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ABSTRACT The alternative sigma factor RpoS plays a key role modulating gene ex-
pression in Borrelia burgdorferi, the Lyme disease spirochete, by transcribing mam-
malian host-phase genes and repressing �70-dependent genes required within the
arthropod vector. To identify cis regulatory elements involved in RpoS-dependent re-
pression, we analyzed green fluorescent protein (GFP) transcriptional reporters con-
taining portions of the upstream regions of the prototypical tick-phase genes ospAB,
the glp operon, and bba74. As RpoS-mediated repression occurs only following
mammalian host adaptation, strains containing the reporters were grown in dialysis
membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type
spirochetes harboring ospAB- and glp-gfp constructs containing only the minimal
(�35/�10) �70 promoter elements had significantly lower expression in DMCs rela-
tive to growth in vitro at 37°C; no reduction in expression occurred in a DMC-
cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated
repression of bba74 required a stretch of DNA located between �165 and �82
relative to its transcriptional start site. Electrophoretic mobility shift assays employ-
ing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts
from RpoS mutant spirochetes did not. Collectively, these data demonstrate that
RpoS-mediated repression of tick-phase borrelial genes occurs by at least two dis-
tinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence
elements near the core promoter, while the other (e.g., bba74) involves an RpoS-
induced transacting repressor. Our results provide a genetic framework for further
dissection of the essential “gatekeeper” role of RpoS throughout the B. burgdorferi
enzootic cycle.

IMPORTANCE Borrelia burgdorferi, the Lyme disease spirochete, modulates gene ex-
pression to adapt to the distinctive environments of its mammalian host and arthro-
pod vector during its enzootic cycle. The alternative sigma factor RpoS has been re-
ferred to as a “gatekeeper” due to its central role in regulating the reciprocal
expression of mammalian host- and tick-phase genes. While RpoS-dependent tran-
scription has been studied extensively, little is known regarding the mechanism(s) of
RpoS-mediated repression. We employed a combination of green fluorescent protein
transcriptional reporters along with an in vivo model to define cis regulatory se-
quences responsible for RpoS-mediated repression of prototypical tick-phase genes.
Repression of ospAB and the glp operon requires only sequences near their core
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promoters, whereas modulation of bba74 expression involves a putative RpoS-
dependent repressor that binds upstream of the core promoter. Thus, Lyme disease
spirochetes employ at least two different RpoS-dependent mechanisms to repress
tick-phase genes within the mammal.

KEYWORDS Borrelia burgdorferi, Lyme disease, RpoS, sigma factors, transcriptional
repression

In most bacteria, modulation of gene expression occurs via selective promoter
recognition and productive transcription initiation. All bacteria encode a housekeep-

ing sigma factor (e.g., sigma 70 [�70] in Gram-negative bacteria) that is responsible for
recognition of the vast majority of promoters by RNA polymerase (RNAP) holoenzyme
(1, 2). In addition, nearly all bacteria have alternative sigma factors that regulate the
expression of a subset of genes in response to specific environmental, physiological,
and/or metabolic cues. Most evidence suggests that housekeeping and alternative
sigma factors interact with RNAP holoenzyme in a similar manner (1, 2). Under
homeostatic growth conditions, �70 is substantially more abundant than alternative
sigma factors and, consequently, directs the vast majority of transcription. However,
during growth transitions (e.g., entry into stationary phase) and/or exposure to specific,
often stressful, environmental stimuli, the levels and activities of alternative sigma
factors increase, enabling them to compete with �70 for apo-RNAP and thereby direct
transcription of genes whose products promote adaptation to the altered physiological
state or environmental milieu (2).

Borrelia burgdorferi, the etiologic agent of Lyme disease, is maintained in nature
within an enzootic cycle involving small reservoir hosts, such as rodents and an ixodid
tick vector (3–6). As there is no transovarial transmission of B. burgdorferi, larvae must
acquire the spirochete by feeding on an infected host (7, 8). B. burgdorferi is retained
in the tick midgut during the molt into the nymphal stage. During the nymphal blood
meal, there is a replicative burst of B. burgdorferi within the midgut, and spirochetes
transition from a nonmotile to motile state, enter the hemocoel, migrate to the salivary
glands, and are transmitted to the next host (9–12). These drastic changes in environ-
mental conditions require the spirochete not only to adjust the expression of coloni-
zation factors and other surface molecules but also to alter its metabolic state in
response to the changing nutrient profile (13, 14).

The B. burgdorferi genome encodes only three sigma factors, a housekeeping �70

and the alternative sigma factors RpoN and RpoS (6, 15–17). The consensus �70

promoter and behavior of RNAP in B. burgdorferi are thought to mirror their well-
studied counterparts in Escherichia coli (18, 19). Indeed, a recent global analysis of
B. burgdorferi promoters demonstrated that the consensus �10 region (TATAAT), the
minimal core promoter element, is essentially the same as in E. coli; however, no strong
consensus was observed for the �35 region in B. burgdorferi (20). Examination of the
upstream regions for RpoS-induced genes suggested that B. burgdorferi RpoS recog-
nizes an extended �10 sequence that is distinct from the �70 consensus promoter (21,
22). Seminal studies by Norgard and coworkers demonstrated a link between the
Hk2-Rrp2 two-component system (TCS), RpoN, and RpoS (23, 24). At the onset of the
nymphal blood meal, Rrp2 and RpoN, along with BosR, activate the expression of rpoS,
which in turn upregulates the expression of genes required for tick-to-mammal trans-
mission (cdr and mlp4 and -5) and/or virulence within the mammal (ospC, dbpBA, bbk32,
and bba34) (16, 17, 22, 23, 25). Global transcriptome analyses of wild-type and rpoS
mutant strains under mammalian host-like conditions defined 104 genes that are
induced by RpoS in vivo, many encoding proteins of unknown function (22).

Following transmission to the mammal, RpoS is also essential for repression of
�70-transcribed tick-phase genes (12, 22, 26–28). On this basis, RpoS has been referred
to as a “gatekeeper” for the reciprocal expression of genes required for either mam-
malian infection or maintenance in ticks (22). While numerous studies have investigated
the nature of RpoS-dependent transcription in B. burgdorferi (6, 16, 25, 29–35), virtually
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nothing is known regarding the mechanism(s) underlying repression by RpoS. This is,
to a large extent, due to the fact that RpoS-mediated repression does not occur in vitro
under experimental conditions (i.e., following temperature shift) in which RpoS-
dependent genes are known to be induced. Instead, repression by RpoS requires
environmental stimuli that are unique to the mammalian host milieu (22, 26). In the
past, we have circumvented this limitation using the dialysis membrane chamber
(DMC) peritoneal implant model to generate mammalian host-adapted B. burgdorferi
(22, 28, 36, 37). Among the cohort of tick-phase genes subject to RpoS-mediated
repression are the glp operon (bb0240 to -243), ospAB (bba15/16), and bba74. To better
understand the molecular mechanism(s) underlying RpoS-dependent repression, we
used a series of green fluorescent protein (GFP) transcriptional reporter constructs, in
conjunction with our DMC cultivation system, to explore the promoter elements of
these three prototypical RpoS-repressed tick-phase loci. Our results suggest that
B. burgdorferi employs at least two different mechanisms for RpoS-mediated repression
within the mammal.

RESULTS
Comparison of ospAB, bba74, and glp operon promoter regions reveals few

common regulatory motifs. We began by comparing the sequences upstream of
ospAB, glpF, and bba74, three prototypical tick-phase genes, whose expression is known
to be downregulated by RpoS in vivo. The transcriptional start sites (TSSs) for ospA and
bba74 during growth in vitro have been previously reported (27, 38). 5= rapid amplifi-
cation of cDNA ends (RACE) was performed to definitively map the glpF TSS. Surpris-
ingly, the TSS was located 195 bp upstream from the translation initiation site (Fig. 1).

FIG 1 Identification of the glp operon transcriptional start site and promoter by 5= RACE. (A) Schematic diagram
of the glp operon region. The asterisk denotes the transcriptional start site (�1). (B) Sequence of glp operon TSS
and promoter. The TSS and �35/�10 promoter elements are in boldface and underlined; the glpF (bb0240)
translational start site is in boldface and denoted by a double underline; the putative Shine-Dalgarno site is
indicated by double underline; the bb0239 translational start site is underlined. Arrows indicate direction of
translation.
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Consistent with these results, Adams et al. (20) recently reported the existence of a
195-bp untranslated leader sequence (UTR) in the glp operon by global 5=-end mapping
and Northern blotting.

Sequence alignment revealed that the extended promoter regions for ospAB, the glp
operon, and bba74 differ at the primary sequence and secondary structure levels
(Fig. 2). Multiple groups have examined the cis regulatory elements in the upstream
region of ospA (26, 39, 40). Collectively, they suggested that a T-rich region is required
for maximum expression in vitro. The region upstream of the bba74 TSS also contains
a T-rich region, but no such element is discernible for the glp operon (Fig. 2). In addition,
the ospAB upstream region contains a direct repeat and the bba74 extended promoter
contains an inverted repeat. No obvious secondary structure motifs are discernible in the
glp promoter upstream region (Fig. 2). The lack of any obvious shared upstream primary
sequences or predicted secondary structure motifs raised the possibility that multiple
mechanisms of RpoS-mediated repression are operative in B. burgdorferi.

Repression of ospAB and glp operon expression occurs by a mechanism dif-
ferent from that regulating bba74. In order to identify potential cis regulatory
elements, GFP transcriptional reporter constructs containing various amounts of se-
quence upstream of the TSSs of ospAB, bba74, and the glp operon were transformed
into B31 5A18 NP1 (Fig. 3; see also Fig. 9). For each gene, we first examined GFP
expression by the construct containing the greatest amount of upstream sequence
during in vitro growth at 37°C. Pbba74(�275) elicited the highest average mean
fluorescence intensity (MFI) [1.5-fold and 4.5-fold greater than the PospA(�102) and
Pglp(�184), respectively]. The MFIs for both PospA(�102) and Pbba74(�275) were
significantly greater than that of Pglp(�184) (Fig. 4).

We next compared GFP expression by full-length and 5= truncations for each
upstream region following temperature shift in vitro and cultivation within DMCs. As
shown in Fig. 5A, all of the Pglp reporters produced measurable expression of GFP
during in vitro growth, with Pglp(�184) eliciting the highest MFI. When 42 bp was
removed [Pglp(�142)], expression of GFP in vitro decreased significantly (P � 1.31 �

10�6), suggesting that this region may contain an activator/enhancer site. Deletion of

FIG 2 Alignment of glp operon, ospAB, and bba74 upstream sequences. Sequences are numbered relative to the
TSS (designated �1). �35/�10 promoter elements are in bold and underlined. T-rich regions in ospAB and bba74
are indicated by double underline. A direct repeat in ospA (�102 to �73) is indicated by forward arrows; the
inverted repeat in bba74 (�137/�131 to �106/�100) is in bold and underlined and indicated by inverted arrows;
the reverse repeat in bba74 (�124/�120 to �113/�109) is underlined and indicated by inverted arrows.
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an additional 96 bp [Pglp(�46)] had no significant effect. Although the Pglp(�184)
reporter drove measurable GFP expression within DMCs, it was markedly lower (P �

0.001) than that during in vitro growth (Fig. 5A), consistent with previous studies for the
native glp operon (12, 22). Interestingly, deletion of the same 42 bp that resulted in
decreased expression of GFP in vitro virtually eliminated expression in vivo [compare
Pglp(�184) to Pglp(�142)]. Thus, complete repression of the glp operon in vivo is
mediated via sequences in the vicinity of the core promoter (i.e., �10/�35).

As shown in Fig. 5B, the full-length and truncated PospA-gfp reporters expressed
measurable levels of GFP in vitro at 37°C. We observed a significant decrease in GFP
expression for PospA(�47) relative to PospA(�102) and PospA(�86), suggesting that
the region between �86 and �47 may contain a positive regulatory element (Fig. 5B).
Deletion of these 39 bp removes the poly(T) tract (Fig. 2) that Sohaskey et al. (39)
suggested was responsible for enhanced expression of ospA in vitro. When B. burgdor-
feri strains harboring these PospA reporters were grown in DMCs, all three exhibited a
significant decrease in GFP expression (Fig. 5B). Importantly, there were no significant
differences in GFP expression between the PospA reporters, suggesting that, as with the
glp promoter, sequences near the core �35/�10 sequence motif are sufficient for
repression of ospAB.

GFP expression driven by Pbba74(�275) was also significantly repressed within DMCs
(Fig. 5C). In contrast to the Pglp and PospA reporters, removal of a region between �165

FIG 3 Schematic representation of promoter-gfp fusions. Promoter-gfp transcriptional reporters with decreasing lengths of the upstream sequence were
generated. The shortest fusions contain the core promoters (�10/�35 plus minimal additional sequence). “�1” denotes the TSS. The region upstream of the
TSS is indicated by a solid line, and the 5= untranslated region in the glp operon is depicted by a dashed line (drawn approximately to scale). Except for
Pglp(�46/�195), all reporter constructs exclude the 5= untranslated leader regions. Designated names for the constructs are to the right of each construct.

FIG 4 Transcriptional activities for full-length promoters vary during in vitro growth at 37°C. B. burg-
dorferi B31 5A18 NP1 transformed with the indicated promoter-gfp fusion constructs was grown in BSK
medium at 37°C. Mean fluorescence intensity (MFI) of GFP expression by each construct was measured
by flow cytometry. Data for each reporter represent a minimum of three independent experiments.
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and �82 (relative to the bba74 TSS [Fig. 2]) abrogated repression of the Pbba74 reporter in
DMCs, whereas it had no discernible effect on expression in vitro (Fig. 5C). This region,
therefore, may contain an effector site required for repression in vivo.

Repression of ospAB and the glp operon during mammalian host adaptation is
RpoS dependent. In order to determine if repression of the Pglp and PospA reporters
during mammalian host adaptation is RpoS dependent, we transformed the Pglp(�142)
and PospA(�102) constructs into a B. burgdorferi strain 297 ΔrpoS mutant (25) and
measured GFP in the transformants following cultivation in DMCs. Note that the RpoS
mutant employed in these studies was on a strain 297 background, whereas the wild
type was a B31 strain (B31 5A18). This was necessitated by the unavailability of a strain
B31 ΔrpoS mutant at the time that these experiments were performed. Several factors
suggest that this should not represent a problem. First, RpoS regulon expression levels
have been shown to be similar between the B31 and 297 strains (22, 28). In addition,
we sequenced the regions upstream of the transcription start sites for glpF and bba74
in strain 297. For glpF, there is an A¡T change at position �3, and for bba74, there is

FIG 5 Expression from promoter-gfp reporters during in vitro and DMC cultivation. The promoter-gfp
reporters were cultivated either at 37°C (open bars) or in DMCs (checkered bars). GFP MFIs were
measured by flow cytometry. (A) glp operon; (B) ospAB; (C) bba74. **, P � 0.01; ns, not significant. Data
for each reporter construct represent a minimum of two independent biological replicates, except for
PospA(�86), for which only one biological sample was recovered from DMC cultivation.
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a G¡A change at position �253 and an A¡G change at position �53. Comparison of
the B31 and 297 sequences deposited in GenBank for the region upstream of ospA
revealed a single G¡A change at position �26. None of these single nucleotide
polymorphisms (SNPs) are likely to affect either expression or RpoS-mediated regula-
tion. In accord with previous findings for the native genes (12, 22, 27), we saw
substantially higher expression of GFP (i.e., derepression) for both reporters in the
absence of RpoS (Fig. 6). Moreover, these results indicate that the �46/�47 to �1
regions of both genes are sufficient for RpoS-dependent repression.

Repression of bba74 expression during growth in DMCs requires an RpoS-
dependent factor. Previously, we reported that repression of the native bba74 gene
within DMCs is RpoS dependent (22, 27). Above, we showed that repression of bba74
in vivo requires upstream sequences located between �165 and �82 (Fig. 5C). These
results led to the prediction that this region contains the binding site for an RpoS-
dependent repressor. Despite multiple attempts, we were unable to obtain ΔrpoS
transformants harboring Pbba74-gfp constructs to test this conjecture. As an alternative
approach, we employed electrophoretic mobility shift assays (EMSAs) with a DNA
fragment encompassing 275 bp upstream of the bba74 TSS (Fig. 7). Incubation of this
fragment with a cell extract prepared from wild-type spirochetes cultivated in DMCs
resulted in a mobility shift (Fig. 7, lanes 3 and 6), which was completely inhibited by the
addition of an 80-fold excess of unlabeled target DNA (lane 4). Importantly, incubation
of the target DNA with a cell extract prepared from DMC-cultivated ΔrpoS mutant did
not produce a shifted product (lane 8). Incubation with a cell extract from wild-type
B. burgdorferi grown in vitro at 37°C also failed to produce a shift (lanes 9 and 10). These
findings not only confirm, as expected, that repression of bba74 expression is RpoS
dependent (27), but they also indicate that repression appears to be mediated by a
factor that is produced or functions only in response to mammalian host-specific
signals.

Role of 5= UTR in regulation of glp operon expression. 5= UTRs have been shown
to control gene expression transcriptionally and posttranscriptionally (41). To elucidate

FIG 6 Transcriptional repression in DMCs is dependent on RpoS. Pglp(�142)-gfp (A) and PospA(�102)-
gfp (B) were transformed into either wild-type B31 5A18 or the ΔrpoS mutant (in a strain 297 background)
and cultivated in DMCs. GFP MFI was measured by flow cytometry.
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the possible contribution of the leader sequence to glp expression, we constructed a
GFP reporter containing the core promoter plus the 5= UTR, Pglp(�46/�195). The
presence of the leader sequence resulted in significantly higher GFP expression in vitro
compared with the minimal promoter (P � 0.004) (Fig. 8). However, the two reporters
expressed GFP at similarly low levels within DMCs (P � 0.821) (Fig. 8). Thus, the 5= UTR
does not appear to play a role in the repression of the glp operon in vivo. The enhanced
expression in the presence of the 5= UTR in vitro may be the result of either stabilization
of the longer transcript or enhancement of translation efficiency, but the precise
mechanism remains to be elucidated.

DISCUSSION

The cytosolic concentrations of � factors typically exceed those of RNAP (1, 42). On
this basis, repression of �70-dependent gene expression by alternative � factors has
generally been thought to result from competition for limiting apo-RNAP (42–45).
Alternatively, RpoS may control the expression of one or more repressor proteins or
regulatory RNAs that is/are not induced or not fully active until spirochetes are within
the mammal (22, 26, 46). A third possibility is competition between �70-RNAP and
RpoS-RNAP holoenzymes for promoter binding. In a recent study, Levi-Meyrueis et al.
(47) demonstrated that a Salmonella enterica serovar Typhimurium RpoS mutant de-
fective in DNA binding (but capable of forming RNAP holoenzyme) had a global
expression profile highly similar to that of an RpoS-deficient strain. Further, RpoS-
dependent repression of selected genes was not solely the result of � factor compe-

FIG 7 Electrophoretic mobility shift assays demonstrating RpoS dependence for repression of bba74
expression during cultivation in DMCs. Binding reactions were performed in a total volume of 20 �l
containing 50 ng of poly(dI·dC), 50 fmol biotin-labeled target DNA, and 3 �g of protein lysate (where
indicated). Lane 1, no additions; lane 2, 4 pmol of unlabeled target DNA; lanes 3 and 6, wild-type extract
from DMC-cultivated spirochetes; lane 4, wild-type extract from DMC-cultivated spirochetes plus 4 pmol
unlabeled target DNA; lane 8, extract from RpoS mutant cultivated in DMCs; lane 9, 3 �g wild-type extract
from spirochetes cultivated in vitro at 37°C; lane 10, 6 �g wild-type extract from spirochetes cultivated
in vitro at 37°C.

FIG 8 The 5= UTR does not have a role in the transcriptional repression of the glp operon in DMCs.
Pglp(�46) (containing only core promoter) and Pglp(�46/�195) (containing minimal promoter and 5=
UTR) were cultivated in vitro at 37°C or in DMCs. GFP MFI was measured by flow cytometry. **, P � 0.01;
***, P � 0.001; ns, not significant.
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tition for binding to apo-RNAP. The authors concluded that RpoS-mediated repression
resulted from occlusion of certain �70 promoters by RpoS-RNAP holoenzyme, thereby
reducing �70-dependent transcription initiation (47). Our results suggest that RpoS-
dependent repression of tick-phase genes in B. burgdorferi can occur by at least two
different mechanisms. Repression of ospAB and glp operon transcription most likely
occurs due to increased competition between �70-RNAP and RpoS-RNAP holoenzymes
for binding to the respective �70 promoters. In contrast, repression of bba74 appears to
result from RpoS-induced synthesis or activation of a repressor protein that binds
upstream of the core promoter, blocking �70-RNAP holoenzyme access to the pro-
moter.

Although our promoter fusion experiments were designed to shed light specifically
on the mechanism of RpoS-mediated repression, additional potential regulatory in-
sights were revealed during the study. ospA activation has been examined by multiple
groups (26, 39, 40). Consistent with the requirement for the T-rich region for full ospA
expression in vitro (39, 40), the ospA �86 GFP construct [PospA(�86)] containing the
T-rich region had significantly higher expression in vitro than the ospAB core promoter
construct [PospA(�47)] (Fig. 5B). Xu et al. reported that a large direct repeat is required
for maximum expression in vitro (40). The �102 ospA reporter [PospA(�102)] contains
the intact repeat, and this region is disrupted in the �86 ospA reporter construct
[PospA(�86)] (Fig. 2). GFP expression did not significantly change in the shorter
construct (Fig. 5B), suggesting that the direct repeat is not required for maximum in
vitro expression. Importantly, GFP expression was not significantly different among the
ospA reporters during growth in DMCs (Fig. 5B). Thus, the upstream cis elements
required for full ospAB expression during cultivation in vitro cannot overcome the
repression that occurs during mammalian host adaptation.

Recently, Li, Liang, and colleagues (48, 49) identified two putative binding sites for
BosR near the ospA promoter and proposed that BosR functions as an ospA repressor.
One of the BosR binding sites is located downstream of the TSS and, therefore, is not
included in our PospA reporters, whereas the second site overlaps the PospA �10
region. Thus, BosR may contribute to the reduced expression of our PospA reporters in
DMCs (Fig. 5B). If, however, BosR is able to bind directly to the ospA promoter, why is
RpoS also required for repression in vivo? One possible explanation is that BosR and
RpoS act cooperatively to block transcription by �70-RNAP holoenzyme at the ospA core
promoter. While analysis of our ospA reporters in BosR- and RpoS-deficient back-
grounds could be informative, these studies are complicated by the fact that ΔbosR
mutants also lack RpoS (31, 50). The only way to definitively establish whether BosR
functions as a direct repressor of ospAB is to conduct studies of B. burgdorferi constructs
in which expression of rpoS is independent of BosR under mammalian host conditions.

Glycerol utilization has been shown to be a fitness requirement for B. burgdorferi
during the tick phase (12, 51) and is apparently dispensable during mammalian
infection (12, 28). The glp operon is reciprocally regulated by the RpoN-RpoS and
Hk1-Rrp1 TCS (22, 46, 51, 52). Rrp1 is a diguanylate cyclase that catalyzes production of
cyclic di-GMP, whose effect is mediated through PlzA, the only cyclic di-GMP binding
protein in B. burgdorferi (46, 53). glp operon expression is severely reduced in Rrp1 and
PlzA mutants (46, 51, 52). Recently, RelBbu has also been shown to be an activator of glp
operon expression (54, 55).

Comparison of GFP expression from Pglp(�184) and Pglp(�142) during in vitro
cultivation at 37°C reveals that the 42-bp region between �184 and �142 is required
for maximal expression. Further, removal of this 42-bp sequence also results in de-
creased expression during growth in DMCs (Fig. 5A). This suggests that the �184 to
�142 region may represent an enhancer site. glp operon expression in the mammal
appears to be a composite of two opposing regulatory mechanisms—induction that is
partially dependent on an enhancer site (�184 to �142) and repression mediated by
RpoS at the core promoter (�46 to �1) (Fig. 5A). It is unclear whether Hk1/Rrp1
(c-di-GMP) and/or RelBbu is involved in mediating interaction with this putative en-
hancer sequence; however, further elucidation of the mechanism for glp operon
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induction could potentially be assessed by measuring GFP expression driven by
Pglp(�184) and Pglp(�142) in Rrp1, PlzA, or RelBbu mutant backgrounds.

In contrast to ospAB and the glp operon, a sequence between nucleotides �165 and
�82 upstream of the bba74 TSS is required for RpoS-dependent repression; removal of
this region resulted in derepression under mammalian host-adapted conditions
(Fig. 5C). An EMSA using the 283 bp upstream of the bba74 TSS as a target with cell
extracts isolated from B. burgdorferi propagated in DMCs suggests the presence of a
protein that specifically binds to this DNA region. This putative DNA-binding protein is
present or active only in extracts from host-adapted spirochetes, consistent with the
notion that its synthesis is dependent on RpoS (Fig. 7). The precise binding site at which
this putative repressor binds is under investigation; however, a careful scan of the
bba74 upstream region reveals several unusual sequence features that may play a role
in the putative repressor protein binding (Fig. 2). In particular, there is an inverse repeat
at nucleotides �138 to �132 (5=..TTTTAAT..3=) and �107 to �101 (5=..ATTAAAA..3=),
both of which are flanked by CCC sequences that may be used to stabilize a potential
stem-loop structure formed by these repeats. In addition, positions �125 to �121
(5=..TCTAA..3=) and �114 to �110 (5=..AATCT..3=) are reverse repeats that ensure that no
alternative stem can be formed in this region of the promoter. Although transcriptional
repressors typically bind closer to their cognate promoters, global bioinformatic anal-
yses of transcription factors in E. coli and Bacillus subtilis identified numerous instances
of repressor binding at a greater distance upstream (56, 57). The putative RpoS-
dependent bba74 repressor is likely encoded by a gene induced by RpoS during
mammalian growth.

MATERIALS AND METHODS
Identification of glp operon transcriptional start site. B. burgdorferi B31 A3 (58) was cultivated

initially in Barbour-Stoenner-Kelly medium II (BSK-II) at 25°C to a density of 1 � 107 cells/ml. Cultures were
diluted to 3,000 cells per ml into 10 ml of fresh BSK-II and grown to late logarithmic phase (~1 �
108 cells/ml) at 37°C. Cells were centrifuged for 15 to 20 min at 8,000 � g, washed three times in 1�
phosphate-buffered saline (PBS), and resuspended in 10 �l of 1� PBS. RNA was extracted using the
ToTALLY RNA kit (Ambion, Foster City, CA) according to the manufacturer’s protocol. The RNA pellet was
resuspended in 30 �l of nuclease-free water and treated twice with DNase using the Ambion DNA-free
kit (Ambion). Isolated RNA was stored at �80°C in the presence of RNasin until further use.

The transcriptional start site for glpF, the first gene in the glp operon, was identified using the 5= RACE
System for Rapid Amplification of cDNA Ends kit, version 2.0 (Invitrogen, Carlsbad, CA). First-strand cDNA
synthesis was accomplished using the gene-specific primer BB0240_race2 (Table 1). A 2.5-pmol amount
of BB0240_race2 primer was added to 5 �g of RNA and diethyl pyrocarbonate (DEPC)-treated water in
a final volume of 15.5 �l, and synthesis of first-strand cDNA, terminal deoxynucleotidyl transferase (TdT)
tailing, and second-strand synthesis by PCR using BB0240_race/Abridged Anchor Primer pair (Table 1)
were performed according to the manufacturer’s instructions. cDNA recovery was checked by PCR

TABLE 1 Oligonucleotides utilized in this study

Primer name Sequence (5=–3=) Purpose

BB0240_race2 TGCTAACAGCTGGGTTTAGGTGTG PCR; 5= RACE
BB0240_race TCCTGGTATTTCGGGACTTGAGGA PCR; 5= RACE
BB0240F3 CAGATTAAAAAATCAAAAATTA PCR; 5= RACE
AC240ΔF1 CAAATATAAGCTAAAAAAAAGAAC PCR; GFP fusion
AC240ΔF2 CATTAATGAAAAAATCCAATG PCR; GFP fusion
AC240ΔF3 CTTAAATTATTGACATTAATC PCR; GFP fusion
240TSSrev TATTTAATATCTTATTTTTAATTAAG PCR; GFP fusion
BB0240fullR CTTTATAACTATTTTATTTTTTATTAAG PCR; GFP fusion
OspAΔF2 GAACCAAACTTAATTAAAACC PCR; GFP fusion
OspAΔF3 AACCAAACTTAATTGAAG PCR; GFP fusion
OspAΔF4 CAATTTTCTATTTGTTATTTG PCR; GFP fusion
OspAfullR CTTAATACAAGTATAATTATATTATAAG PCR; GFP fusion
A74pfullF GGCAATGTTTGCTAAGGTG PCR; GFP fusion; EMSA
A74pfullR CATTTATTTTTATTATTTTAAAAC PCR; GFP fusion
A74ΔF2 CTATTATGAAATAACACCG PCR; GFP fusion
A74ΔF3 CATTCTTAATTAAAAAAG PCR; GFP fusion
A74ΔF4 GTATTGATTCTAATTTAGTTATG PCR; GFP fusion
pGFPrev TTATTTGTATAGTTCATCCATCCATGCC PCR; GFP fusion
5=Biot-A74 pfullF GGCAATGTTTGCTAAGGTG EMSA
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amplification using the BB0243F3/BB0240_race primer pair (Table 1), and PCR products were analyzed on
a 1% agarose gel to confirm amplification of the 5= RACE products. The purified amplicons were cloned
into pGEM-T (Promega, Madison, WI) and transformed into E. coli DH5� followed by blue/white selection
on LB agar plates containing 100 �g/ml ampicillin. Selected clones were confirmed by PCR using
BB0240_race/Abridged Anchor Primer. Inserts from confirmed clones were amplified by PCR using the
pGEM-T universal forward and reverse primers and sequenced (Genewiz, South Plainfield, NJ).

Generation of transcriptional reporters and strains. Figure 9 contains a schematic describing the
generation of the gfp transcriptional fusions for the glp operon, ospAB, and bba74 upstream regions.
Chromosomal DNA containing the region upstream of the relevant TSS was amplified from strain B31

FIG 9 Scheme for generation of promoter-gfp transcriptional fusion reporter constructs. Cloning of the
glp operon promoter is used for illustration.
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5A18 NP1 (59) by PCR using primers listed in Table 1, cloned into pGEM-T Easy (Promega) according to
the manufacturer’s instructions, and transformed into E. coli DH5� followed by blue/white selection on
LB-ampicillin plates. Clones were confirmed by sequencing (Genewiz, South Plainfield, NJ) using pGEM-T
universal forward and reverse primers. Insert orientation was determined by PCR and/or restriction
enzyme digest. For the transcriptional fusions, the promoter regions of interest were amplified from each
clone using pGEM-T Easy universal forward and reverse primers. Purified amplicons were digested with
SphI (Fermentas, Pittsburgh, PA) and PstI (Fermentas) and ligated upstream of the promoterless gfp
cassette in pCE191 (21) using the Rapid Ligation kit according to the manufacturer’s protocol (Denville,
South Plainfield, NJ). Ligations were transformed into E. coli DH5� and selected on LB agar plates
containing 100 �g/ml ampicillin. Clones were confirmed by PCR amplification and DNA sequencing.
Promoter-gfp fusion cassettes were amplified from pCE191 using promoter-specific forward and pGFPrev
primers (Table 1), cloned into pGEM-T Easy as described above, and subcloned into the B. burgdorferi-
E. coli shuttle vector pBSV2-G (60) using SphI and SacI. Transformants were selected on LB agar plates
containing 8 to 12 �g/ml of gentamicin. Clones were confirmed by PCR using the corresponding forward
promoter primer and pGFPrev (Table 1).

Each transcriptional reporter construct in pBSV2-G was isolated and purified in a large-scale plasmid
extraction by the alkaline lysis method (61). Thirty to 40 �g of plasmid DNA was electroporated into
competent B31 5A18 NP1 (62), following which transformants were cultivated in 96-well plates in BSK-II
containing 40 �g/ml of gentamicin and 100 �g/ml of kanamycin. For some experiments, reporter
constructs were transformed into a strain 297 ΔrpoS mutant, CE174 (25), and cultivated in BSK-II
containing 40 �g/ml of gentamicin and 0.06 �g/ml of erythromycin. Desired transformants were serially
diluted and screened by PCR using the corresponding forward promoter primer and pGFPrev (Table 1).

Cultivation of spirochetes in dialysis membrane chambers. B. burgdorferi strains containing the
transcriptional reporters were cultivated in DMCs (22, 36, 37). Cells were initially grown in BSK-II at 25°C
to a density of 1 � 107 cells/ml, following which they were transferred to fresh BSK-II at an initial density
of 3,000 cells/ml and cultivated at 37°C to late logarithmic phase (~1 � 108 cells/ml). Temperature-shifted
organisms were used to inoculate 10 ml of BSK-II within a DMC (8,000-Da cutoff) at 3,000 cells/ml.
Chambers were implanted in the peritoneal cavities of 160- to 200-g female Sprague-Dawley rats (Harlan,
Chicago, IL). Two weeks postimplantation, DMCs were removed and their contents were transferred to
a sterile 15-ml tube. Spirochete density was immediately determined by dark-field microscopy (63).

Mammalian host adaptation of DMC-cultivated spirochetes was assessed by real-time reverse
transcription-quantitative PCR (qRT-PCR) measurement of transcripts for ospC and the endogenous
copies of ospA, glpF, and bba74 as described previously (28). Subsequent analyses used only samples that
exhibited induction of ospC and repression of ospA, glpF, and bba74.

Flow cytometry. B. burgdorferi cells containing GFP transcriptional reporters were temperature
shifted from 23°C to 37°C in BSK-II as described above and grown to a density of 1 � 107 to 10 �
107 cells/ml. A 1.0- to 1.5-ml amount of the culture was transferred to a microcentrifuge tube and
centrifuged at 8,000 � g for 10 min. For DMC-cultivated B. burgdorferi, 5 to 10 ml of DMC contents
(~5 � 107 organisms) was centrifuged at 8,000 � g for 10 min. Cell pellets were resuspended in 500 �l
of 2.5 �M SYTO 59 (Invitrogen) in TN buffer (10 mM Tris-HCl [pH 8.0], 1 mM EDTA, 100 mM NaCl) and
incubated in the dark for 20 to 30 min at room temperature. The stained samples were washed twice in
TN buffer, resuspended in 300 �l of 1% paraformaldehyde in 1� PBS, and stored in the dark at 4°C prior
to analysis. Samples were analyzed by multiparameter flow cytometry using a MACSQuant Analyzer and
MACSQuantify software (Miltenyi Biotec). Compensation for spectral overlap in the fluorescein isothio-
cyanate (FITC) (GFP) and allophycocyanin (APC) (SYTO 59) channels was performed using a GFP-
expressing (no SYTO 59) strain and a non-GFP-expressing SYTO 59-stained strain (64). Fifty thousand
events per sample were collected. Threshold values for GFP- and SYTO 59-positive cells were determined
using unstained, nonfluorescent B. burgdorferi and SYTO 59-stained and unstained, GFP-expressing
spirochetes. B. burgdorferi was gated to include only cells that stained with SYTO 59. The GFP (FITC) MFI
of GFP-expressing SYTO 59� cells was determined. For each experimental parameter, technical dupli-
cates were prepared from two or three independent cultures, and the values for technical replicates were
averaged. GFP MFIs of experimental groups were compared by a two-tailed, unpaired t test. Significance
was defined as a P value of �0.05.

EMSA. Cell lysates (from 5 � 107 to 7 � 107 cells total) were obtained from either B. burgdorferi B31
5A18 NP1 or CE174 cultivated at 37°C or in DMCs as described above. Cells were pelleted by centrifu-
gation, washed twice in PBS, and suspended in 0.3 ml of BugBuster protein extraction reagent (Novagen,
Madison, WI), 10 �l phenylmethylsulfonyl fluoride, and 0.4 mg/ml lysozyme. Following incubation for
40 min on ice, extracts were cleared by centrifugation at 22,000 � g for 30 min, and protein concen-
tration was determined using the Pierce Coomassie blue assay (Pierce Biotechnology, Rockford, IL). Cell
lysates were stored at �80°C in aliquots of 0.5 �g/�l and used only once. A 283-bp biotin-labeled DNA
target representing the region upstream of the bba74 promoter was generated by PCR using primers
5=Biot-A74pfullF and A74pfullR (Table 1). Unlabeled competitor DNA was prepared by PCR using the
same primer sequences, except that the forward primer was not biotinylated. Each EMSA was performed
in a total volume of 20 �l containing 50 ng of poly(dI-dC), 50 fmol biotin-labeled target DNA, and 3 �g
of protein lysate. In target competition reactions, an additional 4 pmol of unlabeled target DNA was
added per reaction mixture. Protocols for the order of addition of reagents and reaction conditions
followed those recommended by the manufacturer of the LightShift chemiluminescent EMSA kit
(Thermo Fisher Scientific, Suwanee, GA). Since the order of addition of cell extracts and biotin-labeled
target DNA may affect the specificity of the DNA-protein complexes, in all reaction mixtures that did not
contain unlabeled competitor target DNA, components were premixed prior to adding the biotin-labeled
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target DNA. In reaction mixtures that did include competitive target DNA, unlabeled target DNA was
added to the premixed components and chilled on ice for 20 min prior to the addition of biotin-labeled
target DNA. All reaction mixtures were incubated at room temperature for 20 min. EMSA reactions were
resolved by electrophoresis in 8% native polyacrylamide gels in 0.5� TBE (10 mM Tris-borate, 10 mM
boric acid, 50 mM EDTA, pH 8.0) buffer at 200 V. Gels were blotted to charged nylon membranes
(Hybond-N�; GE Healthcare, Buckinghamshire, United Kingdom) and cross-linked by UV light. Visualiza-
tion of DNA bands was accomplished with the LightShift EMSA chemiluminescent kit.
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