Active Learning is Lecture⁻¹

A. Malcolm Campbell DAVIDSON

10 October, 2017 Hunter College

Key Points for Today

- teaching vs. learning
- what would a scientist do?
- three extracts to sample readings
- change labs to model real science
- assess your teaching to know what works

Introductions

name department and courses workshop focus course

Malcolm Campbell

- Introductory Biology
- Genomics

Biology and Genomics (24 years)

• Lab Method in Genomics

taught my dog to

Backwards Design of Curriculum

- 1. What will your students be able to do after this lesson/activity/course? (learning objectives)
- 2. How will you know if they can do this?
- 3. What will your students do to gain this ability?

handout

Think of one class to focus on today.

Look at Bloom's taxonomy & pick the level to target.

Write one learning objective using Bloom's verbs.

How People Learn Best

- construct our own knowledge
- connect to previous knowledge
- guided enquiry effective
- lecturing is coverage, not learning

How People Learn Best

- construct our own knowledge
- connect to previous knowledge
- guided enquiry effective
- lecturing is coverage, not learning

Biology Has Become A Religion

Biology Has Become A Religion

- no data
- accept on faith
- repeat what told
- too much detail
- not science

WWSD? I want my students to think like scientists, but not necessarily stay in science.

Donald J. Trump @realDonaldTrump

The concept of global warming was created by and for the Chinese in order to make U.S. manufacturing non-competitive.

0

I am being proven right about massive vaccinations—the doctors lied. Save our children & their future.

9:30 AM - Sep 3, 2014

WWSD? I want my students to think like scientists, but not necessarily stay in science.

Extracted Text: data interpretation

Students need to practice: interpreting data constructing knowledge making connections. **Chapter 13.2 Emergent Property at Molecular Level**

you are here		Big Ideas of biology					
		Information	Evolution	Cells	Homeostasis	Emergent Properties	
	molecules	1	4	7	10	13	
levels of	cells	2	5	8	11	14	
the	organisms l	3	6	9	12	15	
biological	organisms II	16	19	22	28	25	
hierarchy	populations	17	20	23	29	26	
	ecological systems	18	21	24	30	27	

handout

Extracted Text: data interpretation

formative assessment and class activity hemoglobin handout

synthesize the data and information to complete the tables on the new handout

Extracted Text: ELSI

Students need to connect new knowledge to existing: draw on life experience remember past interactions provide practical advice **ELSI 4.1 Are evolution and religion compatible?**

you are here		Big Ideas of biology					
		Information	Evolution	Cells	Homeostasis	Emergent Properties	
	molecules	1	4	7	10	13	
levels of	cells	2	5	8	11	14	
the	organisms l	3	6	9	12	15	
biological	organisms II	16	19	22	28	25	
hierarchy	populations	17	20	23	29	26	
	ecological systems	18	21	24	30	27	

handout

Extracted Text: ELSI

think-pair-share What do you do when a student tells you they *believe* the Bible literally?

Interactive: BioMath Exploration

Students need to practice: interpreting mathematical model connect model to real world experience apply math to gain biological insights **BME 13.1 How can you quantify cooperativity?**

you are here		Big Ideas of biology					
		Information	Evolution	Cells	Homeostasis	Emergent Properties	
	molecules	1	4	7	10	13	
levels of	cells	2	5	8	11	14	
the	organisms l	3	6	9	12	15	
biological	organisms II	16	19	22	28	25	
hierarchy	populations	17	20	23	29	26	
	ecological systems	18	21	24	30	27	

handout

Interactive: BioMath Exploration

graph hemoglobin's affinity

slope =

Interactive: BioMath Exploration

graph hemoglobin's affinity

slope = 2.8

Do ICB students see biology differently?

1-5 scale 5 = extremely	Average at Start Fall			
accurate	ICB	Traditional		
biology is definitions & processes	2.86	2.61		
big questions of biology already answered	1.71	1.50		
big/small division of biology describes nature	3.15	3.02		
1-5 scale 5 = extremely important				
memorization	3.96	3.64		

no

Do ICB students see biology differently?

1-5 scale 5 = extremely	Avera	age at Start Fall	∆ in A End	
accurate	ICB	Traditional	ICB	
biology is definitions & processes	2.86	2.61	-0.58*** V	
big questions of biology already answered	1.71	1.50	-0.32* V	
big/small division of biology describes nature	3.15	3.02	-1.08*** y	
1-5 scale 5 = extremely important			ye	
memorization	3.96	3.64	-1.48***	-

* p<0.05, ** p<0.01, *** p<0.001, ^ p= 0.06

Do ICB students see biology differently?

1-5 scale 5 = extremely	Average at Start Fall		∆ in Average End of Fall		∆ in Average End of Spring	
accurate	ICB	Traditional	ICB	Traditional	ICB	Traditional
biology is definitions & processes	2.86	2.61	-0.58***	+0.50	-0.46*** Ve	+0.45 S
big questions of biology already answered	1.71	1.50	-0.32*	+0.22	-0.33^ У€	0.00 S
big/small division of biology describes nature	3.15	3.02	-1.08***	-0.06	-0.75** У	-0.10 S
1-5 scale 5 = extremely important					VE	SS!
memorization	3.96	3.64	-1.48***	-0.08	-1.27***	+0.23

* p<0.05, ** p<0.01, *** p<0.001, ^ p= 0.06

Your Turn

Map out active learning module for your course.

https://www.ibiology.org/scientific-teaching/active-learning.html

End of Semester Course Evaluations

traditional textbook + traditional lab "Lecture and lab are not integrated."

End of Semester Course Evaluations

traditional textbook + traditional lab "Lecture and lab are not integrated."

ICB textbook + traditional labs "I love how lecture and lab are so integrated!"

handout

What's lacking in Lab?

Trait	Inquiry Lab	CURE	SURE
scientific practice	yes	yes	yes
discovery	yes	yes	yes
relevance	rarely	yes	yes
collaboration	yes	yes	yes
iteration	no	yes	yes

CBE LSE Vol. 13, 29–40, Spring 2014

What's lacking in Lab?

synthetic biology

week 1

What's lacking in Lab?

week 15

Atibiotic resistance

WWSD? What Would a Scientist Do?

Provide Iteration, Sustain Relevance

synthetic biology I

week 1

synthetic biology II

taste evolution

week 15

antibiotic resistance

Golden Gate Assembly Method **Bsa I + ligase** Bsa I Bsa I GFP RBS RBS **RFP**

First Year Students in 3 Hour Lab

no gel purifications!

Student Sample, November 2012

11-7-12

- -35 CGACGAGCTGTTGACA --- ATCATCGGCTCGTATAATGTGTGGA 5′
- 3 '

ATAA (deleted) -103′ CTCGACAACTGT ---- TAGTAGCCGAGCATATTACACACCTCGCC 5′

Student Research, October 2016

iGEM wiki tools search toc Registry of Standard Biological Parts

tools catalog repository assembly protocols help search

Catalog

The iGEM Registry has over 20,000 documented parts. The Catalog organizes many of these parts by part type, chassis, function, and more. Browse for parts through the Registry Catalog or use the search menu.

2016 DNA Distribution

The iGEM 2016 DNA Distribution is shipping to registered teams and labs. We've added some new material this year, so be sure to read through the 2016 Distribution Handbook before using your kit.

Registry Help

Protocols

login

BBa_

Adding Parts to the Registry

The Registry's Repository contains thousands of documented parts with available DNA samples. Last year, iGEM teams submitted samples for over 1900 parts.

Be sure to add your parts and send samples to the Registry so that they can be made available to the community!

add a part sample submission

Collections [updated!]

We've **updated** the Registry part collections. There are part collections for reporter proteins, plant chassis, cellulose-related parts, and more. Users can discover new parts and collections and build upon what previous iGEM teams and labs have achieved.

- Plant Chassis [UPDATED!]
- Bacillus subtilis [UPDATED!]

Registry News

- Registry Release
- Registry 6.0
- Report Bugs
- Request Features
- News Archive
- Feature Box Archive

Other

- Registry API
- Safety
- Videos

First Year Promoters in Registry

-					
	BBa_J100282	Reporter	rClone Red Version 2 with RBS: Device for GGA Cloning and Testing RBS elements and Riboswitches	Rachel Neal	738
	BBa_J100283	Reporter	rClone Red with RBS: Device for GGA Cloning and Testing RBS elements and Riboswitches	Rachel Neal	738
	BBa_J100284	Plasmid	JC184d5 with Mutagenesis Cassette Removed	Zachary Shaver	3760
Τ	BBa_J100285	Plasmid	SPT7specific with Riboswitch C	Dylan Maghini	8875
Τ	BBa_J100286	Composite	tetA+sacB with RBS	Hartlee Johnston	
Τ	BBa_J100287	Plasmid	J100265 (pJC173b) with GFP replacing LuxAB	Owen Koucky	4981
	BBa_J100288	Plasmid	pJC173b with gIII neg	Hartlee Johnston	6178
\square	BBa_J100289	Measurement	Pnar7 Nitrate Biosensor	Shuk Hang Li	1803
	BBa_J100290	Measurement	O Biosensor + NarX	Shuk Hang Li	3194
	BBa_J100291	Measurement	L Biosensor + NarX	Shuk Hang Li	3194
\square	BBa_J100292	Measurement	R Biosensor + NarX	Shuk Hang Li	3195
\square	BBa_J100293	Measurement	B Biosensor + NarX	Shuk Hang Li	3195
	BBa_J100294	Measurement	DL Biosensor + NarX	Shuk Hang Li	3036
	BBa_J100295	Measurement	DB Biosensor + NarX	Shuk Hang Li	
	BBa_J100296	RBS	rClone Red Version 2 with RBS 2.0: Device for GGA Cloning and Testing RBS elements and Riboswitches	Shuk Hang Li	
	BBa_J100297	RBS	rClone Red Version 1.5 with RBS 2.0: Device for GGA Cloning and Testing RBS elements and Riboswitche	Shuk Hang Li	
	BBa_J100298	Regulatory	deoP2> cAMP> E. coli	Shannon Blee	54
	BBa_J100299	Regulatory	lysine regulated promoter	Lydia Soifer	47
	BBa_J100300	Regulatory	PprpB	Jose David Hernandez	50
	BBa_J100301	Regulatory	ompW Promoter	Hannah Sinks	56
Γ	BBa_J100302	Regulatory	asr promoter (trimmed version of K1231000)	Jackson Miller	56
	BBa_J100303	Regulatory	PmanP	Emilie Uffman	50
	BBa_J100304	Regulatory	NPT-II	India Little	51
	BBa_J100305	Regulatory	upp Promoter	Sabrina Shepherd	56
	BBa_J100306	Other	repClone Red (J100205) with wt TetR promoter (R0040)	Monica Prudencio	2339
Γ	BBa_J100307	Composite	Variant of repClone Red (J100205)	Monica Prudencio	2414
[BBa_J100308	Other	Variant of repClone Red(J100205) w/ wt TetR promoter (R0040)	Monica Prudencio	2339
\top	BBa_J100309	Reporter	actClone Red with wt full OmpR promoter	Monica Prudencio	1683

One Lab Group's Promoter, upp

upp Promoter

This promoter is UTP sensitive and begins the transcription process of the upp gene in E. coli. We are going to test with a 600 µM solution of UTP.

Sequence and Features

			View plasmid 🔾	Get part sequence.
61	71	81	91	

Negative Control vs Colony #1

Negative Control vs Colony #1

Positive Control vs Colony #2

25000 RFP Relative Fluorescence Intensity 10 10

Positive Control vs Colony #2

25000 RFP Relative Fluorescence Intensity 10 10

Students Discovered Strong Promoter

igi Re	aistr	v of St	andar	a Biolo	orical	Parts	S				n	lacampbell		
	gioti ,		ranacitar		hly prot		bala	aaarab						_
	toois	catalog	repositor	/ assem	bly prote	ocois i	neip	search	BBa_					
ma	n page	design	experien	ce infor	rmation	part tool	ls (edit						
Pa	rt:BBa_	_J1003()5							- (F Re	alatory	Not Re Sample No	leased ot in stock	
Desig	ned by: Sabri	na Shepherd	Group: Campbel	I_M_Lab (2010	6-09-08)							No Re -1 U	esults ses	
												Get Th	is Part	
upr) Promo	oter												
u p ț This r	Promo)ter JTP sensitive	and begins the	transcription p	process of the	upp gene ir	n E. coli.	. We are goi	na to test wit	th a 600 u	M solution	of UTP.		
UP This Sequ	Promo)ter JTP sensitive eatures	and begins the	transcription p	process of the	upp gene ir	n E. coli.	. We are goi	ng to test wit	th a 600 μ	M solution	of UTP.		
UPI This Sequ Suk	Promo promoter is U ence and Fe	DTP sensitive patures er <u>SS</u> DS	and begins the Length:	transcription p	process of the	upp gene ir	n E. coli.	. We are goi	ng to test wit	th a 600 μ View	M solution	of UTP.	sequence.	
UPI This Sequ Sut	promoter is L ence and Fe parts I <u>Rule</u>	DTP sensitive eatures or <u>SS</u> DS	and begins the Length: 21	transcription p 56 bp 31	process of the	upp gene ir	n E. coli. 61	. We are goi	ng to test wit	th a 600 μ View 81	M solution of plasmid (91	of UTP.	sequence.	
This Sequ Sut	Promo promoter is U ence and Fe parts I <u>Rule</u> 1 gactaaage ctgatttca	DTP sensitive patures er <u>SS</u> DS 11 tc aacgaaaa ag ttgctttt	and begins the Length: 21 ga atattgccgc ct tataacggcg	transcription p 56 bp 31 cttgaagaaa gaacttcttt	41 ggaggtataa cctccatatt	upp gene ir 51 a tccgtc t aggcag	n E. coli. 61	. We are goi	ng to test wit	th a 600 μ View 81	M solution of plasmid (91	of UTP.	sequence.	
1	Promo promoter is U ence and Fe parts I <u>Rule</u> 1 gactaaage ctgatttca	oter JTP sensitive eatures er <u>SS</u> DS 11 tc aacgaaaa ag ttgctttt	and begins the Length: 21 ga atattgccgc t tataacggcg -35 box	transcription p 56 bp 31 cttgaagaaa gaacttcttt	41 41 cctccatatt -10 box	51 51 a tccgtc aggcag	n E. coli. 61	. We are goi	ng to test wit	th a 600 μ View 81	M solution of plasmid (91	of UTP.	sequence.	
UPI This Sequ Sut 1	Promo promoter is U ence and Fe parts I <u>Rule</u> 1 gactaaage ctgatttca	DTP sensitive eatures er <u>SS</u> DS 11 tc aacgaaaa ag ttgctttt tibility: 10	Length: 21 ga atattgccgc -35 box 12 21 23	transcription p 56 bp 31 cttgaagaaa gaacttcttt 25 1000	41 41 ggaggtataa cctccatatt -10 box	51 51 tccgtc t aggcag	n E. coli. 61	. We are goi	ng to test wit	th a 600 μ View 81	M solution	of UTP.	sequence.	
UPI This Sequ Sul 1	Promo promoter is U ence and Fe parts I <u>Rule</u> 1 gactaaage ctgatttca	oter JTP sensitive eatures er <u>SS</u> DS 11 tc aacgaaaa ag ttgctttt tibility: 10	and begins the Length: 21 ga atattgccgc -35 box 12 21 23	transcription p 56 bp 31 cttgaagaaa gaacttcttt 25 1000	41 41 cctccatatt -10 box	51 51 a tccgtc aggcag	n E. coli. 61	. We are goi	ng to test wit	th a 600 μ View 81	M solution of plasmid (91	of UTP.	sequence.	t]
UPI This Sequ Sul 1 Asser	promoter is l promoter is l ence and Fe parts I <u>Rule</u> 1 gactaaage ctgatttca mbly Compa	oter JTP sensitive eatures er <u>SS</u> DS 11 tc aacgaaaa ag ttgctttt tibility: 10	and begins the Length: 21 ga atattgccgc -35 box 12 21 23	transcription p 56 bp 31 cttgaagaaa gaacttcttt 25 1000	41 41 cctccatatt -10 box	upp gene ir	n E. coli. 61	We are goi	ng to test wit	th a 600 μ View 81	M solution of plasmid (91	of UTP.	sequence.	<u>t]</u>

rClone Red (ribosome research) J119384

rClone Red (ribosome research) J119384

rClone Red (student-designed RBS)

tClone Red (terminator research) J119361

tClone Red (terminator research)

Bsa I RFP RBS

tClone Red (student-designed terminators)

tClone Red (student-designed terminators)

Ptet 10 20 30 40 50 R0040 TetR 1 -35 -10 TetR 2 54 bp Bsa I TetR RBS

Student Results repClone Red F2017

Student Results repClone Red F2017

actClone Red J100204

actClone Red J100309 = WT

Student Results actClone Red F2017

	50000 -				
1	45000 -				
lce	40000 -				
Dan	35000 -				
orl	30000				
abs	25000 -				
Ce/	20000			T	
ene	15000				
S SC	10000		Ī		
lOr	5000 -		±		
AU	0 -				_
	0	0	X 1	X2	X.

pClone Red

repClone Red

rClone Red

Critical Aspects in CURE Experiences

select or design all or part of data collection methods

work collaboratively with peers

present work outside class

collect novel data

CBE LSE Vol. 14, 1 - 13, Spring 2015

analyze results

read & evaluate science literature

activities

Critical Aspects in CURE Experiences

CBE LSE Vol. 14, 1 - 13, Spring 2015

activities

Critical Aspects in CURE Experiences

CBE LSE Vol. 14, 1 - 13, Spring 2015
Critical Aspects in CURE Experiences

CBE LSE Vol. 14, 1 - 13, Spring 2015

Critical Aspects in CURE Experiences

CBE LSE Vol. 14, 1 - 13, Spring 2015

Critical Aspects in CURE Experiences

Teaching Should Be Fun!

IDO I

NOTICE LOWER HOOD

CAUTION