sets for public access (https://cptac-data-portal.georgetown.edu).

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
TCGA tumour samples. All samples for the current study were obtained through
the TCGA Biospecimen Core Resource (BCR) as described previously6. Of the
276 samples described in the TCGA study, 95 specimens from 90 patients were
available for the current study (Supplementary Table 1). No other selection
criteria other than availability were applied for this study. Specimens for proteo-
mic study were sectioned sequentially from the tumour blocks used for genomic
studies, hence the ‘bottom’ slides from the genomic studies are representative of
the material used for proteomics. The slides are available from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/). All samples contained at least 60%
tumour nuclei, as described earlier6. Samples were shipped from the TCGA BCR
in dry ice and kept frozen at 280 uC until processing. All TCGA colorectal tissue
samples were washed before digestion to eliminate any residual optimal cutting
temperature compound (OCT) . The tissue was placed in a 1.5-ml micro-tube and
washed with 1 ml 70% ethanol in water for 30 s with vortexing. The supernatant
was then discarded and the tissue washed with 1 ml of 100% H2O for 30 s with
vortexing and again the supernatant was discarded. One millilitre of 70% ethanol
in water was added to the tissue sample and incubated for 5 min at 23 uC following
by centrifugation at 20,000g for 2 min at 20 uC. The supernatant was removed and
this wash step was repeated. Next, 1 ml of 85% ethanol in water was added to the
tissue and incubated for 5 min at room temperature followed by centrifugation at
20,000g for 2 min at 20 uC. The supernatant was removed the wash was repeated.
For the final wash, the tissue was washed in 1 ml 100% ethanol and incubated for 5
min at room temperature and centrifuged at 20,000g for 2 min at 20 uC. The
supernatant was removed and the wash was repeated.
Breast tumour xenograft tumour samples. Patient-derived xenograft tumours
from established basal (WHIM2) and luminal B (WHIM16) breast cancer intrinsic
subtypes37,38 were raised subcutaneously in 8-week-old NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ mice (Jackson Laboratories, Bar Harbour, Maine) as described previously39,40.
These tumours have significantly different gene expression and proteomic signatures40

that are related to their intrinsic biology and endocrine signalling. Tumours from
each animal were collected by surgical excision at approximately 1.5 cm3 with min-
imal ischaemia time by immediate immersion in a liquid nitrogen bath. The tumour
tissues were then placed in pre-cooled tubes on dry ice and stored at 280 uC. A
tissue ‘pool’ of cryopulverized tumours was prepared in order to generate sufficient
material that could be reliably shared and analysed between multiple laboratories.

In brief, tumour pieces were transferred into pre-cooled Covaris Tissue-Tube 1
Extra (TT01xt) bags (Covaris no. 520007) and processed in a Covaris CP02
Cryoprep device using different impact settings according to the total tumour
tissue weight: ,250 mg 5 3; 250–350 mg 5 4; 350–440 mg 5 5; 440–550 mg 5 6.
Tissue powder was transferred to an aluminium weighing dish (VWR no. 1131-
436) on dry ice and the tissue was thoroughly mixed with a metal spatula pre-
cooled in liquid nitrogen. The tissue powder was then partitioned (,100-mg
aliquots) into precooled cryovials (Corning no. 430487). All procedures were
carried out on dry ice to maintain tissue in a powdered, frozen state.
Protein extraction and peptide fractionation. Protein extraction and digestion
of tissue specimens. Following OCT removal, tissue specimens were placed in 1.5-
ml micro-centrifuge tubes and re-suspended in 100 ml of trifluoroethanol (TFE)
and 100 ml of 100 mM ammonium bicarbonate, pH 8.0. If additional buffer was
required, equal volumes of TFE and 100 mM ammonium bicarbonate pH 8.0,
were added accordingly. In addition, powderized xenograft tumour tissue repre-
senting the comparison and reference (CompRef) samples for luminal (WHIM16)
and basal (WHIM2) breast cancer subtypes were analysed with each set of 10 TCGA
colorectal tissue samples. Samples were sonicated using a Fisher Scientific Sonic
Dismembrator Model 100 at a setting of 20 W for 20 s followed by 30 s incubation
on ice. This sonication step was repeated twice and samples were placed on ice
between sonications. The resulting homogenate was heated with shaking at 1000
r.p.m. for 1 h at 60 uC followed by a second series of sonication steps, as described
above. A protein measurement then was obtained for each sample using the BCA
Protein Assay (ThermoFisher Pierce, Rockford, Illinois) using the manufacturer’s
protocol.

An aliquot equivalent to 200 mg was removed and reduced with tris(2-carbox-
yethyl)phosphine (TCEP, 20 mM) and dithiothreitol (DTT, 50 mM) at 60 uC for
30 min followed by alkylation with iodoacetamide (IAM, 100 mM) in the dark at
room temperature for 20 min. The lysate was diluted with the appropriate volume
of 50 mM ammonium bicarbonate, pH 8.0, to reduce the TFE concentration to
10%, trypsin was added at a ratio of 1:50 (w:w) and digested overnight at 37 uC.
The digested mixture was frozen at280 uC and lyophilized to dryness. The lyo-
philized samples were re-suspended in 350 ml of high-pressure liquid chromato-
graphy (HPLC)-grade water and vortexed vigorously for 1 min and desalted using
an Oasis HLB 96-well mElution plate (30 mm, 5 mg, Waters Corp., Milford,
Massachusetts), which was pre-washed with 500 ml of acetonitrile and equilibrated
with 750 ml of HPLC-grade water. The flow-through was discarded and the plates

were washed with 500 ml of HPLC-grade water and the peptides eluted with 80%
acetonitrile and the eluates were evaporated to dryness in vacuo. Samples were
stored in the freezer until further analysis.
Peptide fractionation by basic reverse-phase liquid chromatography. Samples were
reconstituted in 300 ml of solvent A (1.0 M triethylamine bicarbonate (TEAB), pH
7.5). The reconstituted sample was then diluted with an additional 100 ml of
solvent A and the entire 400 ml of solution was injected into the basic reverse-
phase liquid chromatography (basic RPLC) column. Tryptic peptides were frac-
tionated using high-pH RPLC separation with an XBridge BEH C18, 250 mm 3

4.6 mm analytical column (130A, 5 mm particle size) equipped with a XBridge
BEH C18 Sentry guard cartridge at a flow rate of 0.5 ml min21. The solvents were
10 mM TEAB, pH 7.5, in water as mobile phase A and 100% acetonitrile as mobile
phase B. Sample fractionation was accomplished using the following multistep
linear gradient: from 0 to 5% B in 10 min, from 5 to 35% B in 60 min, from 35–
70% in 15 min and held at 70% B for an additional 10 min before returning to
initial conditions. A total of 60 fractions were collected over the 105-min gradient
and concatenated into 15 fractions by combining fractions 1, 16, 31, 46; 2, 17, 32,
47; and so on up to fractions 15, 30, 45 and 60. The samples were evaporated to
dryness in a Speed-Vac sample concentrator and stored at 280 uC until LC-MS/
MS analysis.
LC-MS/MS analysis. Resulting peptide fractions were resuspended in 50 ml of
water containing 2% acetonitrile and 0.1% formic acid and analysed using a Thermo
LTQ Orbitrap Velos ion trap mass spectrometer equipped with an Eksigent
NanoLC 2D pump and AS-1 autosampler. A 2-ml injection volume of the peptide
solution was separated on a packed capillary tip (Polymicro Technologies, 100 mm
3 11 cm) containing Jupiter C18 resin (5 mm, 300 Å, Phenomenex) using an in-line
solid-phase extraction column (100 mm 3 6 cm) packed with the same C18 resin
using a frit generated with liquid silicate Kasil41. Mobile phase A consisted of 0.1%
formic acid and Mobile phase B consisted of 0.1% formic acid in acetonitrile. A 95-
min gradient was preceded by a 15-min washing period (100% A) at a flow rate of
1.5 ml min21 to remove residual salt. Following the wash, the mobile phase was
programmed to 25% B by 50 min, followed by an increase to 90% B by 65 min and
held for 9 min before returning to the initial conditions. A full MS scan was collected
for peptides from 400–2,000 m/z on the Orbitrap at a resolution of 60,000 followed
by eight data-dependent MS/MS scans from lowest to highest signal intensity on the
linear trap quadrupole (LTQ). Centroided MS/MS scans were acquired using an
isolation width of 3 m/z, an activation time of 30 ms, an activation q of 0.250 and
35% normalized collision energy. One microscan with a max ion time of 100 ms and
1,000 ms was used for each MS/MS and full MS scan, respectively. MS/MS spectra
were collected using a dynamic exclusion of 60 s with a repeat of 1 and repeat
duration of 1.

All TCGA samples were analysed on the same Thermo LTQ Orbitrap Velos
instrument, with sample analysis beginning on 26 July 2012 and concluding on 17
February 2013. Benchmark quality control samples from one basal and one
luminal human breast tumour xenograft were analysed in alternating order after
every five CRC samples. Specifically, five TCGA samples were run on the instru-
ment, followed by a luminal CompRef sample, and then another five TCGA
samples followed by a basal CompRef sample. Bovine serum albumin (BSA)
tryptic digest standards were analysed before and after every ten TCGA samples
and were used to monitor instrument sensitivity, BSA standard sequence cov-
erage and chromatographic performance to determine acceptance or rejection of
the acquired data.
LC-MS/MS data analysis. Peptide identification. Basic protein identification used
the RefSeq human protein sequence database, release version 54, and both data-
base and peptide library search strategies. Two bovine trypsin sequences and one
porcine trypsin sequence were appended to these 34,586 sequences. The 14 June
2011 National Institute of Standards and Technology (NIST) human spectral
library for ion traps (617,000 spectra, counting paired decoys) was indexed against
this sequence database. Thermo RAW files were converted to mzML peaklists by
the ScanSifter algorithm42 or by ProteoWizard msConvert43. The ScanSifter files
were employed by Pepitome 1.0.42 (ref. 44) for spectral library search and
MyriMatch 2.1.87 (ref. 45) for database search, whereas the msConvert files were
used by MS-GF1 v9176 (ref. 46). Pepitome and MyriMatch used precursor tol-
erances of 10 p.p.m., while MS-GF1 used a 20-p.p.m. window; all three algorithms
allowed fragments to vary by up to 0.5 m/z, and both database search engines
considered semi-tryptic peptides equally with fully tryptic peptides, allowed for
isotopic error in precursor ion selection, conducted on-the-fly peptide sequence
reversal, and applied static 157 modifications to cysteines and dynamic 116
oxidations to methionines. MS-GF1 considered acetylation for protein amino
termini, whereas MyriMatch added pyroglutamine modifications to the N termini
of peptides starting with Gln residues. Pepitome considered any modification
variants and trypsin specificities that were included in the spectral library.
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Protein assembly. Spectral identification files from each of the search engines
(pepXML for Myrimatch and Pepitome, mzIdent for MS-GF1) were converted
to IDPicker 3 index files (idpXML) using IDPicker 3 (ref. 47). The resulting 4,275
idpXML files (95 samples 3 15 fractions 3 3 search engines) were used for a final
protein assembly using IDPicker 3. For initial protein assembly, peptide iden-
tification stringency was set at a maximum of 1% reversed peptide matches, that
is, 2% peptide-to-spectrum matches (PSM) FDR and a minimum of 2 unique
peptides to identify a given protein within the full data set. Because the majority of
false identifications occur with low frequency, the number of proteins identified
by reversed peptides (false-positive protein identifications) expands exponen-
tially with the size of the data set. In this case, a 2% PSM FDR resulted in an
unacceptably high 32% FDR at the protein level. To maximize both the number of
proteins identified as well as the number of spectra observed for each protein, we
adopted a procedure similar to that outlined in ref. 48. To optimize the number of
proteins identified we applied a very stringent filter at 0.1% PSM FDR and a
minimum of 2 distinct peptides identified for each protein. This filter resulted
in the identification of a total of 94,442 distinct peptides among the 95 samples
representing 7,526 protein groups with a protein-level FDR of 2.64%. To rescue
high quality PSMs that were excluded by the stringent PSM FDR threshold, we
relaxed the PSM FDR threshold to 1% for the confidently identified proteins. This
process increased the number of distinct peptides identified to 124,823, corres-
ponding to a total number of 6,299,756 spectra; the rescued PSMs were of high
quality, with a median PSM FDR of less than 0.2% (Extended Data Fig. 2),
indicating the maintained integrity of the data set. To facilitate the integration
between genomic and proteomic data, we further assembled the peptides at the
gene level. This assembly resulted in 7,211 gene groups with a gene-level FDR of
2.7%. Genes identified from each sample ranged from 3,372 to 5,456, with a
median gene count of 4,656 for the 95 samples. 1,530 genes (21%) were found
in all 95 samples, 4,628 genes (64%) in more than half of the samples, and only 10
genes (0.1%) in just a single sample.
Variant peptide identification. To identify variant peptides, we used a customized
protein sequence database approach9, in which we derived customized protein
sequence databases from matched RNA-seq data and then performed database
searches using the customized databases for individual samples.

To identify SNVs and indels from RNA-seq data, BAM files for 86 of the 90
patients were downloaded from CGHub in February 2013. Although 87 samples
were analysed by RNA-seq, we were unable to obtain the bam file for one of the 87
samples. Tophat (v2.0.7) was used to re-align reads to human reference genome
(hg19) in a spliced mode using default parameters, allowing a maximum of 10 hits
per read. The resulting BAM files were indexed using samtools (0.1.18, http://
samtools.sourceforge.net/). We used a custom-written script to summarize the
reads mapping information (Extended Data Fig. 3a) and calculate the exon cov-
erage. As shown in Extended Data Fig. 3b, 76% of exons were covered by RNA-
seq reads, and 64% had an average coverage greater than 1.

Putative SNVs and short indels were called one library at a time using mpileup
from samtools and varFilter. Putative SNVs were further filtered based on the
following criteria: SNP quality $ 20; mapping quality $ 20; and read depth $ 3
and then recorded in a variant call format (VCF) file. For short INDEL candi-
dates, gapped reads $ 3 were required.

For customized database construction and variant peptide identification we
used an R package customProDB8 (http://bioconductor.org/packages/2.13/bioc/
html/customProDB.html) to annotate variations predicted from RNA-seq, includ-
ing mapping to dbSNP135 and COSMIC64 databases. For each sample, customProDB
generates a protein FASTA database by appending proteins with nonsynonymous
protein coding SNVs and aberrant proteins to the end of the standard RefSeq human
protein sequence database. Owing to the low coverage of this RNA-seq data set, we
did not remove the low abundance transcripts from the standard RefSeq database.
Peptide identification was performed for each sample separately using correspond-
ing customized FASTA database and MyriMatch 2.1.87 (ref. 45). Search settings
were identical to those described for Myrimatch above. IDPicker 3 was used for
protein assembly as described earlier, except that the data set was filtered at 1%
PSM FDR and a minimum of 5 spectra identified per protein. The full data set
consisted of 8,352 protein groups with 1.8% protein FDR. Identified SAAVs were
further annotated for existence in the somatic variant list published by TCGA6 (that
is, TCGA-somatic variants), existence in the COSMIC64 database (that is, COSMIC-
supported variants), and existence in the dbSNP135 database (that is, dbSNP-supported
variants). To identify TCGA-somatic variants, we downloaded the MAF (mutation
annotation format) files from the Firehose website (http://gdac.broadinstitute.org,
version 20130523). As the coordinates in MAF files were based on hg18, liftOver
(http://hgdownload.cse.ucsc.edu/admin/exe/) from UCSC was used to convert genome
coordinates to hg19. Support of these somatic mutations by RNA-seq data are shown
in Extended Data Fig. 3c. All identified variant peptides as well as SAAVs and their
annotations can be found in Supplementary Tables 2 and 3.

Protein quantification. We used spectral count, or the total number of MS/MS
spectra taken on peptides from a given protein in a given LC/LC2MS/MS ana-
lysis as the basis for protein quantification. Spectral count is linearly correlated
with the protein abundance over a large dynamic range11. This simple but prac-
tical quantification method has found broad application in detecting differential
or correlated protein expression49–53, and multiple groups have concluded that
spectral counting achieves similar accuracy to more complex methods such as the
intensity-based techniques53–55. Previously, we have confirmed proteomic changes
detected from spectral count data by targeted proteomics with multiple reaction
monitoring (MRM) in different data sets56,57.

For the quality control sample data set, spectral count data were summarized at
the protein group level, where a protein group is defined as the set of proteins that
are indiscernible on the basis of the observed peptides. For each group, a random
protein was selected to represent the group. The final spectral count table has data
for 7,440 proteins and 20 samples, with 10 basal samples and 10 luminal samples.

For the TCGA tumour data set, to facilitate the integration between genomic
and proteomic data, spectral count data were summarized at the gene group level,
where a gene group is defined as the set of genes that are indiscernible on the basis
of the observed peptides. To ensure reproducibility, for each gene, the longest
protein was selected for the calculation of protein length. For each gene group, the
gene with the shortest protein length was selected to represent the group follow-
ing the Occam’s razor principle. The final spectral count table has data for 7,211
genes and 95 samples (5 tumours have duplicated samples; Supplementary Table
4). For analysis that required only one sample from the duplicates, the sample
with a larger total spectral count was selected.

For platform evaluation, we used the quality control data set to evaluate the
technical variability in both protein identification and quantification based on
data generated from the replicates. For the basal breast carcinoma xenografts, the
numbers of identified proteins among the 10 replicates ranged from 4,771 to
6,190 and the coefficient of variance was 8%; for the luminal breast carcinoma
xenografts, the numbers ranged from 4,639 to 5,842 and the coefficient of vari-
ance was 7%.

For quantitative analysis, spectral count data from the quality control data set
were subjected to quantile normalization58 using the normalizeQuantiles function
in the limma package in Bioconductor, followed by log base 2 transformation.
Pairwise Spearman’s correlation coefficient was calculated for all sample pairs
and the results were plotted in R. Samples from the same group showed a high
similarity (Spearman’s correlations of 0.85 and 0.88 for W16 and W2, respect-
ively), whereas samples from different groups are clearly different (Spearman’s
correlation, 0.68) (Extended Data Fig. 5a). Consistent with this, in the TCGA
tumour data set (Supplementary Table 4), the five duplicate pairs showed an
average Spearman’s correlation coefficient of 0.81.

In addition to the quantile normalization, other normalization methods com-
monly used in shotgun proteomics data analysis include global normalization59

and the NSAF60 (normalized spectral abundance factor). The quantile normal-
ization makes the distributions of spectral count data from individual samples
comparable to each other. The global normalization method makes the total
numbers of identified spectra comparable across all samples. The NSAF method
normalizes for both protein length and the total number of identified spectra
from a sample. We performed all three types of normalization for the quality
control data set and log transformation was applied for all normalized data.
Among the three normalization methods, NSAF has a clear advantage for com-
paring abundance level across proteins because it is the only one that considers
protein length. However, it is not clear which method is the best for comparing
relative abundance of individual proteins among different samples. We compared
the three methods on the basis of the intraclass correlation coefficient (ICC)
analysis. For each normalization method, we used the icc function in the R
package irr to calculate ICCs for individual proteins in the quality control data
set. For each protein, the ICC score estimates the correlation between replicated
measurements within a group, or the ratio of the between-group variance to the
total variance observed for the protein. Our assumption is that better normaliza-
tion methods should produce higher ICC scores. The analysis was done for the
top 1,000, 500 or 100 proteins with the largest variance. The cumulative fraction
curves for the ICC scores were plotted in R (Extended Data Fig. 5b). Each curve
shows the cumulative fraction of all proteins in a given normalization method
that had an ICC score less than or equal to a given value. The results suggested that
quantile normalization generated slightly more consistent quantification than
total spectral count normalization, and both methods clearly out-performed
the NSAF normalization. Therefore, quantile normalized spectral count data
were used in all analyses comparing relative abundance of individual proteins
among different samples.

Spectral-count-based quantification is not accurate enough for comparing
relative expression of low-abundance proteins. To decide a minimal number of
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spectral counts to be required for reliable relative comparison, we used the ICC
analysis to compare the ICC scores for proteins with different abundance levels.
Specifically, we sorted all proteins in the quality control data set based on their
total spectral counts and then divided the proteins into 10 bins with equal num-
bers of proteins. For each bin, we used the icc function to calculate ICCs for
individual proteins in the bin. The analysis was done for the top 300, 200 or
100 proteins, with the largest variance in each bin. The cumulative fraction curves
for the ICC scores were plotted in R (Extended Data Fig. 5c). Protein bins with
spectral counts less than 1.4 showed clearly lower ICC scores, whereas the ICC
score curves started to converge when the average spectral count was greater than
1.4. These data suggest that an average minimum spectral count of 1.4 per sample
is required for reliable comparison of relative protein abundance. Applying this
cutoff to the TCGA tumour data set identified 4,122 protein groups with a
protein-level FDR of 0.47%. The 3,899 corresponding genes were used to compare
relative protein abundance across tumour samples.
Impact of SNVs on protein expression. All nonsynonymous protein coding SNVs
detected from the RNA-seq data were annotated for their existence in dbSNP135,
COSMIC64, and previously reported somatic mutations6. For each SNV in one of
the above three categories, if the SNV-containing gene is included in the 3,899
genes with sufficient spectral count data for quantitative comparison across sam-
ples, we quantified the impact of the SNV on protein expression by comparing
protein expression level of the gene in the SNV-containing sample with those in
samples without the SNV using the formula:

Impact score 5 (EXP 2 MEDIANnon-SNV)/MADnon-SNV

where EXP is the expression level of the protein in the sample containing the
SNV, and MEDIANnon-SNV and MADnon-SNV are the median and MAD (median
absolute deviation) of the expression levels of the protein in all samples without
the SNV.

The cumulative fraction curves for the impact scores of SNVs in the three
categories were plotted in R (Fig. 1d). Differences between the distributions were
evaluated using the Kolmogorov–Smirnov test. A Chi-squared test was also used
to directly compare the percentage of high impact variations (absolute impact
score greater than 2) for SNVs in different categories (Fig. 1d).
Parallel reaction monitoring analysis. We selected three distinct SAAVs detected
in four TCGA samples by the shotgun analysis for further validation by targeted pro-
teomic analyses using parallel reaction monitoring (PRM)61, including KRAS(Gly12Asp)
in TCGA-AA-3818 and TCGA-AG-A00Y, ANXA11(Ile278Val) in TCGA-AF-3400,
SRSF9(Tyr35Phe) in TCGA-AA-A01P. These samples were prepared by the same
method as used for shotgun analyses, including basic RPLC fractionation. The sam-
ples were re-suspended in 50 ml water containing 2% acetonitrile and 0.1% formic
acid containing 12.5 fmol ml21 each of the 13C15N-isotopically labelled standards for
the target variant peptides. All fractions from each sample were analysed separately.

All peptide separations were performed using an Easy nLC-1000 pump and
autosampler system (Thermo Fisher Scientific). For each analysis, 2 ml of each
sample was injected onto an in-line solid-phase extraction column (100 mm 3 6
cm) packed with ReproSil-Pur C18 AQ 3 mm resin (Dr. Maisch GmbH) and a frit
generated with liquid silicate Kasil 1 and washed with 100% Solvent A (0.1%
formic acid) at a flow rate of 2 ml min21. After a total wash volume of 7 ml, the pre-
column was placed in-line with a PicoFrit capillary column (New Objective, 11
cm 3 75 mm) packed with the same resin. The peptides were separated using a
linear gradient of 2% to 35% Solvent B (0.1% formic acid in acetonitrile) at a flow
rate of 300 nl min21 over 40 min, followed by an increase to 90% B over 4 min and
held at 90% B for 6 min before returning to initial conditions of 2% B.

PRM analyses were performed on a Q-Exactive mass spectrometer (Thermo
Fisher Scientific). For ionization, 1,800 V was applied and a 250-uC capillary tem-
perature was used. All basic RPLC fractions from each sample were analysed
using an acquisition method that combined a full scan selected ion monitoring
(SIM) event followed by 14 PRM scans as triggered by an unscheduled inclusion
list containing the target precursor ions representing variant peptides. The SIM
scan event was collected using a m/z 380–1,500 mass selection, an Orbitrap
resolution of 17,500 (at m/z 200), target automatic gain control (AGC) value of
3 3 106 and a maximum injection time of 30 ms. The PRM scan events used an
Orbitrap resolution of 17,500, an AGC value of 1 3 106 and maximum fill time of
80 ms with an isolation width of 2 m/z. Fragmentation was performed with a
normalized collision energy of 27 and MS/MS scan were acquired with a starting
mass of m/z 150.

All PRM data analysis was performed using Skyline software62. Validation was
achieved by comparing the fragment ion ratios and retention times of the endo-
genous variant peptide to that of the isotopically labelled standard. In addition,
the MS/MS spectra of the endogenous, unlabelled and isotope-labelled standards
acquired during the PRM analyses were compared to the original MS/MS spectra

collected for the same peptides during the shotgun analyses. We successfully con-
firmed all selected mutations and one example is shown in Extended Data Fig. 4.
Evaluating mRNA–protein correlation. mRNA data. We downloaded the
TCGA CRC RNA-seq data from the TCGA portal, which was from Illumina
HiSeq 2000 RNA Sequencing Version 2 analysis and normalized by the RSEM
algorithm63. This included RSEM measurements for 87 samples with matched
proteomic data. It has been shown that RSEM is preferred over the popular
FPKM64 (fragments per kilobase (of exon) per million fragments mapped) mea-
sure for comparing gene expression across samples. However, our analysis sug-
gested that the RSEM measure is highly correlated with gene length (Extended
Data Fig. 6a) and thus not appropriate for comparing expression of different
genes within a sample. Therefore, we used cufflinks64 to generate FPKM mea-
sures. As mentioned above, we were unable to obtain the BAM file for one of the
87 samples, thus only 86 samples had FPKM data. Unlike RSEM, FPKM is
independent of gene length (Extended Data Fig. 6a)
Number of overlapping genes in the proteomics and RNA-seq data sets. The pro-
teomics data set for TCGA tumours included a total of 7,211 genes, among which
7,176 genes were included in the RNA-seq data set. The analysis for correlation
between steady state mRNA and protein abundance (see below) (Fig. 2a) did not
involve the comparison of relative protein abundance for the same gene across
samples. For this analysis, all 7,176 genes were included. The analysis for correla-
tion between mRNA and protein variation (Fig. 2b) involved relative protein
abundance comparison for the same gene across samples. Our study of the quality
control data set suggests that a minimal average spectral count of 1.4 is required for
a reliable relative protein abundance comparison. Among the 7,211 genes in the
proteomics data set, only 3,899 met this requirement. Moreover, among the 3,899
genes, only 3,764 were included in the RNA-seq data set. Therefore, the 3,764 genes
were used in the analysis for correlation between mRNA and protein variation.
Correlation between steady state mRNA and protein abundance. To compare the
steady state mRNA and protein abundance within individual samples, all mRNA
and protein measurements within a sample have to be comparable. Thus, we used
the FPKM and NSAF values to estimate mRNA and protein abundance, respect-
ively. For each of the 86 samples, we calculated the Spearman correlation coef-
ficient between FPKM and NSAF measurements for the 7,176 genes. Next, P
values corresponding to the coefficients were computed and adjusted by the
Benjamini–Hochberg procedure65. Significant calls were made based on an adjusted
P value cutoff of 0.01.
Correlation between mRNA and protein variation. To compare mRNA and pro-
tein variations across samples, we focused on the 3,764 genes with both RSEM
measurement in RNA-seq data and a minimal spectral count of 1.4 per sample in
the proteomics data. The quantile normalized proteomics data were used for this
analysis according to the quality control databased method comparison results
(Extended Data Fig. 5b). We first calculated the Spearman correlation coefficient
between RSEM and quantile normalized measures for each of 3,764 genes. Then,
P values corresponding to the coefficients were computed and adjusted by the
Benjamini–Hochberg procedure. Significant calls were made based on an adjusted
P value cutoff of 0.01.
KEGG enrichment analysis. Based on the Spearman correlation coefficients
between RSEM and quantile normalized measurements of the 3,764 genes, we
performed KEGG enrichment analysis using the Kolmogorov–Smirnov test.
Then, P values were adjusted by the Benjamini–Hochberg procedure and signifi-
cant calls were made based on an adjusted P value cutoff of 0.05.
mRNA–protein correlation versus stability of the molecules. A recent study in a
mouse fibroblast cell line suggests a poor correlation between mRNA and protein
half-lives66. To investigate the relationship between mRNA–protein correlation
and the stability of the molecules, we downloaded mRNA and protein half-life
data from the mouse study. Only common genes in both our study and the mouse
study were included in the analysis. Following the criteria used in the original
publication66, we defined the top third mRNAs and proteins with the highest half-
lives as stable mRNAs and proteins and the bottom third with the lowest half-lives
as unstable mRNAs and proteins. Accordingly, we separated human genes into
four categories based on the mRNA and protein half-lives of their mouse ortho-
logues: stable mRNA–stable protein; stable mRNA–unstable protein, unstable
mRNA–stable protein, and unstable mRNA–unstable protein. Distribution of
mRNA–protein correlations for genes in each category was plotted in Extended
Data Fig. 6b. Correlation difference among the four categories were evaluated
based on the Kruskal–Wallis non-parametric ANOVA test, and the difference
between the stable mRNA–stable protein, and unstable mRNA–unstable protein
groups were calculated based on a two-sided Wilcoxon rank-sum test.
Impact of copy number alterations on gene and protein abundance. Univariate
analysis. The TCGA CRC gene level CNA data were downloaded from the output
of GISTIC2 (ref. 67) in Firehose. The data set was generated on the Affymetrix
Genome-Wide Human SNP Array 6.0 array and contained 23,125 genes and 575
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samples. The matched CNA, proteomics and RNA-seq measurements from 85
samples were used to study the impact of CNA on gene and protein expression.
First, for each of the 23,125 genes in the CNA data, we calculated the Spearman
correlation coefficient between CNA measures and mRNA and protein abund-
ance for the 3,764 genes with both RSEM measurements in RNA-seq and a
minimal spectral count of 1.4 per sample in proteomics. Then, P values corres-
ponding to the coefficient were corrected using the Benjamini–Hochberg pro-
cedure. Significant CNA–mRNA and CNA–protein correlations were identified
based on an adjusted P value cutoff of 0.01.
Multivariate analysis. In addition to the univariate analysis, we also employed a
recently developed statistical tool—regularized multivariate regression for master
predictors (remMap)18—to jointly model CNAs and mRNA and protein abundance.

For this analysis, the level-three segmented DNA copy numbers profiles were
downloaded from Firehose (http://gdac.broadinstitute.org, version 20130809).
To align the segment data from different samples, we first broke the genome
using the union of the break points detected in all tumour samples and filtered the
small regions with less than 10 megabase pairs. This resulted in 7,219 regions.
Then for each region of each sample, we recorded its copy number based on the
inferred DNA copy number of the corresponding segment in the sample, with tail
values truncated at 61.5. Owing to the high spatial correlation in DNA copy
number profiles, we further condensed these 7,219 regions into 1,586 CNA inter-
vals, which have consistent DNA copy number pattern across all samples, by
applying fixed order clustering (FOC)68. The copy number for each interval in
each sample was then calculated as the mean of the copy number of all regions
within the interval. In the end, we normalized the copy number of each CNA
interval across all samples to have mean 0 and standard deviation 1.

RNA-seq data and proteomics data were the same as those used in the univariate
analysis. For the RNA-seq data, we excluded genes that show interquartile range
(IQR) less than the 75% quantile, which resulted in 941 genes. Then we normalized
the abundance of each gene across all samples to have mean 0 and standard
deviation 1. For the proteomics data, we excluded proteins that show IQR less than
the 75% quantile, which resulted in 941 proteins. Then we normalized the abund-
ance of each gene across all samples to have mean 0 and standard deviation 1.

The data matrices of CNV intervals, mRNA abundance and protein abundance
obtained as described above were used to fit the remMap model18. Specifically,
mRNA (or protein) abundances were treated as responses and CNA data were
treated as predictors. Non-zero coefficients in the multivariate regression model
suggest regulation relationships between the corresponding CNA and mRNA (or
protein). The tuning parameters in remMap were selected based on two-dimen-
sional grid research using fivefold cross validation error scores. The optimal
tuning parameter was (l1, l2) 5 (6, 90) for regression models between mRNA
and CNA; and (l1, l2) 5 (10, 60) for models between protein and CNA.
Regulations between a CNA interval and an mRNA (or protein) were declared
if the corresponding coefficients in the regression models from all five models
inferred in the cross validation were non-zero.

The results are summarized in Supplementary Tables 6–9. Five CNA intervals
in cytoband regions 11p15.5, 18p12.32–1811.21, 18q21.2–18q23, 20q11.21–
20q11.23 and 20q11.23–20q13.33 were detected to be trans hubs for mRNA
abundance. And four of these regions on chromosomes 18 and 20 were also
detected to be trans hubs for protein abundance. Specifically, the two CNA
intervals on chromosome 20q had the highest number of trans regulations for
both mRNA and protein abundance (Supplementary Tables 6 and 7).
Reanalysis of HNF4A shRNA knockdown data. HNF4a is a transcription factor
with a key role in normal gastrointestinal development19 and is increasingly being
linked to liver and colon cancer20. The observations that HNF4A is located in an
amplification peak and shows significant CNV–mRNA, CNV–protein and
mRNA–protein correlations (Fig. 3c) support its oncogenic role. Consistent with
this view, a recent study on 102 human cancer cell lines in the Achilles project
found that shRNA knockdown of HNF4A has a relatively stronger negative impact
on proliferation and viability of colon cancer cells compared to other cancer cell
types21. However, there are contradictory reports on whether HNF4a acts as an
oncogene69,70 or a tumour suppressor gene71,72 in CRC.

It has been suggested that HNF4a isoforms driven by different promoters may
have different roles in colon cancer: promotor 1 (P1) HNF4a acts as a tumour
suppressor, whereas the exact role of P2 HNF4a remains to be determined20,72.
The P1- and P2-driven isoforms differ by only 16–29 amino acids in their
N-terminal domain20, and our shotgun proteomics data were not able to distin-
guish these two types of isoforms (Extended Data Fig. 8a). However, one of the
shRNAs used in the Achilles project specifically targets P1 HNF4a (Extended
Data Fig. 8a). Therefore, we reanalysed data from the Achilles project to compare
the effect of different HNF4A-targeting shRNAs on the proliferation of colon
cancer cell lines. We also took into consideration the HNF4A amplification status
of the cell lines.

Specifically, we downloaded the shRNA knockdown data from the Achilles
project website (http://www.broadinstitute.org/software/cprg/?q5node/10). The
study had five HNF4A shRNAs: TRCN0000019189, TRCN0000019190, TRCN
0000019191, TRCN0000019192 and TRCN0000019193. A consistency score (C
score) for each shRNA that represents the confidence that its observed pheno-
typic effects are the result of on-target gene suppression is provided on the website
based on the ATARiS algorithm, with a higher value representing higher confidence.
Based on the C score, the website suggests that only three shRNAs are acceptable:
TRCN0000019189, TRCN0000019191 and TRCN0000019193. Therefore, we only
included the three shRNAs in our analysis. Amplification data for the cell lines were
downloaded from the Cancer Cell Line Encyclopedia (CCLE) project73. There were
18 common CRC cell lines in the two projects. For each shRNA, we calculated the
Spearman’s correlation coefficient between its effect score on the 18 cell lines and
the log base 2 transformed copy number values for HNF4A.

As shown in Extended Data Fig. 8b–d, shRNAs simultaneously targeting both
P1 and P2 isoforms (TRCN0000019189 and TRCN TRCN0000019191) showed a
primarily negative impact on cell proliferation, whereas the P1-specific shRNA
TRCN0000019193 showed mixed impacts. Interestingly, a stronger negative impact
was associated with increased copy number, both for all shRNAs (P 5 0.01, Spear-
man’s correlation P values for individual shRNAs summarized by the Fisher’s
combined probability test) and for the P1-specific shRNA (P 5 0.04, Spearman’s
correlation). These data suggest that the role of HNF4a is not only isoform-specific,
but also depends on the status of HNF4A amplification. It is possible that the onco-
genic role of HNF4a is primarily related to tumours with HNF4A amplification. Con-
sistently, compared to normal colon samples, significant upregulation of HNF4a
was only observed in a specific CRC subtype (Fig. 4d).
Proteomic subtype identification and characterization. Proteomic subtype
identification. The normalized protein expression data set of 90 CRC samples
was filtered to identify 1,263 proteins that were expressed (that is, with non-zero
values) in at least 95% samples and also variably expressed among the 90 samples
with a MAD value greater than 0.5. Based on the 1,263 selected proteins, we per-
formed consensus clustering24 implemented in GenePattern74. In consensus clus-
tering, perturbations of the original data are simulated by resampling techniques.
Clustering algorithm is applied to each of the perturbed data sets and the consensus
among the multiple runs is assessed and summarized in a consensus matrix. Visual
inspection of the consensus matrixes, and of the corresponding summary statistics
(for example, area under the curve) can help determine the optimal number of clus-
ters as described in the original publication74. The parameters used were set as follows:
clustering algorithm 5 hierarchical clustering; clustering metrics 5 (1–Pearson cor-
relation) distance and average linkage; n resamplings 5 1,000; proportion of samples
and proteins used in each resampling 5 80%; k tested 5 from 2 to 8.

According to the consensus matrices and the empirical cumulative distribution
function (CDF) plots shown in Extended Data Fig. 9a, b, k 5 7 led to a clean
consensus matrix and no obvious increase in clustering stability was observed
going from k 5 7 to k 5 8. Thus, the 90 CRC samples were divided into seven
clusters. As it is difficult to interpret the biological meaning of small clusters, only
five clusters with more than five samples were kept. Thus, five subtypes were used
for the following analysis.
Core sample identification. Following ref. 75, we defined the ‘core samples’ for
each subtype as those with higher similarity to their own class than to any other
classes and identified 79 core samples, as indicated by positive silhouette width
scores76 (Extended Data Fig. 9c).
Association with transcriptomic subtypes, methylation subtypes and genomic features.
To associate the proteomic subtypes with genomic, epigenomic and clinical features
of CRC, we downloaded the somatic mutation matrix (gene by sample) from the
cBio cancer genomics portal77 and obtained other sample information, including
mRNA subtype, methylation subtype, hyper-mutation information, MSI informa-
tion, stage information, cancer type, histological type and tumour site from the Sup-
plementary Information table of TCGA CRC paper6. To obtain 18q loss information,
we downloaded the CNV data from the Firehose website (http://gdac.broadinstitute.
org, version 20130116). The association between each proteomic subtype and each
feature was determined using a two-sided Fisher’s exact test. The P values were
corrected for multiple testing using the Benjamini–Hochberg procedure65. The
results are summarized in Supplementary Table 11.
Proteomics data set for normal colon samples. Normal colon epithelium biops-
ies were obtained from screening colonoscopies performed between July 2006
and October 2010 under Vanderbilt University Institutional Review Board (IRB)
approval no. 061096. During colonoscopy, multiple pinch biopsies were obtained
from both ascending and descending colon and immediately frozen in liquid
nitrogen. Biopsies obtained from 30 subjects with completely normal findings
during colonoscopy were included in the study. A total of 60 specimens, one from
ascending and one from descending colon, were used for proteomic analysis.
Samples were processed identically to the colorectal tumour specimens as described
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above and subjected to MS/MS analysis as described. The data were searched using
the three search engines as outlined above. A protein assembly was made for the
comparison of the TCGA tumours with the normal samples using IDPicker 3 as
described in earlier at 0.2% PSM FDR and a minimum of 2 (distinct) spectra
required per protein. The resulting assembly consisted of 6,044 confidently iden-
tified protein groups with a protein FDR of 4.1%. This data set was merged with the
TCGA tumour data set using IDPicker 3, resulting in a combined tumour-normal
proteomic data set of 7,548 protein groups with a protein FDR of 2.7% identified
with a grand total of 9,028,208 filtered spectra. These proteins mapped to 7,244
unique genes. The data set were then subjected to quantile normalization, as described
in the section on the protein quantification, followed by log transformation. Data
from normal ascending and descending colon of the same individual were aver-
aged, resulting in a final data set with 30 normal samples and 90 tumour samples.
Only 3,718 quantifiable genes with a minimal average spectral count of 1.4 were
included for downstream quantitative comparison (Supplementary Table 13). The
median effect size in the data set for all 3,718 quantifiable genes is 0.96 as calculated
by Cohen’s d. According to power analysis, with sample sizes 30 and 90 and an effect
size of 0.96, the power for detecting a difference at the significance level of 0.01 is
0.97 using a two-sided t-test.
Subtype signature identification and Gene Ontology and network analysis. To
identify protein signatures for individual proteomic subtypes, we compared pro-
tein expression in each subtype against all remaining subtypes. We also required
signature proteins for a subtype to be significantly differently expressed in the
subtype compared to normal colon samples. The analysis was based on data in
Supplementary Table 13. A two-sided Wilcoxon rank-sum test was used for differ-
ential expression analysis. The P values were corrected for multiple testing using
the Benjamini–Hochberg procedure65 and the statistical significance was deter-
mined based on a corrected P value of less than 0.05. Signature proteins are listed in
Supplementary Table 14.

To evaluate the generalizability of the proteomic subtypes and their signature
proteins, we performed a leave-one-out cross validation. Specifically, one of the
79 samples was set aside and the remaining 78 samples and the normal samples
were used to identify protein signatures and train a nearest shrunken centroid
classifier for the proteomic subtypes using the R package pamr78. The trained
classifier was then applied to the set-aside sample. This was repeated 79 times for
all tumour samples and the cross-validation error rate was calculated. We
obtained a low error rate of 3.8%, suggesting good generalizability of the proteo-
mic subtypes and their signature proteins.

Gene Ontology enrichment analysis was carried out in WebGestalt28,79 using the
Fisher’s exact test with an adjusted P value cutoff of 0.05, and enriched Gene
Ontology terms were further analysed using the Gene-Ontology-function algo-
rithm80 to generate a parsimonious list of enriched terms (Supplementary Table 15).

Network analysis was performed in NetGestalt30 using the iRef protein–protein
interaction network81 as a reference network. Using the NetSAM30 algorithm,
NetGestalt derived a linear order of all genes in the iRef network according to the
hierarchical organization of the network and identified network modules at dif-
ferent hierarchical levels. As a result, expression data and gene lists can be co-
visualized in the system as tracks and enriched network modules can be identified
and visualized. Enriched network modules were identified based on the Fisher’s
exact test as implemented in NetGestalt. The Fisher’s exact test P values were
corrected for multiple testing using the Benjamini–Hochberg procedure65 and the
statistical significance was determined based on an adjusted P value of less than
0.01.
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Extended Data Figure 1 | Mass-spectrometry-based proteomics workflow.
Protein was extracted from frozen tumour tissue and used to generate tryptic
digests. The resulting tryptic peptides were fractionated using off-line basic
reverse-phase (high-pressure) liquid chromatography (basic RPLC). Collected
fractions were pooled and used for reverse-phase HPLC in line with a Thermo
Orbitrap-Velos MS instrument. Raw data were processed by MSConvert and

then used for database and spectral library searching using three different
search engines (Myrimatch, Pepitome and MS-GF1). Identified peptides were
assembled using IDPicker 3 with selected filters as described in the methods.
IDPicker 3 stores its protein assemblies for a specified set of filters in the idpDB
format. These SQLite databases associate spectra with peptides, peptides with
proteins, and LC-MS/MS experiments with a hierarchy of experiments.
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Extended Data Figure 2 | Relaxing the false discovery rate of peptide-
spectrum match for high-confident proteins increases spectral counts. To
increase spectral counts and improve statistical comparisons, we first created a
protein assembly that maximized the number of proteins identified (at 0.1%
peptide-spectrum match false discovery rate (PSM FDR)) and then relaxed the
PSM FDR to 1% exclusively for the set of confidently identified proteins. This
strategy led to increased spectral counts from 4,896,831 to 6,299,756, a 29%
increase. a, Spectral count plot of all 7,526 confidently identified proteins

demonstrates the increase in the absolute number of spectra identified for each
protein, but no decrease for any of the proteins. Each dot in the figure
represents one of the 7,526 proteins; x axis and y axis represent the spectral
counts obtained in the data sets with 0.1% and 1% PSM FDR, respectively, both
plotted on a log scale. b, Density plot showing the distribution of PSM FDR
scores for all rescued PSMs. Rescued PSMs are of high quality with a median
PSM FDR score of less than 0.2%, indicating the maintained integrity of the
data set.
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Extended Data Figure 3 | Read mapping, exon coverage and missense
somatic variants in RNA-seq data. a, Summary of total RNA-Seq read counts
and mapping results for individual samples. b, Distribution of percentage
sequence coverage in exons for individual samples. Among all 228,157 exons,
76% were expressed, but only 64% had an average coverage greater than 1.

Exons with no coverage were not included in the box plots. c, Number of
missense somatic variants detected by RNA-seq in individual samples.
Approximately 54% of the mutation positions were covered by RNA-seq reads
and only 43% were covered by three or more reads.
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Extended Data Figure 4 | Parallel-reaction-monitoring validation results.
Single amino acid variants (SAAVs) identified in the TCGA shotgun data set
were validated using parallel-reaction-monitoring (PRM) analyses. Three
distinct SAAVs in four TCGA samples were selected for validation. The TCGA
samples were freshly prepared in the same manner as the original samples
analysed by shotgun proteomics. Each sample was spiked with 12.5 fmolml21 of
a mixture of all isotopically labelled peptides. Using an inclusion list containing
the precursor m/z values representing both unlabelled (endogenous) and
labelled peptides, each fraction was analysed by PRM for the variant peptides.

This figure shows the PRM data for the variant sequence LVVVGADGVGK
(KRAS(Gly12Asp) in TCGA-AA-3818. a, The MS/MS spectrum identified in
the initial shotgun analyses. b, The annotated MS/MS spectrum of the
unlabelled endogenous variant peptide in the PRM analysis. c, The annotated
MS/MS spectrum of the spiked, labelled peptide in the PRM analysis. d, The
chromatographic trace showing the overlapping transitions and retention time
of the endogenous variant peptide. e, The chromatographic trace showing the
overlapping transitions and retention time of the labelled variant peptide.
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Extended Data Figure 5 | Platform evaluation and analysis method
selection using quality control samples. a, The lower-left half (uncoloured)
depicts pairwise scatter plots of the samples, with x and y axes representing
quantile-normalized spectral counts for samples in corresponding columns
and rows, respectively. The upper-right half (red) depicts pairwise Spearman’s
correlation coefficients for the same comparisons. b, For each normalization
method (none, global, quantile and NSAF), we calculated the intraclass
correlation coefficients (ICCs) for individual proteins in the quality control
data set. The analysis was done for the top 1,000, 500 or 100 proteins with the
largest variance and the cumulative fraction curves were plotted. In most
scenarios, quantile normalization generated slightly higher ICC scores than

global normalization, and both methods clearly outperformed the NSAF
normalization. c, We sorted all proteins in the quality control data set based on
their total spectral counts and then divided the proteins into 10 bins with equal
number of proteins. Average spectral count ranges for each bin are shown
in the brackets in the legend box. For each bin, we calculated the ICCs for
individual proteins in the bin. The analysis was done for the top 300, 200 or 100
proteins with the largest variance in each bin. The cumulative fraction curves
were plotted. Protein bins with spectral counts less than 1.4 showed clearly
lower ICC scores, whereas the ICC score curves started to converge when the
average spectral count was greater than 1.4.
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Extended Data Figure 6 | Extended data for mRNA–protein correlation
analysis. a, Evaluation of the length bias in different RNA-Seq-based gene
abundance estimation methods. The plot shows the distribution of correlation
between gene length and estimated transcript abundance based on FPKM
(fragments per kilobase of exon per million fragments mapped, blue curve) and
RSEM (RNA-seq expectation maximization, red curve), respectively. FPKM
measure is independent of gene length, whereas the RSEM measure strongly
correlates with gene length. b, Relationship between mRNA–protein
correlation and the stability of the molecules. Human genes were separated into
four categories based on the mRNA and protein half-lives of their mouse
orthologues: stable mRNA–stable protein; stable mRNA–unstable protein,
unstable mRNA–stable protein, and unstable mRNA–unstable protein.

Distribution of mRNA–protein correlations for genes in each category was
plotted in the box plots. Genes with stable mRNA and stable protein showed
relatively higher mRNA–protein correlation whereas those with unstable
mRNA and unstable protein showed relatively lower mRNA–protein
correlation. Only common genes in both our study and the mouse study were
included in the analysis. The total number of genes in each category (N) is
labelled in the figure. The P value indicating correlation difference among the
four categories was calculated based on the Kruskal–Wallis non-parametric
analysis of variance (ANOVA) test. The P value indicating correlation
difference between the stable mRNA–stable protein group and the unstable
mRNA–unstable protein group was calculated based on the two-sided
Wilcoxon rank-sum test.
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Extended Data Figure 7 | mRNA and protein-level cis-effect of copy
number alterations in focal amplification, focal deletion and non-focal
regions. The figure plots cumulative fraction curves of copy number alteration
(CNA)–mRNA (dashed lines) and CNA–protein (solid lines) expression
correlations for genes in the focal amplification regions (red), focal deletion
regions (green), and non-focal regions (blue), respectively. Focal alteration
regions were defined in the TCGA study. Any chromosomal regions outside the

focal amplification and deletion regions were considered as non-focal regions.
CNA–mRNA correlations were significantly higher than CNA–protein
correlations for genes in any of the three groups. Moreover, genes in the focal
amplification regions showed the highest level of CNA–mRNA and
CNA–protein correlations among the three groups of genes. P values were
based on the two-sided Kolmogorov–Smirnov test.
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Extended Data Figure 8 | HNF4a isoforms and the effect of HNF4A shRNA
on the proliferation of colon cancer cells. a, Multiple sequence alignment of
the HNF4a isoforms, with peptides detected by shotgun proteomics and
sequences corresponding to the shRNA target sequences highlighted. Different
colours of the letters indicate different levels of sequence coverage in the
shotgun proteomics study, as indicated by the colour scale bar. Yellow boxes
highlight sequences corresponding to the shRNA target sequences.
TRCN0000019193 specifically targets P1 promoter-driven isoforms, whereas

the other two target both types of isoforms. b–d, The P1-HNF4a-specific
shRNA showed mixed impacts (b), whereas shRNAs simultaneously targeting
both P1 and P2 HNF4a showed a primarily negative impact on cell
proliferation (c, d). Moreover, a stronger negative impact was associated with
increased copy number, both for the P1- HNF4a specific shRNA (P 5 0.04,
Spearman’s correlation (r)) and for all shRNAs (P 5 0.01, Spearman’s
correlation P values for individual shRNAs summarized by the Fisher’s
combined probability test).
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Extended Data Figure 9 | Consensus matrices, the empirical cumulative
distribution function plot and core sample identification. a, Consensus
matrices of the 90 CRC samples for k 5 2 to k 5 8. The consensus matrices
show the robustness of the discovered clusters to sampling variability
(resampling 80% samples) for cluster numbers k 5 2 to 8. In each consensus
matrix, both the rows and the columns were indexed with the same sample
order and samples belonging to the same cluster frequently are adjacent to each
other. For each pair of samples, a consensus index, which is the percentage of
times they belong to the same cluster during 1,000 runs of the clustering
algorithm based on resampling was calculated. The consensus index for each
pair of samples was represented by colour gradient from white (0%) to red

(100%) in the consensus matrix. b, Cumulative distribution function (CDF)
plots corresponding to the consensus matrices for k 5 2 to k 5 8. This plot
shows the cumulative distribution of the entries of the consensus matrices
within the 0–1 range. Skew towards 0 and 1 indicates good clustering. As k
increases, the area under the CDF is hypothesized to increase markedly until k
reaches the ktrue. In this case, 7 was considered as ktrue because the change of the
area under the CDF was close to zero when k increased from 7 to 8. c, Silhouette
plot for core sample identification. For each sample (y axis), the silhouette
width (x axis) compares its similarity to its assigned class and to any other
classes. Samples with higher similarity to their assigned class than to any other
classes will get positive silhouette width score and be selected as core samples.
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Extended Data Figure 10 | Network analysis of the subtype signature
proteins. a, The number of signature proteins for each subtype. For a given
subtype, the red circle represents proteins that were different in abundance
between the subtype and all other subtypes, the green circle represents proteins
that were different in abundance between the subtype and normal colon tissues.
The intersection between red and green circles contains the signature proteins
for each subtype. b, Visualizing subtype-C-signature proteins in NetGestalt.
Proteins in the iRef protein–protein interaction network are placed in a linear
order together with the hierarchical modular organization of the network.
Alternating bar colours (green and orange) are used to distinguish
neighbouring modules. Proteins in the up and down signatures of subtype C
were visualized as two separate tracks below the network modules, where each
bar represents a protein. These proteins are not randomly distributed in the

network. Highlighted by red or blue arrows are four Network modules (I, IV, V,
VI) significantly enriched with up-signature proteins and two modules (II and
III) significantly enriched with down-signature proteins (adjusted p value
,0.01). c, d, Heat maps depicting relative abundance of down- and up-
signature proteins of subtype C in modules III and I, respectively. Tumours are
displayed as rows, grouped by normal controls (N) and proteomic subtypes (A–
E) as indicated by different side bar colours. Proteins are displayed as columns.
e, f, Network diagrams depicting the interaction of down- and up-signature
proteins of subtype C in modules III and I, respectively. Node and node-border
colours represent relatively higher or lower abundance in the subtype
compared to other subtypes and normal colon tissues, respectively. Red and
blue in the heat maps and the network diagrams represent relatively higher or
lower abundance, respectively.
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